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This study mainly involves the methods and experiments of using infrared thermal
wave imaging detection technology to detect internal defects in aircraft composite
materials. The results were discussed and analyzed. In this paper, the feasibility of the
experiment was verified by simulation. In simulation, the minimum accuracy of
detectable defects is 4mm radius under the mesh division accuracy with a
correlation coefficient of 5. On this basis, an accurate detection method and
prototype nondestructive testing system for defects of aircraft composite materials
based on infrared imaging detection technologywere designed,which can realize the
identification and positioning of defects in aircraft composite material structures,
including type, size and accurate depth of defects. Finally, the data collected by the
infrared detection system was recognized through YOLO neural network. The test
result shows the confidence level for water point defect is more than 0.9, while the
confidence level for crack defect is about 0.5. This research result will expand the use
case of infrared nondestructive testing technology around the world, and the
transformation of the results will help to solve the maintenance problems of
aircraft in general aviation.
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1 Introduction

Due to their advantages of high heat resistance and strength, low density and thermal
expansion coefficient, and small heat capacity and specific gravity, etc., composite materials can
save fuel by reducing the weight of aircraft structures and are widely used in the aviation field.
Figure 1 shows the total materials used in Boeing series aircraft. The minimum yield strength of
carbon fiber-reinforced polymer (CFRP) is 550MPa, while the density of CFRP is only one-fifth
that of steel and three-fifths that of Al-based alloys [1–5]. A lighter weight means lower fuel
consumption. However, in the process of preparing and servicing composite materials, internal
defects might occur, which greatly reduce their safety performance and pose a major hidden
threat to the application fields [6–8]. The existing detection methods, including manual testing,
radiographic testing, and ultrasonic testing, are difficult to efficiently, accurately, and non-
destructively apply to discover and locate the internal defects of composite materials [9, 10]. For
example, manual testing can only inspect defects on the surface. Radiographic testing requires
high technical operations and is harmful to the human body. Ultrasonic testing is limited to
detecting layered defects parallel to the detection plane of the workpiece.
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Infrared imaging recognition technology is used to detect internal
defects by displaying the changes in the infrared ray emitted by the
sample. This technology is a new non-destructive testing technology with
broad application prospects and has been applied to the inspection of
aircraft components in recent years and can be used to detect defects in
composite materials and metal materials, including debonding defects,
water point defects, and corrosion defects [11, 12]. Traditional methods
for detecting defects in composite materials used on general aircraft are
prone to misjudging minor defects and are unable to accurately locate
defects, which can seriously affect the safety performance and
maintenance efficiency of these materials [13]. Therefore, studying
non-destructive infrared imaging testing technologies and establishing
accurate defect detection methods and prototype non-destructive testing
systems for aircraft composite materials are of great significance to
improve aircraft maintenance efficiency and enhance the reliability
and safety of aircraft to ensure their airworthiness [14–17].

This study adopted infrared imaging detection technology with wide
adaptability, large observation area, visual quantification, lightweight,
non-contact, and non-destructive. Simulations and experiments were
combined to realize defect localization and quantitative measurement of
defects inside aircraft composite materials. In finite element simulation,
the feasibility of the experiment was verified based on the change trends
of the surface temperature. Then, through the optical excitation method,
controllable infrared excitation was applied to the measured object such
that the defects or damage inside the object showed different temperature
field changes from the surrounding normal structure. Meanwhile, a
thermal imager was used to collect and process thermal image sequences
containing time information. Finally, YOLOv5 was used to identify
defects in the image sequences with high confidence levels. The
results will be conducive to solving maintenance problems of aircraft
during navigation.

2 Experimental principles and methods

2.1 Establishment of the heat transfer
mechanism for layers of aircraft composite
materials

Infrared imaging recognition technology is used to detect defects
on the surface and internal uneven or abnormal positions of test

samples according to the different thermal conductivities of
materials or structures, which has the advantages of
environmental protection, high efficiency, non-contact, large
detection area, visual results, and wide application range. This
technology is suitable for the non-destructive, non-contact
assessment of large complex structures of aircraft composite
materials and in situ in-service detection [18–21]. According to
the composition of aircraft composite materials, different kinds of
samples such as aluminum alloy, glass fiber composite, and carbon/
epoxy composite are prepared [22–24]. Then, a high-precision
infrared camera was used to collect the thermal image sequence.
The relationships of temperature and energy of materials with
different thicknesses in the space and time dimensions were
recorded. Due to the inconsistent thickness of materials in
different parts of the aircraft, the heat flow field in the materials
is inconsistent, which greatly impacts the accuracy of defect
detection under the same experimental conditions. For example,
the method can detect shallow defects by heating in a short time
rather than deep defects. Therefore, the experiment classified the
composite materials in various situations and tested them in groups.
Next, different databases were established as reference standards for
subsequent tests. A one-dimensional analytical model of the
temperature field distribution of each layer was then established
to analyze the relationships between material thickness, time, and
temperature field distribution of each layer [25–27]. In the one-
dimensional case, the heat conduction equation of the material is

zu

zt
− α

z2u

zx2
� 0, x> 0, t> 0, (1)

where u(x, t) is the material temperature, α = k/ρc is the thermal
diffusion coefficient, k is the thermal conductivity, ρ is the density,
and c is the specific heat capacity.

Set the initial value at time t = 0: u|t�0 � ϕ(x). Assuming that the
thickness of the material is infinite, this can be regarded as the
Cauchy problem of the heat conduction equation. The solution of
the equation can be obtained by Fourier transform as follows:

u x, t( ) � 1
2

���
παt

√ ∫+∞

0
ϕ ξ( )e− x−ξ( )2

4αt dξ. (2)

Then, the substitute boundary condition is −k zu
zx|x�0 � Φq,

where Φq is the pulse heat flux applied on the material surface,
which can be regarded as a function of δ.

The resulting equation is

u x, t( ) � φq

2ρc
���
παt

√ e−
x2
4αt. (3)

At x = 0, the temperature field distribution on the material
surface is easily obtained:

u|x�0 �
φq

2ρc
���
παt

√ . (4)

Since the depth of the defect from the material surface is d, the
problem is transformed to solve the heat conduction equation of a
material with a thickness of d. When the boundary condition is met,
the mirror image method can be used to obtain the following:

ud|x�0 �
φq

2ρc
���
παt

√ 1 + 2e−
d2
αt( ). (5)

FIGURE 1
Total materials used in Boeing series aircraft.
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Subtracting (4) from (5) provides the relationship between the
contrast temperature of defects on the material surface and t:

Δu|x�0 �
φq

ρc
���
παt

√ e−
d2
αt . (6)

For zΔu
zt � 0, t when the maximum contrast temperature of the

defect appears after the pulse heat source is applied can be obtained
as tmax � 2d2

α .
The collected thermal image sequence shows that the depth of

the defects from the material surface can be obtained by calculating t
from the time between the application of the external heat source to
the material and the appearance of the maximum contrast
temperature image d �

��
αt
2

√
.

The propagation of heat flux applied on the surface of composite
materials is shown in Figure 2.

In the composite material without defects, the heat wave is
evenly radiated on the surface after it is propagated in the material
without influence. In composite material with heat resistance
defects, the defect shows higher thermal radiation on the surface
than the surrounding area after the heat wave is propagated in the
material. In composite material with heat conductivity defects, the
defect shows lower thermal radiation on the surface than the
surrounding area after the heat wave is propagated in the material.

2.2 Establishment of a non-destructive
testing system for aircraft composite
material based on optical excitation infrared
imaging

During the production and use of aircraft composite
materials, different types and extents of damage may occur.
This section describes the construction of an optical excitation
infrared imaging non-destructive testing system based on the
thermal conductivity data of aircraft composite materials
obtained in Section 2.1. The system composition diagram is
shown in Figure 3.

2.3 Optimization of the processing
algorithm for infrared image sequences

In the infrared image sequence, each pixel has a corresponding
temperature state. The infrared image composed of pixel points
contains rich temperature change information. Different excitation
methods have different effects on the temperature change
distribution field of materials [28, 29]. Therefore, it is important
to determine the infrared image sequence processing algorithm for
different types of optical excitation (pulse, short time, long time,
continuous illumination, etc.) to obtain the infrared reconstruction
images of composite material defects and typical temperature
changes [30]. In this paper, the characterization of defect features
was obtained by using the temperature change characteristics of the
transient thermal response curve in the sequence of multi-frame
infrared images. The infrared thermal imager was used to collect
temperature change information of the test sample under optical
excitation, and the collected data were converted into three-
dimensional array infrared image sequences using MATLAB. A
secondary reconstruction infrared feature sequence image of aircraft
composite materials with prominent temperature information was
obtained through the reconstruction image algorithm. Temperature
data segmentation, variable search, probability density function
modeling, and data classification of infrared image sequences
were then carried out. The inverse heat conduction theory and
simulated annealing algorithm [31] were then applied to realize the
quantitative inversion calculation of the coating thickness. The fuzzy
mean clustering C-operator edge detection algorithm was proposed
to extract defect edges in the infrared images [32].

Finally, the combination of principal component analysis and
neural network theory [33]was used to more accurately identify the
defect types and locate the positions of the defects in aircraft
composite structures. YOLOv5 (You Only Look Once) by
Ultralytics was used to train and test the collected experimental
data and obtain the threshold prediction system, the advantages of
which include fast image reasoning speed (up to 0.007 s) and small
file sizes (YOLOv5s is only 27 MB) [34].

FIGURE 2
Schematic diagram of heat wave propagation in composite materials. (A) Composite material without defects. (B) Composite material with heat
resistance defects. (C) Composite material with heat conductivity defects.
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3 Finite element simulation and
experiment

The composite material reached a steady state under the heating by
the external source, and gradually cooled after the external heat source
was removed. The steady-state thermal was used to simulate the heating
process, the temperature distribution results of which were the initial
setting for the transient thermal to simulate the cooling process. All
temperature distribution changes with time were recorded.

3.1 Analysis process of the finite elements

This experiment used the Ansys Workbench finite element
software to simulate the heating and cooling process of the

composite material on the computer. The Ansys Mechanical
solver was used to calculate the temperature distribution of the
sample to draw images of surface temperature changes over time.

The finite element analysis is mainly divided into three steps:
pretreatment, solution, and post-processing. Pretreatment included
model establishment, material definition and assignment, and mesh
division. Model establishment represents the establishment of a
three-dimensional model corresponding to the material. A bottom
shape was first drawn, and the model was established by stretching
the vertical axis. The three-dimensional model established in the
experiment is shown in Figure 4. The material properties were then
selected from the library at the corresponding material location. If
there are no required material properties, materials with custom
properties were entered. Finally, different mesh division methods
were used to meet different accuracy requirements. The denser the

FIGURE 3
Schematic diagram of the infrared thermography NDT system using flash excitation. The system includes a data acquisition system, a signal source
group, an infrared thermal imager group, an infrared image processing and a reconstruction system.

FIGURE 4
Three-dimensional model of test material with a single defect and multiple defects. (A) The three-dimensional model measures 100 mm ×
100 mm × 30 mm. A cylindrical defect with a height of 10 mm and radii of 4 mm, 6 mm, 8 mm, 12 mm, 16 mm, and 20 mm is dug at its center. The
distance from the defect to the surface is 5 mm. (B) The three-dimensional model measures 200 mm × 200 mm × 30 mm. Three identical cylindrical
defects with heights of 9 mm and radii of 5 mm are dug at the center of each part. The distances from the defects to the surface are 3 mm, 6 mm,
and 9 mm, respectively.
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mesh division, the higher the accuracy and computational
complexity. The solution was divided into load conditions,
boundary conditions, and solution settings.

3.2 Experiment of finite element simulation

In the pretreatment process, a three-dimensional model of the
material was first established using DesignModeler. First, a square
with side lengths of 100 mm on the xy plane was created. Next, the

FIGURE 5
Temperature change trends of a defect with a 20 mm radius.
(A–D) Screenshots of the temperature trends at 72 s, 75 s, 78 s, and
81 s, respectively.

FIGURE 6
Temperature change trends of a defect with a 12 mm radius.
(A–D) Screenshots of the temperature trends at 72 s, 75 s, 78 s, and
81 s, respectively.

FIGURE 7
Temperature change trends of a defect with a 4 mm radius.
(A–D) Screenshots of the temperature trends at 72 s, 75 s, 78 s, and
81 s, respectively.

FIGURE 8
Comparison chart of defects with different sizes. (A–D) Defects
with 8, 12, 16, and 20 mm radii in the composite material, respectively.
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model was extruded at a 30 mm depth by adding material. Then, a
cycle was created on the plane parallel to the xy plane. A cylindrical
shape was extruded into a cuboid shape by adding frozen material.
Finally, another three-dimensional model was established as follows.
The defects were set to different depths to verify the feasibility of the
heat conduction model in Section 2.1, which was composed of the
aforementioned four models. Three parts were defective and one
part was not defective as a control group.

Next, the thermal conductivity of the carbon fiber material was
imported into the material library. The carbon fiber material was
then assigned to the non-defective part of the model. The water
material was assigned to the defective part. In the mesh division, the

correlation coefficient of all models was set to 5. For example, after
the automatic division of the model with 20 mm defects, the
statistics showed 14,734 cells and 33,490 nodes in total.

In the steady-state heat solution setting, a heat source of 260W/m2

was added to the surface close to the defect. The heating time was set to
120 s, and the air convection coefficient of the material surface was set to
20W/(m2•K). The ambient temperature was set to 295.15 K. The
temperature to the solution result was added. In the transient thermal
solution setting, the cooling time was set to 120 s with a total of 240 steps.
The time integration was closed. The air convection coefficient on the
material surface was set to 20W/(m2•K). The ambient temperature was
set to 295.15 K as well. The temperature to the solution result was added.

The solution results are shown in the Figures 5–9.
The temperature change trend of the defect area is lower than

the surrounding area over time. The surface temperature field of the
defect gradually shrinks as the defect radius decreases. Therefore,
temperature distribution diagrams of different defect sizes at the
same time were produced as follows.

The surface temperature change trend of the model showed that
the influence of defects on the heat flow inside the material is related
to the depth of the defect. The maximum contrast temperature
appears later as the defect depth increases.

In conclusion, experiments such as those performed in this
study can detect defects of different sizes and depths in composite
materials. By comparing the surface temperature fields produced by
defects of different sizes simultaneously under the same additional
conditions, direct observation shows that the surface temperature
field distribution is affected by the defect size. The time point at
which the maximum contrast temperature appears is influenced by
the defect depth. As the size of the defect decreases, under the mesh
division accuracy with a correlation coefficient of 5, the minimum
accuracy of detectable defects is 4 mm radius.

4 Detection and identification of
composite material defects

A composite material infrared imaging detection system was built
with an optical excitation, which was based on the TiX640 Infrared

FIGURE 9
Temperature change trends of multiple defects with 5 mm radii.
(A–D) Screenshot of the temperature trends at 122 s, 131 s, 140 s, and
149 s, respectively.

FIGURE 10
Pictures of the composite materials and experimental equipment. (A) Composite materials. (B) Infrared imager collecting composite material data.
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Camera infrared instrument produced by Fluke (United States). The
key features are as follows: (1) infrared camera resolution: 640 × 480, (2)
temperature measurement range: −40°C to +1200°C, and (3) maximum
zoom 32x, which ensures high-definition shooting at long safe
distances. The excitation source in the system is a G9 halogen lamp
controlled by the Rigol DG1022U signal source.

The test piece was a multi-layer composite material from the
wing of plane DA42NG. The material showed no visual defects.
Water point and crack defects were identified in different layers
below the material surface. Since the experiment is in the initial stage
and the experimental database is being established, more defects of
various types will be detected under different conditions in the
future, among which millimeter defects are the focus of research.
Experimental equipment and materials are shown in Figure 10.

This test used the single-side method at an ambient temperature
of 18°C. First, the incentive source was used to heat the test piece for
200 s, and then the infrared thermal imager was used to collect the
thermal image sequence for 200 s after heating. The test results of
millimeter-scale defects in the composite materials at different
temperatures were obtained, which were processed by the
optimization algorithm. Photographs of internal defects cannot
be taken without destroying the test piece. A comparison of the
photos of the test piece with the infrared images showed that the
infrared non-destructive testing technology has the advantage of
quickly and accurately detecting the internal defects of the aircraft
skin. By calculating the time t when the maximum contrast
temperature image appears, the depth of the defects can be
calculated by the formula derived in Section 2.1, to locate the
internal defects of aircraft skin. Some experimental data are
shown in Figure 11. In the future, the test piece will be used for
more experiments under different conditions. According to the
defects infrared thermal images, we can easily identify defect
location and size, which helps detect internal defects of the
aircraft skin.

Due to individual differences in the collected infrared image
samples, which might affect the experimental results, the jpg images
were randomly classified into training (n = 270) and test (n=30) data
sets. This allowed the neural network to have better stability, and the
experimental results had good universality. The data set included
two categories, namely, water and crack, where water represented
water point defects and crack represented crack defects. The images
were labeled with LabelImg and saved in txt format, with consistent
naming between the file and image names. The specific experimental
configuration was as follows: the CPU was an 11th Gen Inter(R)
CoreTM i7-11700 @ 2.50 GHz. GPU is NVIDIA T600. The program
environment was Windows 10 Professional 21H2, and the program
was written in the Python language.

The training set and test set were entered into YOLOv5s for
network model training using the default parameter settings to
obtain the training model. The infrared images were then
imported into the model. The test results are shown in
Figure 12.

The number in the upper right corner of the target box in the
figure represents the confidence level of detection. The confidence
level for water point defect is 0.94, which means that the results
correspond well. The confidence level for crack defect is 0.50, which
means that the results correspond poorly.

Because the training data sets were all infrared images of the
same defect and the sample size was small, the model may show
over-fitting such that only a single pattern can be identified and the
generalization ability is poor. The model may not be able to identify
the same type of defects with certain differences. Generally, the
solution to this problem is to increase the capacity of the data set.
Therefore, increasing the training set after collecting more infrared
images with different defects can address this limitation.

At present, this system can detect and identify water points and
crack defects. The subsequent algorithms are also being further
optimized.

FIGURE 11
Detection diagrams of water point and crack defects. (A–D) Infrared images of millimeter-scale point defects in the composite material at
temperatures of 20°C, 25°C, 32°C, and 36°C, respectively. (E–H) Infrared images of millimeter-scale crack defects in the composite material at
temperatures of 20°C, 25°C, 32°C, and 36°C, respectively.
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5 Summary

To solve the problem of accurately detecting defects in aircraft
composite materials, this study proposes a non-destructive testing
method based on infrared imaging detection technology. First, the
heat flow transfer mechanism of aircraft composite materials was
established. Based on the time when the maximum contrast
temperature appears in the image, we can calculate the defect
depth as d = (αt/2)1/2. Then, the feasibility of thermal excitation
infrared detection of defects was verified through finite element
simulation experiments. Based on these results, an active excitation
method was introduced to build a non-destructive system for
aircraft composite testing using infrared imaging. Combined with
simulation technology such as infrared image acquisition,
conversion, and feature sequence extraction and training the data
with the neural network were used to develop a network model to
automatically identify defects. The result showed confidence levels
of >0.9 for water point defects and approximately 0.5 for crack
defects. Hence, this infrared detection system achieved the rapid,
accurate, non-contact, and non-destructive positioning of
millimeter-level defects in aircraft composite materials, which
improves the efficiency of aircraft composite material
maintenance and ensures aircraft safety. With database
improvement, the identification accuracy of different defect types
by the system will also improve to provide accurate data support for
the defect detection and maintenance of composite materials.
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