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Quantum machine learning takes advantage of features such as quantum
computing superposition and entanglement to enable better performance of
machine learning models. In this paper, we first propose an improved hybrid
quantum convolutional neural network (HQCNN)model. The HQCNNmodel was
used to pre-train brain tumor dataset (MRI) images. Next, the quantum classical
transfer learning (QCTL) approach is used to fine-tune and extract features based
on pre-trained weights. A hybrid quantum convolutional network structure was
used to test the osteoarthritis of the knee dataset (OAI) and to quantitatively
evaluate standard metrics to verify the robustness of the classifier. The final
experimental results show that the QCTL method can effectively classify knee
osteoarthritis with a classification accuracy of 98.36%. The quantum-to-classical
transfer learning method improves classification accuracy by 1.08%. How to use
different coding techniques in HQCNN models applied to medical image analysis
is also a future research direction.
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1 Introduction

Osteoarthritis (OA) is one of the most common forms of arthritis, and it is an important
factor limiting mobility and limb function in the elderly Hunter et al. [1]. The etiology of
osteoarthritis is unknown, and its advanced features are characterized by cartilage wear, bone
deformity, and synovitis Mobasheri and Batt [2], Mathiessen and Conaghan [3]. Imaging is
the most important tool for detecting osteoarthritis and can identify early signs of
osteoarthritis and slow disease progression through behavioral interventions (e.g.,
exercise and weight loss programs) Baker and McAlindon [4]. MRI (magnetic resonance
imaging) can reflect the three-dimensional structure of the knee joint. However, the small
number and high cost of MRI testing equipment make it unsuitable for the routine diagnosis
of osteoarthritis. Kellgren–Lawrence (KL) system is one of the most commonly used clinical
scales to assess the severity of osteoarthritis by X-ray/ plain radiography Kellgren and
Lawrence [5]. However, the consistency of visual diagnosis by radiologists is low, thus
introducing significant inconsistencies in decision-making Tiulpin et al. [6]. Doctors usually
examine scanned X-ray images of the knee joint and then grade the KL of both knees in a
short period of time. The accuracy of the diagnosis significantly relies on the experience and
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care of the physician. In addition, as shown in Figure 1, the criteria
for KL classification are very vague. For example, KL grade 1 is
determined by possible bone graft lip and joint space narrowing
(JSN). Even the same physician may give different KL grades when
examining the same knee at different points in time. In a study
conducted by Culvenor et al., the reliability of those scoring within
KL ranged from 0.67 to 0.73 Simonyan and Zisserman [7].

In recent years, deep learning has become amajor research direction
for assessment of osteoarthritis severity. Due to the high prevalence of
osteoarthritis, there is an urgent need formethods to accurately detect its
presence and quantify its severity. Fully automated osteoarthritis severity
grading can provide objective and reproducible predictions. Over the
past decade, several methods have been developed for the detection of
the knee joint and the classification of KL grades. Antony designed a new
convolutional neural network (CNN)model for the KL grading task and
optimized the weighted combination of cross-entropy loss and mean
square error loss to obtain a recognition rate of 63.6% Antony et al. [8].
Tiulpin et al. [6] and Antony et al. [9] divided the osteoarthritis
assessment task into two phases, detection and classification, in
which faster region-based convolutional neural networks (R-CNNs)
Yang et al. [10] were used for detection, and a deep convolutional
network was used for classification. Albert Swiecicki et al. [11]developed
an automated algorithm based on deep learning to jointly use
posterior–anterior (PA) and lateral (LAT) views of knee X-rays to
assess the severity of knee osteoarthritis according to the KL grading
system. Zhang et al. [12]proposed a CNN KL grade classification model
for knee osteoarthritis under the attention mechanism, applying ResNet
to first extract knee features from X-rays and then combine them with
the features extracted by the convolutional attention module to
automatically perform KL grade prediction.

Quantum machine learning algorithms are particularly suitable
for diagnostic applications. Many potentially related variables lead to
high-dimensional feature spaces, and interactions between variables
lead to complex interdependencies, correlations, and patterns.
Quantum machine learning algorithms are able to penetrate such
data structures in ways that go beyond purely classical methods.
Therefore, a wide range of quantum applications are being explored in
this field, including processing steps such as enhanced image edge
detection, segmentation, and classification Bharti et al. [13]. Landman
et al. [14] studied orthogonal quantum-assisted neural network
(QNN) in retinal color fundus and chest X-ray image classification
and used quantum circuits to accelerate the training of classical neural

networks. Kiani et al. [15] developed a quantum Fourier transform
(qFT)-based enhanced image reconstruction algorithm based on
computed tomography (CT) and positron emission tomography
(PET) data. For breast cancer image classification, Azevedo et al.
[16] applied quantum enhanced SVM classifiers (QSVCs) and
transfer learning-based QNNs. Moradi et al. [17] used a quantum
kernel Gaussian process approach. Ahalya et al. [18] classified
rheumatoid arthritis heat maps using quantum kernel alignment-
trained QSVCs. Shahwar et al. [19] detailed the classification of MRI
images of Alzheimer’s disease using QNNs. Houssein et al. [20]
classified chest X-ray images with QNNs. Sengupta and Srivastava
[21] classified COVID-19 CT lung images with QNNs Bergholm
et al. [22].

The main research innovations in this paper are as follows:

1) Design of a hybrid quantum convolutional neural network
structure (HQCNN) for multi-classification of MRI images.
The basic idea is to encode data into quantum states so that
information can be extracted faster and then use the information
to distinguish classes of data. The quantum convolutional
network consists of a Quantum Convolutional Layer (QCL)
and a classical convolutional layer. The QCL consists of an
encoder, a random circuit, and a decoder. The classical
convolutional layer consists of a classical convolutional layer,
a global pooling layer, and a dense layer.

2) The quantum-to-classical (QC) transfer learning scheme is
selected based on the labeling of MRI images and OAI images and
the relationship between MRI image classification and OAI grading
tasks. The QC transfer learning is divided into two phases: pre-
training and fine-tuning. The pre-training phase uses the already
trained quantum neural network model to learn quantum state
evolution and quantum gate operations. 2) The fine-tuning phase
applies the pre-trained model to a new task and further tunes and
trains the model in the new task.

3) Most current hybrid quantum convolutional network structures
use variational quantum circuits for the final classification. We
propose the HQCNN algorithm to downscale classical image
data before encoding them into quantum lines. The pre-
processed data are encoded into quantum data by a data
encoding line.

FIGURE 1
The KL system classifies the severity of osteoarthritis of the knee into five levels, from 0 to 4.
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2 Hybrid quantum convolutional neural
network

In this section, we propose a HQCNN, as shown in Figure 2. The
use of full quantum algorithms is currently not feasible due to
technical bottlenecks caused by high coherence requirements,
quantum noise, and limited number of quantum bits. Hybrid
computing Henderson et al. [23] uses a best-of-both-worlds
approach to solve a particular problem. In fact, the idea behind
including quantum circuits in neural networks is to leverage the
performance of the network for faster scaling and minimal training.

To better describe our HQCNN structure, we first give a brief
overview of some basic features of CNNs. The classical transfer
learning consists of interleaved convolutional and pooling layers
and ends with a fully connected layer. The main purpose of the
convolutional layer is to extract features from the input data using a
feature mapping (or filter), which is the most computationally
intensive step in a CNN. A pooling layer is usually added after the
convolutional layer to reduce the dimensionality of the data and
prevent overfitting. The basic idea of quantum CNN structure is to
encode data into quantum states so that information can be extracted
faster and then use the information to distinguish classes of data. The
hybrid quantum CNN consists of a QCL and a classical convolutional
layer. The QCL has three parts: an encoder, a random circuit, and a
decoder. After obtaining the output from the QCL, the information is
passed to the classical convolutional layer of the architecture. The
classical convolutional layer consists of three different layers, namely,
the classical convolutional layer, the global pooling layer, and the
dense layer.

2.1 Quantum convolution layer

The QCL performs sequential parsing of images and extracts
local information, features, and patterns from the images, which

makes an important contribution to image classification. As
mentioned previously, the current work follows the hybrid
quantum classical approach proposed by Henderson et al
Abohashima et al. [24]. Henderson Abohashima et al. [24]
provided a quantum analog of the classical convolutional
layer and named it the “quantum convolution” layer. Similar
to the classical convolutional layer, the proposed layer extracts
high-level spatial features from the input image. The layer
consists of a quantum circuit that encodes pixel data on n ×
n quantum bits (where n denotes the kernel size), applies a
random quantum circuit on these bits, and then measures them to
produce a feature matrix. Henderson et al. used thresholds to
encode pixel values greater than the pixel value encoded as, and
pixel values less than or equal to the threshold are encoded as |0>.
The internal structure of the quantum convolution layer is shown
in Figure 3.

2.1.1 Encoder
During the encoding process, the pixel data corresponding to

the filter size are stored in the form of quantum bits. Encoding
images into quantum circuits is a challenging task in the field of
quantum machine learning Schuld [25]. There are five quantum
coding approaches to encode data points into a quantum circuit,
namely, ground state coding Havlíček et al. [26], angular coding
Havlíček et al. [26], amplitude coding Havlíček et al. [26], IQP
coding Huang et al. [27], and Hamiltonian quantum evolution
coding Mari et al. [28]. A simple encoding idea is to convert a
data point into an angle in a quantum state (in fact, quantum bit
elements are state vectors representing data points as angles
attributed to different directions of the state vector). Each
quantum bit depends on its classical data point to represent
its configuration. Angular encoding Havlíček et al. [26] is the
encoding of classical information using the rotation angles of the
revolving doors Rx, Ry, and Rz. The rotation matrix is defined as
follows:

FIGURE 2
Hybrid quantum convolutional neural network.
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These are the effective operators on the Bubbleley spin matrices.
Essentially, the gate Rx(θ) rotates the state vector in space by one
angle with respect to the x-axis. Similarly, gate Ry and gate Rz are
related to the y-axis and z-axis, respectively. The angle θ corresponds
directly to the intensity value of a pixel. After mapping all data points
to quantum bits, the random q-circuit can be designed using the
operations of quantum bits and quantum gates. Angular encoding,
on the other hand, encodes N classical data onto N quantum bits.

|x〉 � ⊗
N

i�1
cos xi( )|0〉 + sin xi( )|1〉, (4)

where |x〉 is the classical data vector to be encoded. However, a qubit
can be loaded not only with angular information but also with phase
information. Therefore, it is perfectly possible to encode a classical
data of length N onto N quantum bits.

|x〉 � ⊗
N/2[ ]
i�1

cos πx2i−1( )|0〉 + e2πix2i sin πx2i−1( )|1〉, (5)

where the two data are encoded into the rotation angle
cos(πx2i−1)|0〉 and phase information e2πix2i sin(πx2i−1)|1〉 of the
quantum special, respectively.

2.1.2 Random circuit
A series of uniform quantum transformations (implemented

through the gates defined earlier) and measurements of quantum bit

elements are essential to design a quantum circuit. The quantum
convolution layer contains quantum kernels. It essentially segments
the input image into smaller patches containing local information by
using a q-circuit to detect and extract meaningful spatial
information and features from the image. The idea of having a
simple depth and using smaller quantum bit elements is to integrate
a random q-circuit in the QCL. The random circuit is composed of
randomly selected single and double quantum bit gates. The rotation
applied to these doors is also chosen randomly using Numpy’s
randommethod. We design parametric quantum circuits, which are
composed of interleaved single and double quantum bit layers. The
single quantum bit layer consists of Ry gates, each containing a
tunable parameter. Using the Adama gate, the quantum bits are
initialized with a balanced superposition of |0〉 and |1〉, and then the
quantum bits are rotated according to the input parameters. The
main purpose of the embedding operation is to initialize the
quantum bits by properly balancing the |0〉 and |1〉 quantum bit
values using input-based Adama gates and rotation gates. The
quantum coding framework is responsible for establishing the
association between the classical information input x and its
associated quantum state |X〉. In general, quantum coding
implements quantum embedding, converting classical input
vectors into quantum state vectors. The resulting quantum state
is given by the following equation.

|Z〉 � |z1〉⊗|z2〉⊗|z3〉⊗|z4〉
⊗4
i�1RY 2zi( )( )|0〉⊗4. (6)

The quantum coding circuit develops new quantum states, as
shown in Eq. 7.

⊗4
i�1RY πzi( )( )|0〉⊗4. (7)

The quantum variational layer consists of a series of rotational
layers consisting of rotational gates followed by an entanglement
layer consisting of CNOT gates to satisfy the training process.
During the operation, the CNOT gate enforces quantum

FIGURE 3
Quantum convolution layer.
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manipulation of the entanglement between any neighboring
quantum lines, resulting in the entanglement of quantum bits in
each quantum line. Meanwhile, the rotation angle of the revolving
door is adjustable. During training, the data are transmitted through
a variational layer consisting of alternating rotating gates and
entangled gates (control but not control gates). The best
performance model for the proposed work includes a quantum
depth of 4 in this variational quantum circuit, as shown in Eq. 8.

X � L4o.........L2oL1. (8)

2.1.3 Decoder
This component of the QCL is responsible for all measurements

that occur in this layer. Decoding indicates the measurement of
quantum data, and the data are converted to classical form. The
measured data provide relevant information about the images,
which can then be fed into the neural network in order to
classify the types of images. The bubble spin matrices are used in
this component. They are the most intuitive and simplest way to
decode quantum information and generate the corresponding
classical information. The data decoder component measures the
data along the z-axis by using the Pauli-Z matrix defined previously.
Depending on the selected measurement operator, we commonly
classify the measurements into computational base measurements,
projective measurements, Pauli measurements, etc. Pauli
measurements are projective measurements in which the sizable
measurement M is selected as the bubble operator. Taking the Pauli-
Z measure as an example, we consider the Z-operator:

Z � 1 0
0 −1( ). (9)

It can be seen that Z satisfies Z = Z†, i.e., Z is Hermitian. Z has
two eigenvalues +1, −1 and the corresponding eigenvectors are |0〉
and |1〉. Thus, the spectral decomposition of Z takes the form

Z � 1 0
0 −1( ) � 1 ×|0〉〈0| + −1( ) ×|1〉〈1| . (10)

We use Z for projection measurement, if the measurement is +1.
We can conclude that the state of this quantum bit is projected into the
+1 characteristic subspace V+1 of the Z operator, indicating that the

measured state is projected into |0〉. Similarly, if themeasurement result
is −1, it can be concluded that the quantum bit is projected into
the −1 eigenspace V−1, indicating that the measured state is projected
into |1〉.

After quantum transformation, the data are in an arbitrary
quantum state, and the output quantum state needs to be
measured to obtain classical information for subsequent
processing. The quantum decoding (measurement) operation is a
nonlinear transformation that implements a function similar to the
classical activation function. The classical data obtained from the
measurements will be used in the subsequent classical part of the
convolutional neural network where each quantum bit is measured
and then a vector is generated and fed into the corresponding
quantum feature map. A quantum bit element generates a
quantum feature map, which corresponds to a channel. When
the sliding window of the input image is completed, the
quantum feature map of that image is formally generated and
serialized and saved to a disk for classifier training.

3 Quantum-to-classical transfer
learning

3.1 Classical-to-quantum transfer learning
solutions

Traditionally, deep neural networks require large labeled datasets
and powerful computational resources to solve challenging computer
vision problems, such as feature extraction and classification. Transfer
can be used to learn a new task by transferring knowledge from a related
learning task. From a pre-trained model, we perform two tasks: 1) fine-
tuning 2) and feature extraction in the fine-tuning. Essentially, themodel
is retrained to update most or all of the parameters based on the pre-
trained weights. In feature extraction, the weights of the last layer
(classifier) are trained using the coding features of the pre-trained
model. Deriving predictions and reconstructing a new dataset with
the same number of output classes implies that the pre-trained HQCNN
model acts as a fixed-function extractor. In this case, a pre-trained
quantum network is a kind of feature extractor, resulting in an output
vector of values associated with the input. The extracted features are then
further processed using classical networks to solve the specific problem
of interest. A generic transfer learning scheme is shown in Figure 4.

Step 1: Take a network A that has been pre-trained on the dataset
DA and the given task TA.

Step 2: By deleting some final layers, the resulting truncated
network A’ can be used as a feature extractor.

Step 3: A new trainable network B is connected at the end of the pre-
trained network A’.

Step 4: Keep the weights of A’ constant and train the final block B
with a new dataset DB and a new task TA of interest.

3.2 Quantum-to-classical transfer learning
programs

Quantum-to-classical transfer learning involves using pre-
trained quantum circuits as feature extractors and post-

FIGURE 4
Generic transfer learning scheme Deng et al. [35].
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processing their output variables using classical neural networks. In
this case, only the final classical part will be trained to the specific
problem of interest. In our problem, this can be translated as shown
in Table 1. The quantum classical transfer learning (QCTL) scheme
is shown in Figure 5. An important criterion for using pre-trained
HQCNNmodels is the use of appropriate image pre-processing. The
image corresponds to a data point that needs to be encoded, and it
first needs to be reshaped to reduce the number of quantum bits in

the circuit. In addition, the pixels are rescaled to (H, W, C) = (128,
128, 1) before normalizing them to 1. Standardization is the process
of converting pixel values 0–255 to real numbers in the range
0.0–1.0. This has the advantage of reducing the amount of
computation while improving computational accuracy.

Step 1: Qubit Lattice Latorre [29], Le et al. [30], Real Ket Le et al.
[30], and FRQI Chen [31] are the three main quantum image
formats. The quantum image format, Real Ket, was proposed by

TABLE 1 Quantum-to-classical transfer learning scheme.

Classical-to-quantum transfer learning scheme Quantum-to-classical transfer learning scheme

DA ImageNet: a public image dataset with 1,000 classes Venegas-Andraca [36] MRI brain cancer image dataset

A RestNet18: a pre-trained residual neural network introduced by Microsoft in 2016 Pre-trained HQCNN

TA Classification (1,000 labels) Classification (four labels)

A’ RestNet18 without the final linear layer, obtaining a pre-trained extractor of 512 features A pre-trained HQCNN with the final linear layer removed as an
extractor of 512 features

DB Images of two classes: ants and bees (Hymenoptera subset of ImageNet), separated into a training
set of 245 images and a testing set of 153 images

Osteoarthritis of the knee (OAI) X-Ray photo image dataset.

B ~Q � ~L4→2◦Q◦L512→4: i.e., a 4-qubit dressed quantum circuit with 512 input features and two real
outputs

Using other convolutional neural network models

TB Classification (two labels) Classification (five labels)

FIGURE 5
Quantum-to-classical transfer learning scheme.
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Latorre Le et al. [30]. In this format, an image is divided into four
blocks, each numbered from left to right, starting from the top row.
These blocks are again subdivided into four blocks and numbered in
the same way until the smallest block with only four pixels is
obtained. The grayscale values of these four pixels are mapped to
the probability amplitude of each component of a quantum state
with two quantum bit elements. Eq. 11 describes the quantum state,
where i1 = 1 is the index of the top-left pixel, i1 = 2 is the index of the
top-right pixel, i1 = 3 is the bottom-left pixel, and i1 = 4 is the
bottom-right pixel.

Ci stores the mapped value of each pixel and
satisfies ∑i1�1,2,...4|Ci1|2 � 1

|ψ21X21〉 � ∑
i1�1,2,..4

Ci1|i1〉

such that ∑
i1�1,2..4

Ci1

∣∣∣∣ ∣∣∣∣2 � 1.
(11)

We now consider a larger block consisting of four internal
sub-blocks. In order to determine which sub-block we are

dealing with, a new label, called i2, is needed with the same
conventions as those defined for the internal blocks. The new
image shows 22 × 22 pixels and is represented by the real vector
in R4 ⊗ R4:

|ψ22×22〉 � ∑
i1 ,i2�1,...4

ci2 ,i1|i2, i1〉, (12)

where ci2 ,i1 stores all the pixel values.
This block structure can be extended in any number of steps to a

size of 22 × 22pixels. By gradual extension, an image of 22 × 22 pixels
can be mapped to a quantum state, as shown in the following
equation:

|image| � |ψ2n+2n 〉 � ∑
in ...i1�1,...,4

Cin ...i1|in, . . . , i1〉

such that ∑
in ....i1�1,...,4

Cin ...i1

∣∣∣∣ ∣∣∣∣2 � 1.
(13)

Step 2: Feature extraction is the extraction of valuable features
from an image. Instead of extracting manual features, the QCNN
now automatically extracts important features from images. In this
work, we use the pre-trained HQCNNmodel proposed in this paper
as a feature extractor. The classical layer of the HQCNN model uses
the Xception network, which uses a residual learning strategy that is
effective enough. The residual blocks of the Xception architecture
are described as follows.

g � F h,W + h( ), (14)
where h is the input layer, g is the output layer, and the F function is
represented by the residual mapping.

Step 3: The feature dimensions extracted from the HQCNN
model are executed on the classical layer, i.e., there is a linear
transformation from 512 features to 64 features. Classical output
features from the classical convolutional layer are passed to the final
fully connected layer to create two-dimensional target output class
predictions. The output is the target class of the five classification
problems predicted by the model.

~K � L512 → 64◦K◦L64 → 5. (15)

FIGURE 6
Training and test set ROC scores for each class of theMRI dataset
before delineation.

FIGURE 7
Training and test set ROC scores for each class of the delineated
MRI dataset.

FIGURE 8
Training and test set ROC scores for each class of the pre-
division OAI dataset.

Frontiers in Physics frontiersin.org07

Dong et al. 10.3389/fphy.2023.1212373

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1212373


4 Datasets and pre-processing

4.1 Splitting the dataset

The two datasets used in this paper are from Kaggle, and the
brain tumor dataset includes MRI images of brain tumors from
233 patients. There were 926 glioma tumor sections,
937 meningioma tumor sections, 500 tumor-free sections, and
901 pituitary tumor sections, for a total of 3,264 images. The
distribution of the MRI data set is shown in Table 2. The images
used to evaluate knee X-rays were obtained from the
Osteoarthritis Initiative Quinonero-Candela et al. [32], a
multicenter, longitudinal, prospective observational study of
osteoarthritis of the knee designed to identify biomarkers of
OAI onset and progression. A total of 4,796 participants aged
45–79 years participated in this test. The publicly available
dataset from Chen et al Quinonero-Candela et al. [32] was
used in our study. The knee dataset contains 9,516 X-ray
images, of which 3,857 are Grade 0 images, 1,770 are Grade 1,
2,578 are Grade 2, 1,286 are Grade 3, and 295 are Grade 4. The
distribution of the OAI dataset is shown in Table 3.

4.2 Adversarial validation

Adversarial validation is a simple but effective method that
essentially constructs a classification model to predict the
probability of a sample being in the training or test set. If the
classification of this model is good (generally the AUC is above
0.7), then it indicates that there is a large difference between the
training and test sets. Figure 6 shows the MRI dataset before
division. If the AUC score is close to 0.5, it means that the
training and test sets have the same distribution. Figure 7 shows
the MRI dataset after division, and Figure 8 shows the OAI
dataset before division.

We need to consider the variability of data distribution.
Inconsistency between the training data distribution and the
actual data distribution to be predicted is likely to lead to poor
model performance, which is often referred to as a dataset shift

Glorot and Bengio [33]. As shown in Figure 6, we consider
repartitioning the training set and test set due to severe dataset
shift in the MRI dataset. As shown in Figure 7, there is no dataset
shift in the OAI dataset, and there is no need to repartition the
training set and test set. The pairwise validation has the following
steps:

Step 1: The index of each category of tumor is separated from the
training set and the test set.

Step 2: A new label is prepared and tumor = 1 is set in the training
set and tumor = 0 in the test set. Then, the tumors from the
training set and the test set are spliced.

Step 3: The spliced dataset is shuffled, and then the tumor of each
category is repartitioned according to train:test = 9:1.

Step 4: A random forest classifier is prepared with parameters set
to bootstrap = True, oob_score = True, criterion = entropy for
training.

Step 5: The trained classifiers are predicted against the test set, and
their ROC scores are calculated.

4.3 k-fold cross-validation

The statistics in Table 3 show that Grade 0 and Grade 1 and
Grade 2 images occupy the majority of the data set, while the
number of Grade 3 and Grade 4 images is quite small. The
highest number of Grade 0 images accounts for 39.4%, while the

TABLE 2 MRI data and distribution.

Classification Glioma tumor slices Meningioma tumor slices No tumor slices Pituitary tumor slices

Train 750 759 405 729

Valid 83 84 45 81

Test 93 94 50 91

TABLE 3 OAI data and distribution.

Set 0 1 2 3 4

Train 2,352 1,079 1,555 776 180

Valid 262 120 173 81 20

Test 639 296 447 223 51

TABLE 4 Ten-fold cross-validation of the OAI dataset.

KFold Loss Accuracy ms/epoch ms/step

0 0.6239 0.9755 766 70

1 0.9148 0.9664 779 71

2 0.6350 0.9480 886 81

3 0.0017 0.9992 645 59

4 0.6350 0.9480 721 66

5 0.4723 0.9694 681 62

6 0.0860 0.9792 665 60

7 0.3817 0.9679 660 60

8 0.1201 0.9815 733 67

9 0.1033 0.9849 901 82
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lowest number of Grade 4 images accounts for only 0.03%.
Therefore, the data handled in this study are a typical
unbalanced dataset. To ensure the consistency of the label
distribution between the training and validation sets, we use
the Stratified KFold method for the partitioning of the
dataset. Stratified KFold is a stratified sampling cross-cut to
ensure that the proportion of samples of each category in the
training set and test set is the same as in the original dataset. The
dataset is divided as follows: 1) 1/10 holdout set for ensemble
and (2) building 5-fold cross-validation sets using rest of 9/
10. Table 4 shows the 10-fold cross-validation of the OAI
dataset.

4.4 Evaluation indicators

We know that selecting a classifier with better performance
requires the use of excellent evaluation metrics. To understand the
generalization ability of the model, it must be evaluated using
objective metrics, which is the importance of performance
evaluation. In machine learning, a classification task involving
more than two classes is called multiclass classification. We must
be very careful when choosing evaluation metrics for multiclass,
single-label classifiers. First, it is different from the binary class
metrics. Second, it is important to consider whether the dataset is
single-label or multi-label. In multiclass, there is only one label,

TABLE 5 Comparison of the HQCNN with other models.

Model Best accuracy Average accuracy Macro precision Macro recall Macro F1 score

HQCNN 97.85 95.65 97.89 97.02 97.42

Xception 95.41 92.66 95.57 94.60 95.00

ResNet18 95.72 91.43 95.10 94.99 95.01

SqueezeNet 77.84 34.64 82.47 78.21 78.89

MobileNet 87.93 72.69 90.33 89.18 89.69

EfficientNet 90.82 69.93 91.19 88.96 89.74

NasNetMobile 20.79 13.66 10.51 28.05 14.44

TABLE 6 Comparison of different classical models used in the HQCNN.

Model Best accuracy Average accuracy Macro precision Macro recall Macro F1 score

QC 98.36 97.27 99.20 98.10 98.60

HQCNN 97.28 95.59 98.67 95.89 97.18

Xception 95.73 93.00 92.79 94.16 93.16

ResNet18 97.16 95.73 96.73 92.14 93.63

MobileNet 95.20 94.79 92.49 94.35 93.07

NasNetMobile 83.45 47.80 77.05 72.60 72.28

EfficientNet 56.38 53.04 54.38 49.87 51.05

SqueezeNet 39.73 39.73 7.94 20 11.37

TABLE 7 Comparison of the proposed method for osteoarthritis of the knee with the prior art.

Author Method Accuracy (%)

Tiulpin et al. [6] Separate channels for lateral and medial compartments and model fusion 66.71

Ahmed and Mstafa [37] Deep hybrid learning II 90.8

Wahyuningrum et al. [38] CNN as a feature extraction method, followed by LSTM as a classification method 75.28

Thomas et al. [39] An end-to-end interpretable model 66

Brahim et al. [40] A novel normalization method based on predictive modeling using multivariate linear regression (MLR) 82.98

Liu et al. [41] End-to-end fully automatic model 82

Proposed methodology Quantum-to-classical transfer learning 98.36
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while in multitag, there are multiple labels. Since OAI is multiclass,
we chose a measure based on the concept of multiclass, individual
labels.

4.4.1 Accuracy
Accuracy, one of the most popular metrics in multiclass

classification, reflects the correct prediction of the sample score
and can be calculated directly from the confusion matrix. Its
calculation formula is as follows:

Accuracy � TP + TN

TP + TN + FP + FN
. (16)

The model predicted that the true positive as positive, but it was
actually positive. The model predicts false positives as positive, but it
is actually negative. The calculation is also applicable to multiple
classes and is very simple. To calculate accuracy, we simply add these
elements to the diagonal of the confusion matrix and divide by the
total number of labels.

4.4.2 Macro precision
Precision indicates how much we can trust the model when it

predicts a positive outcome for an individual. The macroscopic
precision of the multiclass algorithm is calculated in two steps. First,
Eq. 17 is used to calculate the precision for each class, where k
denotes the class.

Precisionk � TPk

TPk + FPk
. (17)

Next, the arithmetic mean of each class is calculated using Eq.
18, where K denotes the number of classes.

MacroPrecision � ∑K
k�1 precisionk

K
. (18)

4.4.3 Macro recall
Macro recall for multiple classes, such as macro precision,

requires a two-step calculation. First, Eq. 19 is used to calculate
the recall for each class, where k denotes the class.

Recall � TPk

TPk + FNk
. (19)

Next, the arithmetic mean of each class is calculated using Eq.
20, where K denotes the number of classes.

MacroRecall � ∑K
k�1 Recallk

K
. (20)

4.4.4 Macro F1 score
The macro-F1 score is a reconciled average of the macro-

accuracy and macro-check-completion rates, taking into account
both the accuracy and the check-completion rate of the classification
model. Therefore, before calculating the macro f1 score, we must
first calculate the macro precision and macro recall. The macro
F1 score is calculated as follows:

Macro F1 Score � 2 ×
Macro Precision × Macro Recall

1
Macro Precision + 1

Macro Recall

. (21)

FIGURE 9
MRI classification report.

FIGURE 10
OAI classification report.

FIGURE 11
MRI confusion matrix.
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FIGURE 12
Training history before and after quantum-to-classical transfer.

FIGURE 13
Training history of each model.

Frontiers in Physics frontiersin.org11

Dong et al. 10.3389/fphy.2023.1212373

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1212373


To facilitate the observation of each class, we precisely compute
the precision, recall, f1, and support of the class in both datasets,
where support is the number of classes belonging to that class in the
dataset without division. The classification report of the MRI dataset
is shown in Figure 9, and the classification report of the OAI dataset
is shown in Figure 10.

5 Comparison experiment

5.1 Experiment1 MRI classification

For the first phase of the experiment, we need to explain the
weight initializer, loss function, and optimizer. The GlorotUniform
initializer, also called Xavier uniform initializer, proposed by Glorot
and Bengio [33], is used to initialize the convolutional kernel weights
so that the variances of each layer are as equal as possible to achieve a
better flow of information in the network. We know that for
regression models, the commonly used loss function is the mean
square error function, while for classification models that predict
probabilities, the most commonly used loss function is cross-
entropy. Therefore, we uniformly use categorical cross-entropy as
the loss function. Categorical cross-entropy, also known as Softmax
loss, is a Softmax activation plus a cross-entropy loss. The optimizer
is chosen as the most commonly used Adam. In addition, the
learning rate is chosen, and we set it to 0.001 uniformly based on
our experience. Table 5 shows the comparison between HQCNN
and other models, and the results show that our proposed HQCNN
outperforms other classical models.

Classification performance is often indicated by scalar values,
such as accuracy, sensitivity, and specificity, among other different
metrics Tiulpin et al. [6]. The confusion matrix is a more intuitive
way to measure the model in the form of a matrix and also shows the
classification of each category to achieve a more comprehensive
measure. The confusion matrix, also known as the error matrix, is a
standard format for representing accuracy evaluations and is
represented in the form of a matrix with N rows and N columns,
where N is the number of target classes. We can consider the

confusion matrix as a summary table of the number of correct
and incorrect predictions generated by the classification model for
the classification task. We roughly measure the number of accurate
classifications by looking at the diagonal values to determine the
accuracy of the model. Figure 11 shows the confusion matrix of the
prediction results of the HQCNN for the MRI dataset.

5.2 Experiment2 OAI classification

The second phase of experiments targets the five classification
problems for different types of knee osteoarthritis. The proposed
integrated framework for OAI classification is trained according to
the optimal hyperparameters of the HQCNN. We will analyze the
advantages of quantum-to-classical transfer learning for OAI dataset
classification in the following aspects. Figure 12 shows the training
history before and after quantum-to-classical transfer, and Figure 13
shows the training history of connecting different classical models in
the HQCNN model.

Validation accuracy fluctuations: SqueezeNet is the smoothest,
but accuracy is always below 39%. EfficientNet is relatively stable,
but accuracy is always below 56.38%. Xception has a decreasing
trend after fluctuation at epoch = 4, the quantum classical to transfer
learning method (QC) has fluctuation at epoch = 7, and it is
relatively stable and increasing afterward. ResNet18 and
NasNetMobile, in spite of the increasing validation set accuracy
in general, have been experiencing large fluctuations and are
obviously not stable.

Convergence speed: The accuracy curve can reflect the convergence
speed of the loss function, theHQCNN is the best in convergence speed,
and its accuracy exceeds 90% in less than two epochs.

Overfitting: SqueezeNet has serious overfitting, and
NasNetMobile has good accuracy on the training set, but is far
away from the validation set and test set, and has insufficient
predictive power.

Figure 14 shows the confusion matrix of the prediction results of
the HQCNN for the OAI dataset. Figure 15 shows the confusion
matrix of QCTL’s prediction results for the OAI dataset, where the

FIGURE 14
HQCNN confusion matrix.

FIGURE 15
QCTL confusion matrix.
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percentage in each square indicates the number of correct
predictions for that class as a percentage of the total number of
that class, that is, the accuracy of that class. The number above the
percentage is the number of correct predictions for that class. We
can see from the diagonal of this confusion matrix that the QCTL
method can achieve 100% accuracy for the classification of OAI.

In summary, the comparison experiments show that QCTL
performs well in the OAI classification task, with the advantages of
fast training speed, stable performance, and high classification accuracy,
ranking first in accuracy, macro precision, macro recall, and macro
f1 score metrics. The comparison results in Tables 6, 7 show that the
method has the best average accuracy index of 98.36%. Therefore, the
proposed method is more reliable for the classification of OAI.

6 Conclusion

The salient concept of this work is to first design a HQCNN for
MRI imaging of brain tumors to obtain a quantum convolutional
network structure with stronger generalization capability. Next,
quantum-to-classical transfer learning methods are used for
hierarchical diagnosis of OAI images. In this paper, an improved
HQCNN is proposed based on the quanvolutional neural networks
proposed by Henderson et al. in Abohashima et al. [24]. In the
comparison experiments, we uniformly used a 10-fold stratified
sampling strategy to cross-validate the model and provide a
comprehensive and detailed metric of network performance. The
experimental results show that the improved HQCNN finally
achieves 97.85% classification on the Brain Tumor MRI dataset. We
update most or all parameters based on pre-trained weights. In feature
extraction, the weights of the last layer (classifier) are trained using the
coding characteristics of the pre-trainedmodel. Using the trainedmodel
on the OAI dataset, quantum transfer learning finally achieved 98.36%
classification on the OAI dataset. Future work will focus on combining
different data point coding techniques to build deep hybrid networks for
multi-class image classification Houssein et al. [34] and improve the
extraction capability of the QCL. In summary, this study is an attempt
of HQCNN in the medical field, and we should also think about how to
use our method in practical applications in the medical field.
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