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This article presents a command-filtered finite-time consensus tracking
control strategy for the considered single-link flexible-joint robotic multi-
agent systems. First, each agent system considered in this article is a nonlinear
nonstrict-feedback system with unknown nonlinearities, so the traditional
backstepping method cannot be directly applied to the design controller.
However, by applying the unique structure of the Gaussian function in
radial basis function neural networks, the challenges in controller design
caused by the aforementioned nonstrict-feedback system have been
overcome. Second, the problem of unknown nonlinearities in the system is
solved by the approximation property of radial basis function neural network
technology. In addition, the traditional backstepping approach often leads to
an “explosion of complexity” resulting from repeated derivation of virtual
control signals. Our design addresses this issue by employing command
filtering technology, which simplifies the controller design process.
Meanwhile, new compensation signals are designed, which successfully
eliminate the error influence posed by the filters. It is seen that the control
strategy presented in this article can guarantee the tracking errors converge to
a small neighborhood of origin in a finite time, and all signals in the closed-loop
systems remain bounded. Eventually, the simulation results show the validity of
the acquired control scheme.
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1 Introduction

As industrial automation continues to evolve, the study of flexible-joint robots has
become increasingly popular. Recently, numerous control strategies have been proposed
for research on robots with flexible joints [1–6]. For example, in [7], a prescribed
performance tracking control approach was introduced for free-flying flexible-joint
space robots that experience disturbances due to input saturation. Meanwhile, in [8], a
full-state tracking control approach was proposed for the flexible-joint robots with
singular perturbation techniques. However, the aforementioned flexible-joint robot
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system is a single system, which cannot meet the needs of
practical engineering in the age of network communication.
At present, the study of the consensus tracking control of
multi-agent systems (MASs) has also received widespread
attention [9–12]. For instance, an event-triggered coordination
via a Lyapunov-based approach was presented for MASs in [9].
Compared with the single system, MASs have higher pragmatic
value in the industrial field, such as the formation of unmanned
aerial vehicles, autonomous underwater vehicles, and intelligent
robot cooperation. Nevertheless, there are relatively few studies
on single-link flexible-joint robotic MASs due to the complex
structure of such systems and the influence of frequent
information interaction.

Significantly, the study of nonlinear systems is a hot topic at
present [13–18], and most practical systems are unknown
nonlinear systems, which will bring great difficulties to the
controller design. Accordingly, fuzzy logic systems (FLSs)
were applied to deal with unknown nonlinearities in the
system due to their excellent universal approximation
performance [19–22]. For example, an adaptive fuzzy control
method was proposed for nontriangular structure nonlinear
systems in the study by Li et al. [23]. In [24,25], FLSs were
further introduced to handle the unknown nonlinearities of
robot systems. However, the aforementioned proposed
methods are not applicable for nonlinear nonstrict-feedback
systems. By comparison, neural network (NN) technology not
only has excellent approximation performance [26–30] but also
can deal with the difficulties of the controller design for
nonstrict-feedback systems. Therefore, in [31], the radial
basis function neural network (RBF NN) technology was
introduced to handle unknown nonlinearities in nonstrict-
feedback systems, and the simulation proved the validity of
the approximation ability of the RBF NN technology. It is
worth noting that the aforementioned research studies always
had the challenge of “explosion of complexity,” which can add to
the complexity of the controller design process. Lately, several
research studies have proposed the dynamic surface control
(DSC) technology by utilizing first-order filters to tackle the
challenge of “explosion of complexity” in the controller design
process [32–34]. For instance, in [35], an adaptive fuzzy
decentralized DSC approach was presented for switched
large-scale nonlinear systems with full-state constraints.
Nevertheless, the boundary layer errors generated by the
filters are difficult to be handled using the DSC technique.
Therefore, the command filtering technology was applied to
uncertain switched nonlinear systems, which simultaneously
settled the problem of “explosion of complexity” and the
influence of boundary layer errors in [36]. It is noteworthy
that the disadvantages of the DSC technology are overcome
by designing the error compensation signals in using the
command filtering technology. However, practical systems
have very high requirements for the convergence speed of
systems, but the control methods proposed earlier cannot
ensure system stability in finite time. Therefore, how to
devise a finite-time control strategy for the considered system
is an extremely significant research topic.

Considering the practical industrial application, the finite-
time tracking control is very significant, which can ensure that

the system states converge to the equilibrium point in finite
time. The finite-time stability was defined for the equilibrium
point of continuous but non-Lipschitzian autonomous systems
in [37], which was widely used in the design procedure of the
finite-time controller. Based on this theory, the research on the
finite-time control problem has made great progress. For
instance, in order to address full-state constrained nonlinear
systems with dead zone, researchers combined the adaptive
backstepping method with barrier Lyapunov functions,
ultimately presenting the adaptive finite-time tracking
control approach as outlined in [38]. By proposing the finite-
time control schemes, in [39], the control method of nonlinear
systems with actuator failures was investigated. In addition, in
[40], a finite-time command-filtered backstepping method was
designed to solve finite-time control issues for systems with
input saturation. Nevertheless, the finite-time control strategies
proposed earlier cannot be directly applied to single-link
flexible-joint robotic MASs with nonstrict-feedback and the
directed communication topology.

In view of the aforestated discussions, a new adaptive
command-filtered finite-time consensus tracking control
strategy is presented for the considered single-link flexible-
joint robotic MASs, which solves the difficulties caused by
nonstrict-feedback and “explosion of complexity.” The
characteristics of this article are given as follows: (1) In
contrast to the previous research in [36,41], the considered
MASs in this paper are nonlinear nonstrict-feedback systems,
which are more extensively applied in actual application than
nonlinear strict-feedback systems. (2) Different from the
conventional backstepping method in [28], the presented
command-filtered control strategy in this article overcomes
the challenge of “explosion of complexity” so that the
complexity of the controller design procedure is simplified.
Meanwhile, new compensation signals are devised in the
command filter technology, which eliminate the error effect
caused by the filters. (3) In [42], the proposed control strategy
for nonlinear MASs with flexible-joint manipulators can reach
stability only when time tends to infinity. Therefore, the finite-
time control strategy is designed for the considered nonlinear
nonstrict-feedback single-link flexible-joint robotic MASs in this
paper for the first time, which can guarantee that the tracking
errors converge to a small neighborhood of origin and that all the
closed-loop systems are stable within a finite time.

2 Problem statement and preliminaries

2.1 Graph theory

In this paper, we consider N agents and the directed topology
graph among the agents, which can be described as G = (V, E). V =
{1, . . ., N} represents the set of nodes. E ⊆ V × V represents the set
of edges. An edge can be described as eji = (j, i) ∈ E, which
expresses that agent i can get the information from agent j.
Meanwhile, agent j is described as the neighbor of agent i.
Then, the neighbor set of agent i is represented by Ni = {j|(j,
i) ∈ E}. Furthermore, the adjacency matrix is defined as A = [aij] ∈
RN×N. The element aij > 0 if eji = (j, i) ∈ E; otherwise, aij = 0.
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Generally, self-edge (i, i) is not allowed, which means that the
diagonal elements of A are all zeros, i.e., aii = 0. Next, we define an
in-degree matrix D = diag{d1, d2, . . ., dN} ∈ RN×N as a diagonal
matrix, and its diagonal elements are di � ∑N

j�1aij for agent i.
Hence, the Laplacian matrix of digraph G can be expressed as
L = D − A.

The augmented graph �G can be described as the
corresponding topology between the leader and the followers
generally when the leader is considered. Therefore, �G � ( �V, �E)
represents the augmented graph. �V represents the node sets,
including the leader and the followers. �E represents the edge sets,
displaying the communication relationship between the leader
and the followers. The diagonal elements bi > 0 of B = diag{bi} ∈
RN×N denote that there is a weight between agent i and the leader,
which is bi = 0 otherwise. If a directed graph has a directed path
from the root to every other node, it is said to have a
spanning tree.

2.2 Problem statement

We consider a nonlinear flexible-joint robotic MASwith a leader
and N followers. The dynamics of agent i in Figure 1 are given as
follows:

J1€qi,1 + F1 _qi,1 +K qi,1 − qi,2
N

( ) +Mgd cos qi,1 � 0,

J2€qi,2 + F2 _qi,2 −
K

N
qi,1 − qi,2

N
( ) � KtIi,

L _Ii + RIi + Kb _qi,2 � ui,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1)

where qi,1, _qi,1, and €qi,1 represent the link position, velocity, and
acceleration, respectively. qi,2, _qi,2, and €qi,2 denote the motor shaft
position, velocity, and acceleration, respectively. Ii denotes the
armature current. J1 and J2 represent the link inertias. F1 and F2
are the viscous friction constants. K, Kt, and Kb denote the spring
constant, torque constant, and back-emf constant, respectively.M, g,
d, N, L, and R are the link mass, acceleration of gravity, position of
the link center of gravity, gear ratio, armature inductance, and
armature resistance, respectively. ui is the armature voltage.

For the convenience of studying system (1), we define xi,1 = qi,1,
xi,2 � _qi,1, xi,3 = qi,2, xi,4 � _qi,2, and xi,5 = Ii. Then, system (1) can be
transformed as follows:

_xi,1 � xi,2,

_xi,2 � δi,2 xi,1, xi,2, xi,3( ) + xi,3,

_xi,3 � xi,4,

_xi,4 � δi,4 xi,1, xi,2, xi,3, xi,4, xi,5( ) + xi,5,

_xi,5 � δi,5 xi,1, xi,2, xi,3, xi,4, xi,5( ) + 1
L
ui,

yi � xi,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where δi,2(xi,1, xi,2, xi,3) � J1−1(−Mgd cosxi,1 − F1xi,2 −K(xi,1

−xi,3
N ) − xi,3)xi,3), δi,4(xi,1, xi,2, xi,3, xi,4, xi,5) � J2−1(KN (xi,1 − xi,3

N )−
F2xi,4 +Ktxi,5 − xi,5), δi,5(xi,1, xi,2, xi,3, xi,4, xi,5) = L−1(−Rxi,5 −
Kbxi,4), and xi � [xi,1,/xi,5]T ∈ R5 are the whole states of agent i.
yi and ui represent the output and control input of agent i, respectively.
To simplify the design procedure of the controller, the parameters of the
functions will be omitted in the subsequent design procedure. For
example, the function δi,2(xi,1, xi,2, xi,3) is expressed as δi,2. After that, the
dynamic model of the leader is expressed as

_xd � fd xd, t( ),
yd � xd,

(3)

where yd ∈ R means the output of the leader. fd(xd, t) is a piecewise
continuous function, which meets the local Lipschitz condition
about xd for t ≥ 0.

Assumption 1. In the augmented graph �G, the leader is the root
node of a directed spanning tree. Additionally, each agent i can only
receive state information from its neighbors.

Assumption 2. There is a continuous function f(·) and a positive
constant Xd, which makes the inequalities |fd(xd, t)|≤f(xd) and
|xd(t)|≤Xd hold for all t ≥ t0.

2.3 Preliminaries

Our goal is to present an adaptive consensus tracking control
protocol for the flexible-joint robotic MASs (2) to make sure that the
tracking errors converge to a small neighborhood of origin within a
finite time and that all signals in the closed-loop systems remain
bounded. Therefore, the following knowledge is needed in the design
process of the controller:

FIGURE 1
The single-link flexible-joint robotic manipulator of agent i.
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Lemma 1. (See [43]). For ∀ψ ∈ R, the following inequality is true:

0≤ ψ
∣∣∣∣ ∣∣∣∣ − ψ tanh

ψ

t
( )≤ ρt, ∀t≥ 0, (4)

where ρ = 0.2785.

Lemma 2. (See [44]). For any variable, ι, γ, one has

ι| |κ1 γ∣∣∣∣ ∣∣∣∣κ2 ≤ κ1
κ1 + κ2

κ3 ι| |κ1+κ2 + κ2
κ1 + κ2

κ
−κ1
κ2

3 γ
∣∣∣∣ ∣∣∣∣κ1+κ2 , (5)

where κ1, κ2, and κ3 are arbitrary positive constants.

Lemma 3. (See [45]). For si ∈R, i= 1, 2, . . ., n, and 0< j≤ 1, it holds that

∑n
i�1

si| |⎛⎝ ⎞⎠j

≤ ∑n
i�1

si| |j ≤ n1−j ∑n
i�1

si| |⎛⎝ ⎞⎠j

. (6)

Definition 1. (See [41]). For any incipient condition ζ(0) ∈ ζ0, if
there is a constant ε > 0 and a settling time T(ε, ζ0) < ∞ such that

ζ t( )‖ ‖< ε, ∀t>T, (7)
the solution, which belongs to the nonlinear system _ζ � f(ζ(t)), is
practical finite-time stable.

Lemma 4. (See [46]). The solution of _ζ � f(ζ(t)) is practical finite-
time stable if there is a positive-definite function that meets the following
formula:

_V ζ( )≤ − αV ζ( ) − βVp ζ( ) + Γ, (8)
where the design constants α > 0, β > 0, 0 < p < 1, and 0 < Γ < ∞.

RBF NNs [47]: In this paper, RBF NN technology is utilized to
approximate unknown continuous functions. For the unknown
continuous nonlinear function h(Z): RS → R defined over a
compact set ΩZ ∈ Rs and the given precision ε* > 0, h(Z) can be
approximated by RBF NNs as follows:

h Z( ) � θ*Tφ Z( ) + ε Z( ), (9)
where Z ∈ ΩZ ⊂ Rs is the input vector. ε(Z) denotes the
approximation error with |ε(Z)|≤ ε*. φ(Z) � [φ1(Z), . . . ,φl(Z)]T
represents the basis function vector, and l > 1 represents a positive
integer. Generally, the basis function φi(Z) can been chosen as the
following Gaussian function:

φi Z( ) � exp − Z − μi( )T Z − μi( )
κi2

[ ], i � 1, . . . , l, (10)

where μi � [μi1, . . . , μil]T and κi are the center and the width of the
Gaussian function, respectively. In addition, θ* � [θ1, . . . , θl]T ∈ Rl

represents an ideal weight vector defined as

θ* � argmin
θ∈Rl

sup
Z∈ΩZ

h Z( ) − θTφ Z( )∣∣∣∣ ∣∣∣∣{ }, (11)

where θ is the weight vector.

Lemma 5. (See [31]). Suppose h(�xq) � [h1(�xq), . . . , hl(�xq)]T is the
basis function vector of RBF NNs, where �xq � [x1, . . . , xq]T. Then,
the following inequality holds:

h �xq( )����� �����2 ≤ h �xL( )‖ ‖2, (12)

where the arbitrary positive integer L satisfies L ≤ q.

3 Controller design and stability
analysis

3.1 Controller design

In this section, we design an adaptive command-filtered finite-
time consensus tracking control scheme for MASs (2). The
consensus tracking error of agent i is defined as

zi,1 � ∑N
j�1

aij yi − yj( ) + bi yi − yd( ), (13)

where aij and bi are defined in the graph theory.

Remark 1. It is worth noting that (13) includes aij and bi. Therefore,
the consensus tracking error zi,1 is influenced by the topology
structure of the augmented graph �G. Furthermore, bi + di > 0 is
met for all the agents.

The coordinate transformation is designed as follows:

zi,k � xi,k − �αi,k, (14)
where k = 2, . . ., 5. �αi,k represents the output of the following
command filter:

τi,k _�αi,k + �αi,k � αi,k, �αi,k 0( ) � αi,k 0( ), (15)
where τi,k > 0 is a design constant. αi,k is both the input of the
command filter and the virtual controller, which will be presented
later. Then, considering the impact of the error brought by the
command filter (15), we define the following compensating signals:

_ηi,1 � − ci,1 + 1( )ηi,1 + di + bi( )ηi,2 + di + bi( ) �αi,2 − αi,2( ) − λi,1sgn ηi,1( ),
_ηi,2 � − ci,2 + 1( )ηi,2 + ηi,3 + �αi,3 − αi,3( ) − di + bi( )ηi,1 − λi,2sgn ηi,2( ),
_ηi,3 � − ci,3 + 1

2
( )ηi,3 + ηi,4 + �αi,4 − αi,4( ) − ηi,2 − λi,3sgn ηi,3( ),

_ηi,4 � − ci,4 + 1( )ηi,4 + ηi,5 + �αi,5 − αi,5( ) − ηi,3 − λi,4sgn ηi,4( ),
_ηi,5 � − ci,5 + 1( )ηi,5 − ηi,4 − λi,5sgn ηi,5( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

where ci,k > 0, λi,k > 0, and ηi,k(0) = 0 for k = 1, 2, 3, 4, 5. Next, we
define the compensated tracking error vi,k = zi,k − ηi,k for k = 1, 2,
3, 4, 5.

Then, the virtual controllers are designed as follows:

αi,2 � 1
di + bi

− ci,1 + 1( )zi,1 − ei,1v
2p−1
i,1 − 1

2a2i,1
vi,1θ̂i,1φ

T
i,1φi,1( ),

αi,3 � − ci,2 + 1( )zi,2 − ei,2v
2p−1
i,2 − 1

2a2i,2
vi,2θ̂i,2φ

T
i,2φi,2 − di + bi( )zi,1 + _�αi,2,

αi,4 � − ci,3 + 1
2

( )zi,3 − ei,3v
2p−1
i,3 − zi,2 + _�αi,3,

αi,5 � − ci,4 + 1( )zi,4 − ei,4v
2p−1
i,4 − 1

2a2i,4
vi,4θ̂i,4φ

T
i,4φi,4 − zi,3 + _�αi,4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)
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where 1/2 < p < 1, p = ϖ1/ϖ2 and ϖ1, ϖ2 are odd integers. θ̂i,k denotes
the estimation of θi,k, and the estimation error is ~θi,k � θi,k − θ̂i,k. ei,k
and ai,k are positive design parameters.

Consequently, the adaptive laws are designed as follows:

_̂
θi,k � ri,k

2a2i,k
v2i,kφ

T
i,kφi,k − σ i,kθ̂i,k, (18)

where ri,k and σi,k are positive design parameters for k = 1, 2, 4, 5.
Then, we give the detailed design process for the system

controllers.

Step 1. Taking the derivative of vi,1, one has

_vi,1 � _zi,1 − _ηi,1

� ∑N
j�1

ai,j _yi − _yj( ) + bi _yi − _yd( ) − _ηi,1

� ∑N
j�1

ai,j xi,2 − xj,2( ) + bi xi,2 − fd xd, t( )( ) − _ηi,1

� di + bi( )xi,2 − bifd xd, t( ) −∑N
j�1

ai,jxj,2 − _ηi,1.

(19)

Then, we design the following candidate Lyapunov function:

Vi,1 � 1
2
v2i,1 +

1
2ri,1

~θ
2

i,1. (20)

Next, the derivation of Vi,1 is given as follows:

_Vi,1 � vi,1 _vi,1 − 1
ri,1

~θi,1
_̂
θi,1

� vi,1 di + bi( )xi,2 − bifd xd, t( ) −∑N
j�1

ai,jxj,2 − _ηi,1⎛⎝ ⎞⎠ − 1
ri,1

~θi,1
_̂
θi,1

� vi,1 di + bi( )vi,2 + di + bi( )ηi,2 + di + bi( )�αi,2(
−bifd xd, t( ) −∑N

j�1
ai,jxj,2 − _ηi,1) −

1
ri,1

~θi,1
_̂
θi,1. (21)

According to Assumption 2 and Lemma 1, it is easy to get

−bivi,1fd xd, t( )≤ bi vi,1
∣∣∣∣ ∣∣∣∣f xd( )≤ bivi,1f xd( )tanh vi,1

ti,1
( ) + ρti,1. (22)

Substituting (22) into (21) yields

_Vi,1 ≤ vi,1 di + bi( )vi,2 + di + bi( )ηi,2 + di + bi( )�αi,2 + �gi,1 − _ηi,1( ) + ρti,1

− 1
ri,1

~θi,1
_̂
θi,1, (23)

where �gi,1 � bif(xd)tanh(vi,1ti,1
) − ∑N

j�1
ai,jxj,2.

From (9), one can obtain

�gi,1 � θpTi,1φi,1 + εi,1, (24)
where |εi,1|≤ εi,1* , and εi,1* is a positive constant.

By applying Young’s inequality and Lemma 5, one can get

vi,1 �gi,1 ≤
v2i,1θi,1φ

T
i,1φi,1

2a2i,1
+ a2i,1

2
+ v2i,1

2
+ εi,1*

2

2
, (25)

vi,1λi,1sgn ηi,1( )≤ 1
2
v2i,1 +

1
2
λ2i,1, (26)

where ‖θi,1* ‖2 � θi,1. Then, by substituting (16)–(18) and (24)–(26)
into (23), it is derived that

_Vi,1 ≤ − ci,1v
2
i,1 − ei,1v

2p
i,1 + di + bi( )vi,1vi,2 + a2i,1

2
+ εi,1* 2

2
+ λ2i,1

2
+ ρti,1

+ σ i,1
ri,1

~θi,1θ̂i,1.

(27)

Step 2. Taking the derivative of vi,2, one can get

_vi,2 � _zi,2 − _ηi,2� δi,2 + xi,3 − _�αi,2 − _ηi,2.
(28)

The candidate Lyapunov function Vi,2 is chosen as follows:

Vi,2 � Vi,1 + 1
2
v2i,2 +

1
2ri,2

~θ
2

i,2. (29)

Then, the derivation of Vi,2 is given as follows:

_Vi,2 � _Vi,1 + vi,2 δi,2 + xi,3 − _�αi,2 − _ηi,2( ) − 1
ri,2

~θi,2
_̂
θi,2. (30)

From (9), one can obtain

δi,2 � θpTi,2φi,2 + εi,2, (31)
where |εi,2|≤ εi,2* , and εi,2* is a positive constant.

By applying Young’s inequality and Lemma 5, one can get

vi,2δi,2 ≤
v2i,2θi,2φ

T
i,2φi,2

2a2i,2
+ a2i,2

2
+ v2i,2

2
+ εi,2*

2

2
, (32)

vi,2λi,2sgn ηi,2( )≤ 1
2
v2i,2 +

1
2
λ2i,2, (33)

where ‖θi,2* ‖2 � θi,2. Then, by substituting (16)–(18), (27), and
(31)–(33) into (30), it is derived that

_Vi,2 ≤ −∑2
j�1

ci,jv
2
i,j −∑2

j�1
ei,jv

2p
i,j + vi,2vi,3 +∑2

j�1

a2i,j
2

+∑2
j�1

εi,j*
2

2
+∑2

j�1

λ2i,j
2

+ρti,1 +∑2
j�1

σ i,j
ri,j

~θi,jθ̂i,j. (34)

Step 3. Taking the derivative of vi,3, one can obtain

_vi,3 � _zi,3 − _ηi,3� vi,4 + ηi,4 + �αi,4 − _�αi,3 − _ηi,3.
(35)

The candidate Lyapunov function Vi,3 is chosen as follows:

Vi,3 � Vi,2 + 1
2
v2i.3. (36)

Then, the following equation holds:

_Vi,3 � _Vi,2 + vi,3 vi,4 + ηi,4 + �αi,4 − _�αi,3 − _ηi,3( ). (37)

By using Young’s inequality, we get

vi,3λi,3sgn ηi,3( )≤ 1
2
v2i,3 +

1
2
λ2i,3. (38)

By substituting (16)–(18), (34), and (38) into (37), it is obtained
that
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_Vi,3 ≤ −∑3
j�1

ci,jv
2
i,j −∑3

j�1
ei,jv

2p
i,j + vi,3vi,4 +∑2

j�1

a2i,j
2

+∑2
j�1

εi,j*
2

2
+∑3

j�1

λ2i,j
2

+ρti,1 +∑2
j�1

σ i,j
ri,j

~θi,jθ̂i,j. (39)

Step 4. Taking the derivative of vi,4, one can get

_vi,4 � _zi,4 − _ηi,4� vi,5 + ηi,5 + �αi,5 + δi,4 − _�αi,4 − _ηi,4.
(40)

The candidate Lyapunov function Vi,4 is chosen as follows:

Vi,4 � Vi,3 + 1
2
v2i,4 +

1
2ri,4

~θ
2

i,4. (41)

In addition, the following equation can be obtained:

_Vi,4 � _Vi,3 + vi,3 vi,5 + ηi,5 + �αi,5 + δi,4 − _�αi,4 − _ηi,4( ) − 1
ri,4

~θi,4
_̂
θi,4. (42)

From (9), we get

δi,4 � θpTi,4φi,4 + εi,4, (43)
where |εi,4|≤ εi,4* , and εi,4* is a positive constant.

By using Young’s inequality and Lemma 5, one can get

vi,4δi,4 ≤
v2i,4θi,4φ

T
i,4φi,4

2a2i,4
+ a2i,4

2
+ v2i,4

2
+ εi,4* 2

2
, (44)

vi,4λi,4sgn ηi,4( )≤ 1
2
v2i,4 +

1
2
λ2i,4, (45)

where ‖θi,4* ‖2 � θi,4. Then, by substituting (16)–(18), (39), and
(43)–(45) into (42), it is derived that

_Vi,4 ≤ −∑4
j�1

ci,jv
2
i,j −∑4

j�1
ei,jv

2p
i,j + vi,4vi,5 + ∑

j�1,2,4

a2i,j
2

+ ∑
j�1,2,4

εi,j*
2

2

+∑4
j�1

λ2i,j
2

+ ρti,1 + ∑
j�1,2,4

σ i,j
ri,j

~θi,jθ̂i,j. (46)

Step 5. Taking the derivative of vi,5, one can get

_vi,5 � _zi,5 − _ηi,5

� δi,5 + 1
L
ui − _�αi,5 − _ηi,5.

(47)

The candidate Lyapunov function Vi,5 is chosen as follows:

Vi,5 � Vi,4 + 1
2
v2i,5 +

1
2ri,5

~θ
2

i,5. (48)

Next, the following equation can be obtained:

_Vi,5 � _Vi,4 + vi,5 δi,5 + 1
L
ui − _�αi,5 − _ηi,5( ) − 1

ri,5
~θi,5

_̂
θi,5. (49)

From (9), one has

δi,5 � θpTi,5φi,5 + εi,5, (50)
where |εi,5|≤ εi,5* , and εi,5* is a positive constant.

By applying Young’s inequality and Lemma 5, one can obtain

vi,5δi,5 ≤
v2i,5θi,5φ

T
i,5φi,5

2a2i,5
+ a2i,5

2
+ v2i,5

2
+ εi,5* 2

2
, (51)

vi,5λi,5sgn ηi,5( )≤ 1
2
v2i,5 +

1
2
λ2i,5, (52)

where ‖θi,5* ‖2 � θi,5.
Furthermore, design the controller ui is expressed as

ui � L − ci,5 + 1( )zi,5 − ei,5v
2p−1
i,5 − 1

2a2i,5
vi,5θ̂i,5φ

T
i,5φi,5 − zi,4 + _�αi,5[ ].

(53)
Finally, by substituting (16)–(18), (46), and (50)–(53) into (49),

it is obtained that

_Vi,5 ≤ −∑5
j�1

ci,jv
2
i,j −∑5

j�1
ei,jv

2p
i,j + ∑

j�1,2,4,5

a2i,j
2

+ ∑
j�1,2,4,5

εi,j*
2

2
+∑5

j�1

λ2i,j
2

+ρti,1 + ∑
j�1,2,4,5

σ i,j
ri,j

~θi,jθ̂i,j. (54)

3.2 Stability analysis

Theorem 1. Considering the flexible-joint robotic MASs (1) and
(2), the augmented graph �G, the leader (3), the command filter (15),
the virtual controllers (17), the adaptive laws (18), and the actual
controller (53) satisfying assumptions 1 and 2, and the following
conclusions hold:

1) The proposed adaptive command-filtered consensus control
scheme can guarantee that the tracking errors converge to a
small neighborhood of origin within a finite time

2) All signals in the closed-loop systems are bounded

Proof. Based on Young’s inequality, one can obtain

∑
j�1,2,4,5

σ i,j
ri,j

~θi,jθ̂i,j ≤ ∑
j�1,2,4,5

− σ i,j
2ri,j

~θ
2
i,j + ∑

j�1,2,4,5

σ i,j
2ri,j

θ2i,j. (55)

Substituting (55) into (54) yields

_Vi,5 ≤ −∑5
j�1

ci,jv2i,j −∑5
j�1

ei,jv
2p
i,j + ∑

j�1,2,4,5

a2i,j
2

+ ∑
j�1,2,4,5

εi,j*
2

2
+∑5

j�1

λ2i,j
2

+ρti,1 − ∑
j�1,2,4,5

σ i,j
2ri,j

~θ
2
i,j + ∑

j�1,2,4,5

σ i,j
2ri,j

θ2i,j + ∑
j�1,2,4,5

σ i,j
~θ
2

i,j

2ri,j
⎛⎝ ⎞⎠p

− ∑
j�1,2,4,5

σ i,j
~θ
2

i,j

2ri,j
⎛⎝ ⎞⎠p

. (56)

By using Lemma 2 to deal with the term ∑
j�1,2,4,5

σ i,j(
~θ
2
i,j

2ri,j
)p, one

can obtain

∑
j�1,2,4,5

σ i,j
~θ
2

i,j

2ri,j
⎛⎝ ⎞⎠p

≤ ∑
j�1,2,4,5

p
σ i,j
2ri,j

~θ
2

i,j + ∑
j�1,2,4,5

σ i,j 1 − p( ). (57)

By substituting (57) into (56) and applying Lemma 3, one has
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FIGURE 2
Topology of communication graph.

FIGURE 3
The output trajectories of three followers and the leader.

FIGURE 4
The consensus tracking errors of three followers.
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_Vi,5 ≤ −∑5
j�1

ci,jv2i,j − ∑
j�1,2,4,5

1 − p( ) σ i,j
2ri,j

~θ
2
i,j −∑5

j�1
ei,jv

2p
i,j − ∑

j�1,2,4,5
σ i,j

~θ
2

i,j

2ri,j
⎛⎝ ⎞⎠p

+ ∑
j�1,2,4,5

a2i,j
2

+ ∑
j�1,2,4,5

εi,j*
2

2
+∑5

j�1

λ2i,j
2

+ ρti,1 + ∑
j�1,2,4,5

σ i,j

2ri,j
θ2i,j

+ ∑
j�1,2,4,5

σ i,j 1 − p( ) ≤ − αVi,5 − βVp
i,5 + Γ, (58)

where α � min 2ci,j, (1 − p)σ i,j{ }, β � min 2pei,j, σ i,j{ }, and Γ �
∑j�1,2,4,5

a2i,j
2 + ∑j�1,2,4,5

εi,j* 2

2 + ∑5
j�1

λ2i,j
2 + ρti,1 +∑j�1,2,4,5

σ i,j
2ri,j

θ2i,j + ∑j�1,2,4,5σ i,j(1 − p). It
can be easily obtained that _Vi,5(t)≤ − αVi,5(t) + Γ and Vi,5(t)≤
(Vi,5(0) − Γ

α)e−αt + Γ
α, which indicates that vi,j, ~θi,j, and θ̂i,j remain

bounded. From (58) and Lemma 2.4, it is seen that vi,j is practical
finite-time stable.

Then, the following Lyapunov function is constructed:

Vi,6 � ∑5
j�1

1
2
η2i,j. (59)

Therefore, one can get

_Vi,6 � − ci,1 + 1( )η2i,1 + di + bi( )ηi,1ηi,2 + di + bi( )ηi,1 �αi,2 − αi,2( ) − ηi,1λi,1sgn ηi,1( )
− ci,2 + 1( )η2i,2 + ηi,2ηi,3 + ηi,2 �αi,3 − αi,3( ) − di + bi( )ηi,1ηi,2 − ηi,2λi,2sgn ηi,2( )
− ci,3 + 1

2
( )η2i,3 + ηi,3ηi,4 + ηi,3 �αi,4 − αi,4( ) − ηi,2ηi,3 − ηi,3λi,3sgn ηi,3( )

− ci,4 + 1( )η2i,4 + ηi,4ηi,5 + ηi,4 �αi,5 − αi,5( ) − ηi,3ηi,4 − ηi,4λi,4sgn ηi,4( )
− ci,5 + 1( )η2i,5 − ηi,4ηi,5 − ηi,5λi,5sgn ηi,5( )≤
−∑5

j�1
ci,j + 1

2
( )η2i,j +∑4

j�1
mi,j

∣∣∣∣ ∣∣∣∣ ηi,j∣∣∣∣∣ ∣∣∣∣∣ �αi,j+1 − αi,j+1
∣∣∣∣ ∣∣∣∣ −∑5

j�1
λi,j ηi,j

∣∣∣∣∣ ∣∣∣∣∣,
(60)

FIGURE 5
The first adaptive law of three followers.

FIGURE 6
The second adaptive law of three followers.
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wheremi,1 = di + bi andmi,2 =mi,3 =mi,4 = 1. According to [48], there
is a known constant ϑj satisfying ‖�αi,j+1 − αi,j+1‖≤ ϑi,j (j � 1, 2, 3, 4)
in a finite time. Next, we can choose an appropriate parameter λi,j to
make sure |mi,j|ϑi,j ≤ λi,j. So, the following inequality holds:

_Vi,6 ≤ −∑5
j�1

ci,j + 1
2

( )η2i,j −∑5
j�1

λi,j − mi,j

∣∣∣∣ ∣∣∣∣ϑi,j( ) ηi,j∣∣∣∣∣ ∣∣∣∣∣
≤ −Ξi,1Vi,6 − Ξi,2V

1
2
i,6,

(61)

where ϑi,5 = 0, Ξi,1 � min 2(ci,j + 1
2), j � 1, 2, 3, 4, 5{ }, and

Ξi,2 � min
�
2

√ (λi,j − |mi,j|ϑi,j), j � 1, 2, 3, 4, 5{ }. By using (61)
and Lemma 2.4, one can obtain that ηi,j can converge to the origin
within a finite time. According to the definition vi,j = zi,j − ηi,j, zi,j is
bounded, and zi,1 can converge to a small neighborhood of origin in a
finite time. Hence, the correctness of Theorem 1 has been proved.

4 Simulation example

In this part, the availability of the presented adaptive finite-time
consensus control scheme will be verified. Figure 2 shows the
augmented graph �G, which indicates the communication
topological relationship between the leader and three followers. It
is seen that node d represents the leader and other nodes represent
the followers.

It can be easily obtained from Figure 2 that A �
0 0 0
1 0 0
2 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
represents the adjacency matrix, D �

0 0 0
0 1 0
0 0 2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ is the in-degree

matrix, and L �
0 0 0
−1 1 0
−2 0 2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ indicates the Laplacian matrix. In

addition, we can obtain that d
1
= 0, d

2
= 1, d

3
= 2, b

1
= 3, b

2
= 0,

and b
3
= 0.

FIGURE 7
The third adaptive law of three followers.

FIGURE 8
The fourth adaptive law of three followers.
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In the simulation, we choose the parameters of system (1) as J1 =
0.02 Kgm2, J2 = 0.16 Kgm2, F1 = 1.4Nms/rad, F2 = 2.5Nms/rad, K =
10, Kt = 10Nm/A, Kb = 0.1Nm/A,N = 0.09,M = 1Kg, g = 10N/Kg, d =
0.06m, L = 10H, and R = 0.05Ω. Next, the desired signal is selected as
yd = −15 cos t.

The incipient conditions are x1(0) � [0.5, 0, 0.1, 0.1, 0.1]T,
x2(0) � [0.5, 0, 0.1, 0.1, 0.1]T, and x3(0) � [0.5, 0, 0.1, 0.1, 0.1]T.
The design parameters are chosen as c1,1 = 40, c1,2 = 0.05, c1,3 =
0.1, c1,4 = c1,5 = 0.001, c2,1 = 49, c2,2 = 1, c2,3 = 0.1, c2,4 = 0.05, c2,5 = 0.1,
c3,1 = 44, c3,2 = 1.4, c3,3 = 0.02, c3,4 = c3,5 = 0.1, e1,1 = 0.0001, e1,2 =
e1,3 = 0.0008, e1,4 = e1,5 = 0.001, e2,1 = 0.0001, e2,2 = e2,3 = 0.0008,
e2,4 = e2,5 = 0.001, e3,1 = 0.0001, e3,2 = e3,3 = 0.0008, e3,4 = 0.001, e3,5 =
0.0008, λ1,1 = 0.015, λ1,2 = 0.002, λ1,3 = λ1,4 = 0.01, λ1,5 = 0.008, λ2,1 =
0.01, λ2,2 = 0.002, λ2,3 = λ2,4 = 0.01, λ2,5 = 0.008, λ3,1 = 0.01, λ3,2 =
0.001, λ3,3 = λ3,4 = 0.01, λ3,5 = 0.008, a1,1 = 2, a1,2 = a1,4 = 50, a1,5 =
200, a2,1 = 3, a2,2 = a2,4 = 50, a2,5 = 20, a3,1 = 2, a3,2 = a3,4 = 50, a3,5 =
20, τ1,1 = 0.7, τ1,2 = 700, τ1,4 = 1, τ1,5 = 0.2, τ2,1 = 50, τ2,2 = 20, τ2,4 =
0.5, τ2,5 = 50, τ3,1 = 30, τ3,2 = 20, τ3,4 = 0.25, τ3,5 = 50, σ1,1 = 150, σ1,2 =
200, σ1,4 = 10, σ1,5 = 400, σ2,1 = 10, σ2,2 = 1, σ2,4 = 10, σ2,5 = 1, σ3,1 = 10,
σ3,2 = 1, σ3,4 = 11, σ3,5 = 1, ri,j = 10(i = 1, 2, 3; j = 1, 2, 4, 5), and p =
81/101.

The simulation results are displayed in Figures 3–8. Figure 3
displays the output trajectories of three followers and the
leader. Figure 4 indicates the consensus tracking errors of
three followers, which obviously converge to a small
neighborhood of origin within a finite time. Figures 5–8
display the trajectories of the adaptive laws, which show that
these signals are bounded. According to the simulation results,
we know that all the signals in the closed-loop systems remain
bounded.

5 Conclusion

This article has proposed an adaptive command-filtered finite-time
consensus control strategy for the considered single-link flexible-joint
robotic MASs. First, RBF NN technology was used to approximate the
unknown nonlinearities in the system, so the design challenges due to
the unknown nonlinearities have been solved. Second, the problem of
“explosion of complexity” in the backstepping process has been
successfully settled by using the command filtering technology with
the new compensation signals, which eliminated the error impact posed

by the command filters. It is seen that the presented adaptive command-
filtered finite-time consensus control strategy ensured that the tracking
errors converge to a small neighborhood of origin within a finite time,
and all signals in the closed-loop systems are bounded. Eventually, the
validity of the proposed control scheme has been proven by the
simulation example. Next, we will research the consensus tracking
control with the fixed-time and the predefined-time for the studied
single-link flexible-joint robotic MASs.
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