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Quantum secret sharing (QSS) protocols without entanglement have showed high
security by virtue of the characteristics of quantummechanics. However, it is still a
challenge to compare the security of such protocols depending on quantitative
security analysis. Based on our previous security analysis work on protocols using
single qubits and two-level unitary operations, QSS protocols with single qutrits
and three-level unitary operations are considered in this paper. Under the Bell-
state attack we propose, the quantitative security analyses according to different
three-level unitary operations are provided respectively in the one-step and two-
step situations. Finally, important conclusions are drawn for designing and
implementing such QSS protocols. The method and results may also
contribute to analyze the security of other high-level quantum cryptography
schemes based on unitary operations.
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1 Introduction

Quantum secret sharing (QSS) is an important branch of quantum cryptography, whose
security is based on the fundamental principle of quantum mechanics. It can share both the
classical message [1–11] and quantum information [12–22]. Taking QSS protocols for
classical message sharing into account, it is observed that it is a more efficient and lower cost
way to use single particles instead of entangled particles. In addition, to achieve the
unconditional security (in theory) and the ability of detecting eavesdropping, unitary
operations are always used in such protocols. The classical secret message is encoded
into quanta and/or scrambles the particles by unitary operations so that the eavesdropper
cannot reliably identify each quantum state by appropriate measurement.

The quantitative security analysis of such protocols can be transformed into a
quantitative calculation of unitary operation security. The feasibility of this idea has
been proven by our pioneering work [23]. In [23], we proposed the substitute-Bell-state
attack and the definition of minimum failure probability for the attack. Thus, the quantitative
security analysis can be conducted according to the different selection methods of unitary
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operations. Several cases of two-level unitary operations were
analyzed in [23] and more two-level cases are considered in our
recent research [24].

However, these works on the security analysis of QSS are
focused on the qubit system. In many scenarios, quantum
communication protocols using high-dimensional states
demonstrate larger capacity and better performance than the
qubit system. Thus, it is worth studying the security of QSS
protocols beyond the two-level system. Quantitative security
analysis of QSS protocols remains a tough problem, and our
pioneering idea is worth recommending. However, the research
work based on this idea is not sufficient. In this paper, the
security of QSS protocols using three-level unitary operations is
analyzed quantitatively, and some comparisons between two-level
and three-level situations are made. Finally, valuable conclusions
are obtained, which can guide the designing and implementation
of QSS protocols with single qutrits.

2 The security of unitary operations in
quantum secret sharing protocols
based on qutrits

2.1 Three-level Bell states and unitary
operations

In a three-level quantum system, we call a single quantum state
as a qutrit. The Z-basis of a three-level quantum system is
| 0〉, | 1〉, | 2〉{ }, and another basis can be constructed by a

quantum Fourier transform, which is called the X-basis. For an
arbitrary d-level quantum system, we have

Xk〉| � 1��
d

√ ∑d−1
j�0

e2πijk/d j〉
∣∣∣∣ � 1��

d
√ ∑d−1

j�0
ϖ— jk j〉

∣∣∣∣ , (1)

where 0≤ k≤d − 1,ϖ— � e2πi/d. So when d � 3, the X-basis can be
formed as follows:

{ x0〉| � 1�
3

√ 0〉| + 1〉| + 2〉|( ), x1〉| � 1�
3

√ 0〉| + w 1〉|(
+w2 2〉| ), x2〉| � 1�

3
√ 0〉| + w2 1〉| + w 2〉|( )}, (2)

where w � e2πi/3.

To analyze the security of QSS protocols based on qutrits
quantitatively, we design the Bell-state attack, which uses three-
level Bell states and unitary operations. In a d × d-level double
quantum system, the d-level Bell state can be denoted as

ψnm〉
∣∣∣∣ � 1��

d
√ ∑d−1

j�0
wjn j〉

∣∣∣∣ j +m〉
∣∣∣∣ , (3)

where w � e2πi/3, d≥ 2, 0≤ n,m≤d − 1, and the symbol ‘+′ means
module d plus. Obviously, there are d2 d-level Bell states. In addition,
the vector group |ψnm〉{ } constitutes a complete orthogonal basis of
the double quantum system. Thus, nine Bell states forming a
complete orthogonal basis in a three-level quantum system can
be specified as

ψ00〉
∣∣∣∣ � 1�

3
√ 00〉| + 11〉| + 22〉|( ),

ψ01〉
∣∣∣∣ � 1�

3
√ 01〉| + 12〉| + 20〉|( ),

ψ02〉
∣∣∣∣ � 1�

3
√ 02〉| + 10〉| + 21〉|( ),

ψ10〉
∣∣∣∣ � 1�

3
√ w 00〉| + w2 11〉| + 22〉|( ),

ψ11〉
∣∣∣∣ � 1�

3
√ w 01〉| + w2 12〉| + 20〉|( ),

ψ12〉
∣∣∣∣ � 1�

3
√ w 02〉| + w2 10〉| + 21〉|( ),

ψ20〉
∣∣∣∣ � 1�

3
√ w2 00〉| + w 11〉| + 22〉|( ),

ψ21〉
∣∣∣∣ � 1�

3
√ w2 01〉| + w 12〉| + 20〉|( ),

ψ22〉
∣∣∣∣ � 1�

3
√ w2 02〉| + w 10〉| + 21〉|( ).

(4)

Without loss of generality, the first Bell state |ψ00〉 �
(1/ �

3
√ )( | 00〉 + | 11〉 + | 22〉) is chosen to be the initial state that

the eavesdropper uses for a Bell-state attack. Furthermore, an
arbitrary three-level double quantum state can be expressed as
follows:

ab〉| � x1 ψ00〉
∣∣∣∣ + x2 ψ10〉

∣∣∣∣ + x3 ψ20〉
∣∣∣∣ + y1 ψ01〉

∣∣∣∣ + y2 ψ11〉
∣∣∣∣(

+y3 ψ21〉
∣∣∣∣ + z1 ψ02〉

∣∣∣∣ + z2 ψ12〉
∣∣∣∣ + z3 ψ22〉

∣∣∣∣ ), (5)
where xi, yi, zi ∈ C (i � 1, 2, 3).

FIGURE 1
A general QSS protocol based on single states. Binary string A0 is the secret, and B0 is a random string. Alice prepares, transform, and finally measures
the single qutrits, while Bob 1 to Bob n only do local unitary operations on these qutrits according to Ai and Bi.
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A unitary operation is a bounded linear operation U: H → H
on a Hilbert space H that satisfies UU* � I, where U* is the adjoint
of U and I: H → H is the identity operation. In a three-level
system, the unitary operations can be represented by a 3*3 matrix.
For simplicity, we consider the double quantum states consisting of
three basis states, that is, one of x1, x2, and x3; y1, y2, and y3; or z1,
z2, and z3 is 1 (see Formula 5). Here, xi � 1 is bound to yi � 0 and
zi � 0 because the two-qutrit quantum state is obtained under a Bell-
state attack and selected unitary operation (see Section 2.3).
Therefore, there will be six situations showed as follows (if the
unitary matrix at the left side of the arrow is supposed to be used in a
Bell-state attack, three Bell states will be obtained at the right side of
the arrow):

U01 � 1�
3

√
1 w 1

w 1 1

w2 w2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ00〉
∣∣∣∣ , ψ11〉

∣∣∣∣ , ψ22〉,
∣∣∣∣

U02 � 1�
3

√
1 w2 1

w2 1 1

w w 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ00〉
∣∣∣∣ , ψ12〉

∣∣∣∣ , ψ21〉
∣∣∣∣ ,

U03 � 1�
3

√
w w 1

1 w2 1

w2 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ10〉
∣∣∣∣ , ψ01〉

∣∣∣∣ , ψ22〉
∣∣∣∣ ,

U04 � 1�
3

√
w 1 1

w2 w2 1

1 w 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ10〉
∣∣∣∣ , ψ02〉

∣∣∣∣ , ψ21〉
∣∣∣∣ ,

U05 � 1�
3

√
w2 w2 1

1 w 1

w 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ20〉
∣∣∣∣ , ψ01〉

∣∣∣∣ , ψ12〉
∣∣∣∣ ,

U06 � 1�
3

√
w2 1 1

w w 1

1 w2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ → ψ20〉
∣∣∣∣ , ψ02〉

∣∣∣∣ , ψ11〉
∣∣∣∣ .

(6)

Without the loss of generality, we select the first situation as an
example for research.

Next, to measure the security of different unitary operations,
we first provide a general QSS protocol based on qutrits, and then
propose the so-called Bell-state attack and state the minimum
failure probability for this attack. The quantitative computing
results show how to select appropriate three-level unitary
operations to protect the QSS protocols against a Bell-state
attack.

2.2 A general quantum secret sharing
protocol based on qutrits

A generic QSS protocol based on qutrits is shown in Figure 1 (it
is supposed to be a (n, n) secret sharing threshold protocol). The
procedure is as follows:

(1) First, Alice prepares qutrits all in | 0〉. A binary string A0 is the
secret to be shared. Alice performs unitary operations on qutrits

according to the value of A0 and a random string B0 (to be used
to change the basis).

(2) After that, the qutrit sequence, denoted as |Ψ0〉, is sent to Bob 1.
(3) Bob 1 to Bob n perform local three-level unitary operations

according to the values of A and B.
(4) Bob n sends the qutrits back to Alice. Then, Bob 1 to Bob n

declare the information about individual unitary operations (not
unitary operations themselves) via classical communication.

(5) Alice measures the qutrits using proper bases according to the
information and publishes the result.

(6) Only when all the Bobs collaborate together, the secret can be
revealed. Sample detection can be implemented by classical
communication to judge if there is a wiretap.

In addition, unitary operations can be executed in one or two
steps, which were defined in our previous work, shown as
follows [23].

Definition 1. (one-step unitary operation): Bob i performs once a
random local unitary operation on each quantum state before
sending. All possible options are put into “{}”, called a unitary
operation set.

Definition 2. (two-step unitary operation): Bob i performs twice a
random local unitary operation on each quantum state before
sending, and the probability of the first and second operations
being the same is zero. The symbol “{; }” is used to indicate the
two-step unitary operation, while the first possible options are listed
before the semicolon, and the subsequent options, after the
semicolon.

2.3 Bell-state attack in a three-level
quantum system

Bob i is supposed to be dishonest during the execution of the
three-level QSS protocol. He aims to generate a Bell-state attack to
obtain the integrated encoded information from Bob i+1 to Bob j.
The schematic diagram of the Bell-state attack is illustrated in
Figure 2 (which is a variant of the substitute-Bell-state attack
[23]), and the procedure of the attack is as follows:

(1) Bob i retains the single qutrits |Ψi−1〉 sent from Bob i-1 and does
nothing on these particles. Meanwhile, he generates N three-
level Bell states |Φ〉12 � ⊗N

k�1|ϕk〉12. |ϕk〉12 can be any one of the
nine Bell states given in Formula 4. Without the loss of
generality, |ϕk〉 is assumed to be |ψ00〉 � (1/ �

3
√ )( | 00〉 +

| 11〉 + | 22〉).
(2) Bob i transmits the second particles |Φ〉2 of the Bell states to Bob

i + 1 and retains the first particles |Φ〉1.
(3) Bob i intercepts the single qutrits |Ψi+1〉 sent from Bob j to Bob j

+1 and replaces it with |Ψi−1〉.
(4) The particle sequences |Φ〉1 and |Ψj〉 are combined in pairs by

Bob i to form new N Bell states |Φ′〉12 � ⊗N
k�1|ϕ′k〉12. Then, Bob i

measures the new Bell states by proper bases in order to obtain
integrated encoded information from Bob i+1 to Bob j.

(5) When samples are tested, Bob i claims the unitary operations
that are consistent with the comprehensive effect of the unitary

Frontiers in Physics frontiersin.org03

Xu et al. 10.3389/fphy.2023.1213153

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1213153


operations that Bob i +1, Bob i +2, . . ., and Bob j implemented,
to avoid the attack from being detected.

It should be noted that Bob j can also be Bob i+1, and in this
situation, Bob i aims only to obtain the unitary operations that Bob i
+1 has performed.

Now, the key question is how to measure the effect of the Bell-
state attack? To determine this, we pick up the minimum failure
probability formula that we put forward previously [23, 24].

Definition 3. (minimum failure probability): Assume that a QSS
protocol based on single qutrits is under a Bell-state attack. The
attacker has acquired N new two-qutrit states |ϕk〉. Suppose the
prior probability of |ϕk〉 is pk, and the number of quantum states to
be distinguished is n. Thus, the minimum failure probability of the
Bell-state attack (denoted as Fmin) is defined as follows:

F min � 1
n − 1

∑
i≠j

����
pipj

√
〈ϕi

∣∣∣∣∣ϕj〉
∣∣∣∣∣ ∣∣∣∣∣. (7)

Apparently, Fmin equals to 1 minus the maximum probability of
reliably distinguishing different quantum states. The value of Fmin is
between 0 and 1. When Fmin � 0, the protocol is totally unsecure. In
other words, all the states are mutually orthogonal; Bob i could
definitely distinguish each state by proper measurement and
interpret all encoded information successfully. It should be noted
that Fmin ≠ 1 because if Fmin � 1, the states to be distinguished must
be the same, and this is impossible in QSS protocols.

Therefore, when Fmin is larger, the effective information that a
Bell-state attack can gain is less, that is, the QSS protocol is verified to
be safer and vice versa.

2.4 The security of one-step three-level
unitary operations

To research the security of three-level unitary operations under a
Bell-state attack, we first provide the nine unitary operations
corresponding to nine Bell states (shown in Formula 4) in
Formula 8. In other words, the nine Bell states can be obtained

when the second qutrit of the initial state |Φ〉12 � |ψ00〉 �
(1/ �

3
√ )( | 00〉 + | 11〉 + | 22〉) is affected individually by the nine

unitary operations and recombined with the first qutrit.

X1 �
1 0 0
0 1 0
0 0 1

⎛⎜⎝ ⎞⎟⎠,X2 �
0 0 1
1 0 0
0 1 0

⎛⎜⎝ ⎞⎟⎠,X3 �
0 1 0
0 0 1
1 0 0

⎛⎜⎝ ⎞⎟⎠,

X4 �
w 0 0
0 w2 0
0 0 1

⎛⎜⎝ ⎞⎟⎠,X5 �
0 0 1
w 0 0
0 w2 0

⎛⎜⎝ ⎞⎟⎠,X6 �
0 w2 0
0 0 1
w 0 0

⎛⎜⎜⎝ ⎞⎟⎟⎠,

X7 �
w2 0 0
0 w 0
0 0 1

⎛⎜⎜⎝ ⎞⎟⎟⎠,X8 �
0 0 1
w2 0 0
0 w 0

⎛⎜⎝ ⎞⎟⎠,X9 �
0 w 0
0 0 1
w2 0 0

⎛⎜⎝ ⎞⎟⎠,

(8)

where w � e2πi/3.
Moreover, without the loss of generality,U01 (shown in Formula

6),X1,X5, andX9 are chosen as the three-level unitary operations in
QSS protocols for encoding the message and/or scrambling states,
relabeled as

U0 � U01 � 1�
3

√
1 w 1

w 1 1

w2 w2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,U1 � X1 �
1 0 0

0 1 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U2 � X5 �
0 0 1

w 0 0

0 w2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,U3 � X9 �
0 w 0

0 0 1

w2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(9)

It should be noted that U0 can transform a qutrit between the
X-basis and Z-basis.

Here is the explanation of whyX1,X5, andX9 are chosen asU1,U2,
and U3, respectively. When U01 is chosen, we get |Φ〉1(U01 |Φ〉2) =
(1/ �

3
√ )( |ψ00〉 + |ψ11〉 + |ψ22〉). So we select preferentially the

unitary operations leading to the states that are not orthogonal to
|Φ〉1(U01 |Φ〉2). It is easy to find that selecting X1, X5, and X9 is
optimal, which leads to |ψ00〉, |ψ11〉, and |ψ22〉, and themaximumvalue
of Fmin. On the contrary, if other unitary operations are selected, the
denominator of Formula 9 remains unchanged, while the numerator
decreases, that is, Fmin decreases and the security reduces.

Finally, there are seven sets of one-step three-level unitary
operations corresponding to the aforementioned matrices, and

FIGURE 2
Schematic diagram of Bell-state attack from Bob i for the integrated encoding information from Bob i+1 to Bob j. |Φ〉1and |Φ〉2 are the two particles
of the Bell states Bob i generates. Bob i intercepts and captures |Ψj〉 sent from Bob j to Bob j+1, and replaces it by |Ψi−1〉. |Φ〉1and |Ψj〉 are combined to form
new Bell states |Φ′〉12.
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the minimum failure probability Fmin of each set is calculated and
shown in Table 1.

From Table 1, we can conclude the following:

(1) If the four unitary operations of U0, U1, U2, and U3 are chosen
for the quantum secret sharing process, only three values of the
minimum failure probability are available. In other words,
Fmin �

�
3

√
/3 when two unitary operations are selected; Fmin �

2
�
3

√
/9 when three are selected; and Fmin �

�
3

√
/6 when all four

are selected. In a word, in one-step three-level unitary
operations, the fewer unitary operations the legitimate
communicator selects, the larger Fmin is and the higher the
security of this QSS protocol is verified.

(2) Based on the aforementioned analysis, the minimum failure
probability formula in a three-level quantum system can be
simplified as follows:

F min � 2�
3

√
N
, (10)

where N denotes the number of selected unitary operations. For the
six situations listed in Formula 6, if we choose the other five
situations and corresponding U0 and Xi (i � 1, 2, ..., 9), the same
values of Fmin will be attained, along with the same simplified
formula of minimum failure probability.

2.5 The security of two-step three-level
unitary operations

The one-step unitary operation case is mentioned previously.
We try the similar analysis in a two-step unitary operation instance.

First of all, according to the definition of a two-step unitary
operation and the selected four unitary operations U0, U1, U2, and
U3, all combinations can be divided into four categories as follows:

1. U0;

U1, U2 3( )
U1, U2, U3 1( )
U1, U0 3( )
U1, U2, U0 3( )
U1, U2, U3, U0 1( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ �⇒11 combinations;

2.
U1, U0

× 3
;

U1 3( )
U1, U2 3( )
U1, U2, U3 1( )
U2, U0 2( )
U1, U2, U0 3( )
U1, U2, U3, U0 1( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
�⇒13 × 3 � 39 combinations;

3.
U1, U2, U0

× 3
;

U1 3( )
U1, U2 3( )
U1, U2, U3 1( )
U1, U3, U0 2( )
U1, U2, U3, U0 1( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ �⇒10 × 3 � 30 combinations;

4. U1, U2, U3, U0;
U1 3( )
U1, U2 3( )
U1, U2, U3 1( )

⎧⎪⎨⎪⎩ �⇒7 combinations.

Here, the first possible unitary operations are listed before the
semicolon, and the subsequent operations, after the semicolon; the
symbol “× 3” means that there are three similar unitary operation
combinations in the first step; the symbol “(3)” denotes that there are
three similar unitary operation combinations in the second step. For
example, in the first category, “U1, U2(3)” indicates that there are

three similar combinations, that is, U1, U2{ }, U1, U3{ }, and U2, U3{ }.
In short, there are totally 11 + 39 + 30 + 7 � 87 combinations.

Second, we provide the states after continuous action of two
unitary operations (shown in Table 2), supposing the initial state is
|ψ00〉 � (1/ �

3
√ )( | 00〉 + | 11〉 + | 22〉). If the two unitary

operations are executed in an opposite order, the same state is
obtained. So there are totally 10 results, as shown in Table 2. In
addition, αij (i, j � 0, 1, 2, 3) denotes the obtained state after the two
unitary operations, where the subscripts i and j represent the
corresponding unitary operations Ui and Uj.

Third, to calculate Fmin � 1
n−1 ∑i≠j

����
pipj

√ |〈ϕi|ϕj〉|, we first

calculate the norm of the inner product of the two quantum
states, that is, |〈ϕi|ϕj〉| (i ≠ j). The results are shown in Table 3.

From Table 3 we can see that the inner product values are
symmetric about the diagonal and the inner product values between
α01, α02 and α03 is 0. So the four combinations in the first category
with “U1, U2(3)" and “U1, U2, U3(1)” in the second step can be
omitted. Therefore, there are totally 87 − 4 � 83 combinations,
which are divided into 18 situations, and the values of Fmin are
shown in Table 4.

From Table 4, it can be seen that the values of Fmin are the
same separately in cases 1 and 4; in cases 2, 5, and 10; and in
cases 3 and 16. So it can be merged into 14 cases. Thus, the values
of Fmin (accurate to four decimal places) and the number of
unitary operation sets corresponding to each value are shown in
Table 5.

The results in Table 5 are also illustrated in Figure 3 for clarity.
Then, some conclusions can be drawn based on the results.

(1) Among the two-step three-level unitary operations, the
minimum failure probability of the Bell-state attack densely
distributed between [0.34, 0.39], totally 48 sets, and there are
17 sets between [0.24, 0.29]. Furthermore, 12 sets have the
highest value of Fmin, that is,

�
3

√
/3 ≈ 0.58, and 6 sets have the

second highest value of Fmin � 5
�
3

√
/18 ≈ 0.48.

(2) The sets that have the highest value of Fmin are U0;Ui, U0{ } and
Ui, U0;Ui{ } (i � 1, 2, 3). This means the sets possessing the least

TABLE 1 The minimum failure probability of Bell-state attack under one-step
three-level unitary operations. The quantum states are obtained from the
different transformations of initial state |ψ00〉 � (1/ ��

3
√ )( | 00〉 + | 11〉 + | 22〉)

under selected unitary operations. The curly braces of selected unitary
operations, Dirac symbol and normalization of obtained quantum states are
omitted.

Selected unitary
Operations

Obtained quantum
states

F min

U1 , U0 ψ00 ,ψ00 + ψ11 + ψ22

�
3

√
/3

U2 , U0 ψ11 ,ψ00 + ψ11 + ψ22

�
3

√
/3

U3 , U0 ψ22 ,ψ00 + ψ11 + ψ22

�
3

√
/3

U1 , U2 , U0 ψ00 ,ψ11 ,ψ00 + ψ11 + ψ22 2
�
3

√
/9

U1 , U3 , U0 ψ00 ,ψ22 ,ψ00 + ψ11 + ψ22 2
�
3

√
/9

U2 , U3 , U0 ψ11 ,ψ22 ,ψ00 + ψ11 + ψ22 2
�
3

√
/9

U1 , U2 , U3 , U0 ψ00 ,ψ11 ,ψ22 ,ψ00 + ψ11 + ψ22

�
3

√
/6
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TABLE 2 The states after continuous action of two unitary operations. The two subscripts of α correspond to subscripts of the two used unitary operations.

Two used unitary operations Obtained quantum state Two used unitary operations Obtained quantum state

U0 , U0 α00 � (1/3)[(2w2 + 1)ψ00 + (w + 2)ψ11 + (w + 2)ψ22] U1 , U2 α12 � ψ11

U0 , U1 α01 � (1/ �
3

√ )[ψ00 + ψ11 + ψ22] U1 , U3 α13 � ψ22

U0 , U2 α02 � (1/ �
3

√ )[w2ψ00 + ψ11 + wψ22] U2 , U2 α22 � w2ψ22

U0 , U3 α03 � (1/ �
3

√ )[w2ψ00 + wψ11 + ψ22] U2 , U3 α23 � w2ψ00

U1 , U1 α11 � ψ00 U3 , U3 α33 � wψ11

TABLE 3 The norm of inner product of the two quantum states. The inner product values are symmetric about the diagonal.

α00 α01 α02 α03 α11 α12 α13 α22 α23 α33

α00 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√

α01 1/
�
3

√
0 0 1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√

α02 1/
�
3

√
0 0 1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√

α03 1/
�
3

√
0 0 1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√

α11 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
0 0 0 1 0

α12 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
0 0 0 0 1

α13 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
0 0 1 0 0

α22 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
0 0 1 0 0

α23 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
1 0 0 0 0

α33 1/
�
3

√
1/

�
3

√
1/

�
3

√
1/

�
3

√
0 1 0 0 0

TABLE 4 The values of F min and the corresponding numbers of unitary operation sets. All the 83 non zero combinations are showed in 18 cases. The first-step
possible unitary options are listed before the semicolon, and the second-step options after the semicolon.

Case Typical unitary operations Number of similar sets F min

1 U0;U1 , U0 3
�
3

√
/3

2 U0;U1 , U2 , U0 3 2
�
3

√
/9

3 U0;U1 , U2 , U3 , U0 1
�
3

√
/6

4 U1 , U0;U1 9
�
3

√
/3

5 U1 , U0;U1 , U2 9 2
�
3

√
/9

6 U1 , U0;U1 , U2 , U3 3
�
3

√
/5

7 U1 , U0;U2 , U0 6 5
�
3

√
/18

8 U1 , U0;U1 , U2 , U0 9 (5 �
3

√ + 3
�
6

√ )/45

9 U1 , U0;U1 , U2 , U3 , U0 3 (11 �
3

√ + 4
�
6

√ )/84

10 U1 , U2 , U0;U1 9 2
�
3

√
/9

11 U1 , U2 , U0;U1 , U2 3 (4 �
3

√ + 2
�
6

√ )/45

12 U1 , U2 , U0;U1 , U3 6 (8 �
3

√ + 3)/45

13 U1 , U2 , U0;U1 , U2 , U3 3 (3 �
3

√ + 1 + �
6

√ )/36

14 U1 , U2 , U0;U1 , U3 , U0 6 (14 �
3

√ + 3 + 5
�
6

√ )/108

15 U1 , U2 , U0;U1 , U2 , U3 , U0 3 (13 �
3

√ + 3 + 12
�
6

√ )/198

16 U1 , U2 , U3 , U0;U1 3
�
3

√
/6

17 U1 , U2 , U3 , U0;U1 , U2 3 (8 �
3

√ + 3 + 2
�
6

√ )/84

18 U1 , U2 , U3 , U0;U1 , U2 1 (3 �
3

√ + 3
�
6

√ + 3
�
2

√ )/66
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selected operations have the highest security, except for
U0;U1, U2{ }, U0;U1, U3{ }, and U0;U2, U3{ } whose Fmin � 0.
This is similar to the two-level unitary operation situation [24].

(3) Among the six situations shown in Formula 6, if another situation is
selected, that is, another Bell-state combination and corresponding
U0 and Xi (i � 1, 2,/, 9) are selected, the similar calculation
process and conclusions will be obtained because their mutual
relationship is consistent with the first situation.

2.6 The selection of three-level unitary
operations

Based on the quantitative computing results and analysis on one-
step and two-step unitary operations in a three-level system, the
selection rules of unitary operations are summarized as follows:

(1) The unitary operations in QSS protocols based on qutrits should
be chosen carefully. First, the unitary operations whose Fmin is

0 should not be chosen since the protocol is obviously insecure
in such a situation. Second, the unitary operation to transform
the basis is a necessary but not a sufficient condition for the
security. In other words, the unitary operation like U0 can
change the basis; so if U0 is not selected, the QSS protocol is
totally insecure. However, althoughU0 is the possible choice, the
security of the protocol still cannot be guaranteed. For example,
Fmin of U0; U1, U2{ }, U0;U1, U3{ }, U0;U2, U3{ }, and
U0;U1, U2, U3{ } is 0.

(2) More complex unitary operations cannot be counted on to
generate higher security. In a one-step unitary operation, Max
[Fmin (U1, U2, . . . , Ui)] > Max [Fmin (U1, U2, . . . , Ui, Ui+1)],
that is, fewer unitary operations lead to larger Fmin and
higher security of the QSS protocol. The two-step unitary
operation has the similar situation. This is because in one-
step scene, the more the unitary operations, the more the
pairwise non-orthogonal quantum states obtained.

(3) When the same unitary operations are selected, the security of
two-step unitary operations is not necessarily higher than that of

TABLE 5 The values of F min and the corresponding numbers of unitary operation sets when the values in Table 4 are accurate to four decimal places. Thus 18 cases
are merged to 14 cases.

F min Number of sets F min Number of sets

0.5774 12 0.2402 3

0.3657 6 0.3849 21

0.2887 4 0.3464 3

0.2544 1 0.2628 3

0.4811 6 0.3746 6

0.3557 9 0.3435 3

0.2773 3 0.2590 3

FIGURE 3
The minimum failure probability of two-step three-level unitary operations. The values of F min are accurate to four decimal places and three are
totally 84 unitary operation sets.
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one-step unitary operations. There exist possibilities. For
example, Fmin ({U0, U1, U2}) = Fmin ({U0; U0, U1, U2})
≈ 0.38; Fmin ({U0, U1, U2}) ≈ 0.38 < Fmin ({U0, U1; U0, U2})
≈ 0.48; Fmin ({U0, U1, U2}) ≈ 0.38 > Fmin ({U0, U1, U2; U1, U2})
≈ 0.26. So we should choose the two-step unitary operations
with the highest value of Fmin.

(4) The maximum of Fmin of the three-level unitary operations
(≈ 0.58) is less than the maximum of Fmin of the two-level
unitary operations (≈ 0.71) [23, 24]. This does not mean that
two-level unitary operations are safer than three-level unitary
operations because the value of Fmin is influenced by specified
unitary operation types. We have restricted the types of two-
level and three-level unitary operations, so this is just a
comparison between two preset conditions.

In brief, we should choose the unitary operation sets that have a
higher value of Fmin to ensure the security of QSS protocols based on
qutrits.

3 Conclusion

In this paper, we first present a general QSS protocol based
on single qutrits, and then propose the Bell-state attack and
the definition of minimum failure probability for the attack. In
this way, QSS protocols based on single qutrits and three-level
unitary operations are considered, and the quantitative security
analysis is performed corresponding to different sets of four three-
level unitary operations. The results show that the selection
of unitary operations will significantly affect the security of
such QSS protocols. As a result, some crucial rules for choosing
unitary operations are given to ensure the security or achieve
a higher security. This work can serve as an important guidance
in designing and implementing QSS protocols based on
single qutrits and three-level unitary operations. The method
and results may also contribute to analyze the security of other
high-level quantum cryptography protocols based on unitary
operations, such as secure computation [25], quantum secure
direct communication [26], quantum key agreement [27],
quantum private query [28], and quantum oblivious transfer
[29]. Furthermore, unitary operations are also used in other
quantum algorithms, for example, the quantum blockchain
algorithm [30] and quantum artificial intelligence algorithm

[31], and it will be interesting in attempting to analyze their
security using our method.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

JX, XL, and ZL conceived the presented idea. YH and YZ verified
the methods and developed the analyses. ZZ and YS completed the
calculation. All authors contributed to the article and approved the
submitted version.

Funding

This work is supported by the National Natural Science
Foundation of China (Grant nos 62201252 and 62071240), the
Innovation Program for Quantum Science and Technology
(Grant no. 2021ZD0302900), and the Natural Science Foundation
of Jiangsu Province, China (Grant no. BK20220804).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Matsumoto R. Message randomization and strong security in quantum stabilizer-
based secret sharing for classical secrets. Des Code Cryptogr (2020) 88:1893–907. doi:10.
1007/s10623-020-00751-w

2. Zhang Z, Li Y, Man Z. Multiparty quantum secret sharing. Phys Rev A (2005) 71:
044301. doi:10.1103/physreva.71.044301

3. Tavakoli A, Herbauts I, Zukowski M, Bourennane M. Secret sharing with a single d-level
quantum system. Phys Rev A (2015) 92:030302. doi:10.1103/PhysRevA.92.030302

4. Karimipour V, Asoudeh M. Quantum secret sharing and random hopping: Using single
states instead of entanglement. Phys Rev A (2015) 92:030301. doi:10.1103/PhysRevA.92.030301

5. Lin SS, Guo G, Xu Y, Sun Y, Liu X. Cryptanalysis of quantum secret sharing with
d-level single particles. Phys Rev A (2016) 93:062343. doi:10.1103/PhysRevA.93.062343

6. Li Z, Li Q, Liu C, Peng Y, ChanWH. Limited resource semiquantum secret sharing.
Quan Inf Process (2018) 17(10):285. doi:10.1007/s11128-018-2058-8

7. Tsai C, Chang Y, Lai Y, Yang CW. Cryptanalysis of limited resource semi-
quantum secret sharing. Quan Inf Process (2020) 19(8):224–8. doi:10.1007/s11128-
020-02690-w

8. Hu Z, Chen C, Zhang Z, Zhang H. Secure cooperative transmission for mixed RF/
FSO spectrum sharing networks. IEEE Trans Commun (2020) 68(5):3010–23. doi:10.
1109/tcomm.2020.2971483

9. HuWW, Zhou RG, Li X, Fan P, Tan C. A novel dynamic quantum secret sharing in
high-dimensional quantum system. Quan Inf Process (2021) 20:159–28. doi:10.1007/
s11128-021-03103-2

10. Tian Y, Li J, Chen XB, Ye CQ, Li HJ. An efficient semi-quantum secret sharing
protocol of specific bits. Quan Inf Process (2021) 20(6):217. doi:10.1007/s11128-021-
03157-2

11. Tsai CW, Yang CW, Lin J. Multiparty mediated quantum secret sharing protocol.
Quan Inf Process (2022) 21(2):63. doi:10.1007/s11128-021-03402-8

Frontiers in Physics frontiersin.org08

Xu et al. 10.3389/fphy.2023.1213153

https://doi.org/10.1007/s10623-020-00751-w
https://doi.org/10.1007/s10623-020-00751-w
https://doi.org/10.1103/physreva.71.044301
https://doi.org/10.1103/PhysRevA.92.030302
https://doi.org/10.1103/PhysRevA.92.030301
https://doi.org/10.1103/PhysRevA.93.062343
https://doi.org/10.1007/s11128-018-2058-8
https://doi.org/10.1007/s11128-020-02690-w
https://doi.org/10.1007/s11128-020-02690-w
https://doi.org/10.1109/tcomm.2020.2971483
https://doi.org/10.1109/tcomm.2020.2971483
https://doi.org/10.1007/s11128-021-03103-2
https://doi.org/10.1007/s11128-021-03103-2
https://doi.org/10.1007/s11128-021-03157-2
https://doi.org/10.1007/s11128-021-03157-2
https://doi.org/10.1007/s11128-021-03402-8
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1213153


12. Dou Z, Xu G, Chen XB, Liu X, Yang YX. A secure rational quantum state
sharing protocol. Sci China Inf Sci (2018) 61:022501. doi:10.1007/s11432-016-
9151-x

13. Zha X, Jiang R, Wang M. Two schemes of multiparty quantum direct secret
sharing via a six-particle GHZ state. Commun Theor Phys (2020) 72(2):025102. doi:10.
1088/1572-9494/ab5d01

14. Wang J, Li L, Peng H, Yang Y. Quantum-secret-sharing scheme based on local
distinguishability of orthogonal multiqudit entangled states. Phys Rev A (2017) 95:
022320. doi:10.1103/physreva.95.022320

15. Lipinska V, Murta G, Ribeiro J, Wehner S. Verifiable hybrid secret sharing with
few qubits. Phys Rev A (2020) 101(3):032332. doi:10.1103/physreva.101.032332

16. Zhang K, Zhang X, Jia H, Zhang L. A new n-party quantum secret sharing model
based on multiparty entangled states. Quan Inf Process (2019) 18(3):81. doi:10.1007/
s11128-019-2201-1

17. Shi R. Useful equations about Bell states and their applications to quantum
secret sharing. IEEE Commun Lett (2019) 24(2):386–90. doi:10.1109/lcomm.2019.
2954134

18. Qin H, Wallace T, Raylin T. Hierarchical quantum secret sharing based on special
high-dimensional entangled state. IEEE J Sel Top Quant (2020) 26(3):6600106. doi:10.
1007/s11128-019-2571-4

19. Sutradhar K, Om H. Efficient quantum secret sharing without a trusted player.
Quan Inf Process (2020) 19(2):73. doi:10.1007/s11128-019-2571-4

20. Habibidavijani M, Barry S. Continuous-variable ramp quantum secret sharing
with Gaussian states and operations. New J Phys (2019) 21(11):113023. doi:10.1088/
1367-2630/ab4d9c

21. Yang Y, Ga S, Li D, Zhou YH, Shi WM. Three-party quantum secret sharing against
collective noise. Quan Inf Process (2019) 18(7):215. doi:10.1007/s11128-019-2319-1

22. Wang Y, Lou X, Fan Z, Wang S, Huang G. Verifiable multi-dimensional (t,n)
threshold quantum secret sharing based on quantum walk. Int J Theor Phys (2022)
61(2):24.doi:10.1007/s10773-022-05009-w

23. Xu J, Chen H, Liu W, Liu Z. Selection of unitary operations in quantum secret
sharing without entanglement. Sci China Inf Sci (2011) 54:1837–42. doi:10.1007/
s11432-011-4240-9

24. Xu J, Xi L, Liu Z, Zhou Y, Han Y, Chen D, et al. Quantitative security analysis of two-
level unitary operations in quantum secret sharing protocols based on single qubits (2023).

25. Tan X, Zhang X, Song T. Verifiable delegated quantum computation with χ-type
entangled states. Comput Stand Inter (2017) 54:36–40. doi:10.1016/j.csi.2016.09.008

26. Zou Z, Zhou L, Zhong W, Sheng Y. Measurement-device-independent quantum
secure direct communication of multiple degree of freedom of a single photon. Sci China
Phys Mech (2020) 63:230362. doi:10.1007/s11433-019-1450-8

27. Li L, Li Z. A multi-party quantum key agreement protocol based on Shamir’s
secret sharing. Intj Theor Phys (2019) 58:3081–90. doi:10.1007/s10773-019-04187-4

28. Yang Y, Gao S, Li D, Zhou Y, Shi W. Three-party quantum secret sharing against
collective noise. Quan Inf Process (2019) 18:215. doi:10.1007/s11128-019-2319-1

29. Zhang X, Wei C, Qin S, Gao F, Wen Q. Practical efficient 1-out-of-n quantum
oblivious transfer protocol. Quan Inf Process (2023) 22(2):99. doi:10.1007/s11128-022-
03817-x

30. Gao XX, Xu J, Fan JH. A novel quantum byzantine consensus protocol based
on malicious node prevention mechanism. In: 2022 International Conference on
Blockchain Technology and Information Security; July 15-17, 2022; Huaihua
(2022).

31. Zhou NR, Zhang TF, Xie XW, Wu JY. Hybrid quantum-classical generative
adversarial networks for image generation via learning discrete distribution.
SIGNAL Process-image (2023) 110:116891. doi:10.1016/j.image.2022.116891

Frontiers in Physics frontiersin.org09

Xu et al. 10.3389/fphy.2023.1213153

https://doi.org/10.1007/s11432-016-9151-x
https://doi.org/10.1007/s11432-016-9151-x
https://doi.org/10.1088/1572-9494/ab5d01
https://doi.org/10.1088/1572-9494/ab5d01
https://doi.org/10.1103/physreva.95.022320
https://doi.org/10.1103/physreva.101.032332
https://doi.org/10.1007/s11128-019-2201-1
https://doi.org/10.1007/s11128-019-2201-1
https://doi.org/10.1109/lcomm.2019.2954134
https://doi.org/10.1109/lcomm.2019.2954134
https://doi.org/10.1007/s11128-019-2571-4
https://doi.org/10.1007/s11128-019-2571-4
https://doi.org/10.1007/s11128-019-2571-4
https://doi.org/10.1088/1367-2630/ab4d9c
https://doi.org/10.1088/1367-2630/ab4d9c
https://doi.org/10.1007/s11128-019-2319-1
https://doi.org/10.1007/s10773-022-05009-w
https://doi.org/10.1007/s11432-011-4240-9
https://doi.org/10.1007/s11432-011-4240-9
https://doi.org/10.1016/j.csi.2016.09.008
https://doi.org/10.1007/s11433-019-1450-8
https://doi.org/10.1007/s10773-019-04187-4
https://doi.org/10.1007/s11128-019-2319-1
https://doi.org/10.1007/s11128-022-03817-x
https://doi.org/10.1007/s11128-022-03817-x
https://doi.org/10.1016/j.image.2022.116891
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1213153

	Quantitative security analysis of three-level unitary operations in quantum secret sharing without entanglement
	1 Introduction
	2 The security of unitary operations in quantum secret sharing protocols based on qutrits
	2.1 Three-level Bell states and unitary operations
	2.2 A general quantum secret sharing protocol based on qutrits
	2.3 Bell-state attack in a three-level quantum system
	2.4 The security of one-step three-level unitary operations
	2.5 The security of two-step three-level unitary operations
	2.6 The selection of three-level unitary operations

	3 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


