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In this study, we employ a parallel Computational Fluid Dynamics (CFD) code
integrated with the VTDIRECT95 algorithm, a parallel deterministic global
optimization method, to conduct global optimization for an oscillating circular
cylinder. We conduct numerical simulations for the flow at a Reynolds number of
500 within the parameter range of 0.1≤Ax ≤0.3 and 0.5fst ≤ fex ≤2.5fst where Ax

represents the inline oscillating amplitude, fex denotes the forcing oscillation
frequency, and fst corresponds to the frequency of a stationary cylinder. To
enhance computational efficiency, a combination of VTdirect and a CFD solver
is utilized to efficiently identify the synchronization region, thereby reducing
computational resources. The results reveal a significant reduction in the lift
coefficient within the synchronized region compared to unsynchronized
regimes. Furthermore, the study delves into the underlying flow physics behind
synchronization and lift suppression. By synchronizing the shedding of vortices,
their detrimental effects are nullified, resulting in a reduction in lift. Moreover, the
research examines the influence of three-dimensional (3-D) flow by comparing 2-
D and 3-D simulations at two different Reynolds numbers. It demonstrates that
accounting for 3-D effects yields more accurate predictions of fluid behavior.
Synchronization maps and root mean square (rms) lift coefficient plots illustrate
the impact of Reynolds number andmovement frequency on lift suppression. The
findings indicate that achieving synchronization in 3-D flow necessitates stronger
amplitudes and higher frequencies. At higher Reynolds numbers, the wake
structures become unstable, leading to intricate vortical patterns.
Consequently, the synchronization curve shifts towards higher amplitudes and
frequencies in 3-D simulations. Understanding these phenomena is vital for
reducing lift force in practical applications. This research significantly
contributes to knowledge regarding synchronization and lift suppression in
fluid flow around vibrating cylinders.

KEYWORDS

CFD, lift suppression, VTdirect optimization, 2D and 3D simulations, inline oscillations

OPEN ACCESS

EDITED BY

Felix Sharipov,
Federal University of Paraná, Brazil

REVIEWED BY

Cetin Canpolat,
Çukurova University, Türkiye
Florent Ravelet,
Arts et Metiers Institute of Technology,
France

*CORRESPONDENCE

Arshad Mehmood,
arshadmehmood@uetpeshawar.edu.pk

Syed Sajid Ullah,
syed.s.ullah@uia.no

RECEIVED 27 April 2023
ACCEPTED 27 June 2023
PUBLISHED 13 July 2023

CITATION

Mehmood A, Salah B, Ullah SS, Khan S and
Khan R (2023), Exploring synchronization
and lift suppression in fluid flow around
vibrating cylinder: a parallel CFD and
global optimization investigation.
Front. Phys. 11:1213274.
doi: 10.3389/fphy.2023.1213274

COPYRIGHT

© 2023 Mehmood, Salah, Ullah, Khan and
Khan. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 13 July 2023
DOI 10.3389/fphy.2023.1213274

https://www.frontiersin.org/articles/10.3389/fphy.2023.1213274/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1213274/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1213274/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1213274/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1213274/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1213274&domain=pdf&date_stamp=2023-07-13
mailto:arshadmehmood@uetpeshawar.edu.pk
mailto:arshadmehmood@uetpeshawar.edu.pk
mailto:syed.s.ullah@uia.no
mailto:syed.s.ullah@uia.no
https://doi.org/10.3389/fphy.2023.1213274
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1213274


1 Introduction

The flow past a circular cylinder is a classic and challenging
problem that has garnered considerable attention from researchers
due to its relevance in numerous engineering disciplines. The flow
past a circular cylinder exhibits a wide range of phenomena,
including boundary layer formation, separation, wake formation,
and vortex shedding. The formation of a boundary layer, a thin layer
of fluid near the cylinder’s surface, plays a crucial role in determining
the flow characteristics. It experiences shear forces and influences
the overall flow behavior. Separation occurs when the fluid detaches
from the cylinder’s surface, leading to the formation of a wake region
behind the cylinder. This wake region is characterized by the
shedding of vortices, resulting in unsteady flow patterns and
fluctuating forces acting on the cylinder.

Understanding the flow regimes and associated forces in the
flow past a circular cylinder is of paramount importance for
predicting and controlling the resulting aerodynamic forces. The
drag force, acting in the direction of the flow, is responsible for the
resistance experienced by the cylinder. The lift force, perpendicular
to the flow direction, can have significant implications for stability
and lift-based applications. It is important to note that the
interaction between amplitude, frequency, and the resulting
effects on the lift force and vortex shedding can be highly
complex. It often requires experimental measurements or
computational simulations to precisely understand the specific
behavior for a given cylinder geometry and flow conditions.
Researchers often conduct systematic investigations, varying the
amplitude and frequency of oscillation, to study the resulting
changes in vortex shedding, lift force, and other relevant
parameters. This helps in gaining insights into the fluid-structure
interaction and optimizing the performance of various engineering
applications involving cylinders, such as bluff bodies, heat
exchangers, and oscillating hydrofoils.

Studying the movement of fluid around a cylinder that vibrates
is a well-known problem in understanding different aspects of how
fluid flows. Researchers [1–8] have employed both experimental
methods and numerical simulations to explore vibrations that occur
along perpendicular to the fluid flow direction. Their objective is to
gain a deeper understanding of the impact of vibration frequency
and intensity on the dynamics of fluid flow, specifically in relation to
vortex shedding, which can cause vibrations in the cylinder. On the
other hand, only a small number of research studies [9–12] have
focused on the synchronization that can occur between the pattern
of fluid movement and the back-and-forth motion of the cylinder
along the same direction as the fluid flow (inline oscillations). It was
observed that, if the external force is strong enough and its frequency
is similar to the natural frequency at which shedding occurs,
synchronization occurs, causing the shedding to happen at the
same frequency as the external force. Tanida, Okajima and
Watanabe [9] analyzed the stability of a cylinder that was
oscillating along the flow direction. They measured the forces
acting on the cylinder as it oscillated, both when it was alone
and when there were two cylinders placed one after the other. In
the two-cylinder case, they made the downstream cylinder oscillate
either sideways or in the same direction as the fluid flow. They found
that the cylinder’s oscillation caused it to synchronize with the fluid’s
natural frequency of oscillation. This only happened at low fluid

speeds for the two-cylinder case. At high speeds, synchronization
happened regardless of the distance between the cylinders. They also
found that the oscillation of the downstream cylinder became
unstable when it was synchronized with the fluid’s oscillation.
Marzouk and Nayfeh [10] utilized a finite-difference method to
investigate how a circular cylinder in a uniform stream behaves
when it moves back and forth in a certain way. They looked at when
the forces acting on the cylinder (lift and drag) become synchronized
with the motion and found that when this happens, the lift force
becomes very small and the drag force becomes steady, no matter
how fast or slow the cylinder is moving. However, the amount of
drag force that oscillates depends on the speed of the cylinder’s
motion. These changes in forces are caused by changes in the flow of
the fluid around the cylinder. They also looked at how the Reynolds
number, which is a measure of the fluid’s viscosity, affects the
synchronization. Moreover, they also have discovered that when
the forces acting on the cylinder are synchronized, it changes the
relationship between lift and drag.

Lu et al. [13] conducted an experiment aimed at reducing the lift
force on a circular cylinder in a steady flow at low Reynolds
numbers. Their approach involved rotating the cylinder around
its axis with a specific speed that was controlled based on the
feedback signal of the lift coefficient. They used a numerical
model to determine the optimal control parameter for different
Reynolds numbers and found that it could significantly reduce lift
force without causing an increase in drag force, as long as the control
parameter remained below a certain threshold. They also observed
lift shift phenomena when the control parameter exceeded the
critical value. In a separate study, Chen et al. [14] investigated
the vibrations of two circular cylinders located near a wall when fluid
flowed around them. The cylinders were only able to move in a
longitudinal or in both a lateral and longitudinal direction. They
examined how the distance between the cylinders and the wall, as
well as the speed of the fluid flow, influenced the cylinder vibrations.
They observed that the presence of the wall had a significant effect
on the vibrations, causing them to move differently and with varying
amplitudes.

Canpolat and Sahin [15] experimentally analyzed the flow
control mechanism of a single groove on a circular cylinder
surface. The main focus of their investigation was on the angular
position of the groove with respect to the forward stagnation point of
the cylinder. Notably, they identified a critical angular position of the
groove at θ = 80°. Below this threshold (θ < 80°), effective control of
flow separation was observed. However, at θ = 80°, flow separation
initiated in the upstream direction. The presence of the groove also
introduced instability within the shear layer, characterized by
frequencies that differed from the Karman vortex shedding
frequency. Philippe et al. [16] examined the flow behavior
around a circular cylinder at a Reynolds number of Re = 3,900.
They employed both numerical simulations utilizing large eddy
simulation and experimental techniques involving hot-wire
anemometry and particle image velocimetry. They observed that
achieving accurate statistical estimation necessitates significant
integration times, leading to higher computational expenses and
introducing an uncertainty of around 10% for most of the flow
characteristics investigated in their study. Dong et al. [1] examined
the characteristics of the near wake of a cylinder at various Reynolds
numbers, which corresponded to the onset and progression of shear-
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layer instabilities. By employing a combination of quantitative
experimental imaging using particle image velocimetry (PIV) and
direct numerical simulations, they observed significant
modifications in the flow structure. Specifically, at higher
Reynolds numbers (Re = 3,900, 4,000, and 10,000), both the
wake bubble and the separating shear layer exhibited
considerable reductions in length. Additionally, the velocity
fluctuations and Reynolds stress patterns associated with the flow
were observed to contract closer to the base of the cylinder.

Cetin et al. [17] conducted a study focusing on the suppression
of periodic vortex shedding around a circular cylinder using a
concentrically located perforated cylinder under laminar flow
conditions at a Reynolds number of Re = 200. They investigated
the effects of porosity and gap ratio variations. Their findings
revealed that the porosity has a more pronounced impact on the
flow characteristics around the solid cylinder compared to the gap
ratio. Increasing the porosity resulted in the enlargement of low-
velocity and low-pressure regions in the transverse direction. When
the gap ratios were low, the separated layers originating from the
solid and perforated cylinders merged. Conversely, larger gap ratios
combined with low porosity values exhibited individual movement
of these layers. They achieved successful suppression of periodic
vortex shedding in cases where the gap ratios were 3.5 and the
porosity was either 0.5 or 0.6, as well as in cases where the gap ratio
was 3 and the porosity was 0.5. In another paper Cetin [18]
conducted a study examining the flow characteristics around a
circular cylinder featuring a single longitudinal groove pattern on
its surface. They investigated six different rectangular groove sizes,
varying the angular position of the groove from the forward
stagnation point of the cylinder within the range of 0°–150°. To
analyze the flow field downstream of the cylinder, the researchers
utilized the particle image velocimetry (PIV) technique while
subjecting the cylinder to a uniform flow with a Reynolds
number of Re = 5,000. The study revealed that the presence of

the groove on the cylinder surface exerted a significant influence on
both the flow structure in the near wake region and the turbulence
statistics. The frequency of Karman vortex shedding exhibited a
strong correlation with the size of the groove. Additionally, the
presence of the groove induced shear layer instability on the grooved
side, resulting in the emergence of additional frequencies within
the flow.

To model the flow over a circular cylinder, one needs to use
mathematical equations to describe the motion of the fluid. The
Navier-Stokes equations are a set of equations used to describe fluid
flow and can be solved numerically using different computational
methods. To model the flow around a cylinder, the geometry of the

FIGURE 1
A depiction of a (A) two-dimensional and (B) three-dimensional grids featuring an “O” shape in the (r, θ)-plane.

FIGURE 2
Splitting of the grid using domain decomposition approach.
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cylinder is defined and boundary conditions for the fluid flow are set.
The fluid domain is then divided into small cells or control volumes,
and the properties of the flow such as velocity and pressure are
calculated at each cell using the Navier-Stokes equations. The results
of the simulation can be used to study the flow characteristics such as
vortices, lift and drag forces, and the impact of different parameters
on flow behavior. This modeling is used in various fields like
aerodynamics, fluid mechanics, and marine engineering. Zang,
Street and Koseff [19] used curvilinear coordinates to solve the
Navier-Stokes equations in three dimensions, defining velocity and
pressure at the center of a control volume and volume fluxes at the
midpoint of their respective cell faces. They used a technique called
“approximate factorization” to solve the momentum equations
about the way the fluid pushes and pulls. Leonard [20] proposed
a new method to model fluid flow that addresses stability issues
related to central differencing and inaccuracies caused by numerical
diffusion of upstream differencing. The technique combines both
convection and diffusion and requires similar computations as the
standard upstream-plus-central differencing method but provides
more accurate results with larger grid spacing. This leads to faster
computation and less storage requirements. Blackburn and
Henderson [21] modeled the wake patterns and flow dynamics of
the flow around a circular cylinder, both when it is stationary and
when it undergoes simple harmonic cross-flow oscillation using an
accelerated reference frame technique. He et al. [22, 23] developed a
massively parallel version of the DIRECT algorithm, which is widely
used in multidisciplinary design optimization applications. They
tested how well it worked by using both theoretical and real-world
problems with many variables. They found that their new method
worked well for many different problems and can be used to make
other optimization tools work better too.

This paper presents a systematic investigation into the flow
characteristics and forces in the flow. We aim to find ways to reduce
the lift force on a circular cylinder in an efficient way when fluid
flows past a cylinder that is oscillating in the direction of the flow at
Re = 500 and 1,000. Testing many different combinations of the

speed and amplitude of the movement can take a long time, so we
use a special method to quickly find the best settings. We combine a
computer program that simulates how fluid flows around the
cylinder with a tool that searches for the best settings. We look
at two things, how far (i.e., amplitude) and how fast (i.e., frequency)
the cylinder moves, and test many different possibilities to see which
ones reduce the lifting force the most. Next, we explored the impact
of three-dimensional flow and evaluated the suitability of utilizing
the Reynolds number to describe the flow conditions. The
manuscript follows the following organization: In Section 2, we
provide a comprehensive discussion on the numerical approach,
encompassing the methodology as well as its validation for fluid-
structure coupling. Section 3 delves into the results obtained from
the study and thoroughly explores their underlying physics. Finally,
Section 4 presents the conclusions drawn from our investigation.

2 Numerical simulations and validation

2.1 Governing equations

There are different ways to simulate moving boundaries in fluid
mechanics, such as the immersed boundary (IB) method [11], the
arbitrary Lagrangian-Eulerian (ALE) method, and the accelerating
reference frame (ARF) method [21]. In this study, the ARF method
is used as it is a suitable approach for simulating moving boundaries.
This method couples the momentum equations with the cylinder
motion by adding a frame acceleration term. It also adjusts the
boundary conditions to account for the moving reference frame.
This results in equations that describe the motion of the
incompressible fluid relative to the structure in a Cartesian
reference frame.

∂uj

∂xj
� 0 (1)

FIGURE 3
Comparison between our CFD simulations with the results
obtained by Tanida et al. [8] for how the frequency ratio between the
forcing and the shedding frequency in relation to the non-dimensional
frequency of the cylinder’s movement.

FIGURE 4
Comparison between our CFD simulations with the results
obtained by Tanida et al [8] for how themean drag coefficient changes
with the non-dimensional frequency of the cylinder’s movement.
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∂ui

∂t
+ ∂
∂xj

uiuj( ) � −1
ρ

∂p
∂xi

+ μ
∂2ui

∂xi∂xj
− €xi (2)

where i, j = 1, 2, 3. At the domain boundary, the velocity
boundary condition is modified to include the effect of
moving body, such that u � uD − v, where uD is the velocity
in the inertial reference frame and v is the structure velocity. On
the structure surface, the velocity boundary condition is
typically ui = 0. Pressure boundary conditions are obtained
by dotting the domain unit outward normal n into Momentum
Equation, and using the vector identity ∇2u = ∇(∇·u−∇×∇×u).
The result is ∂p

∂n � ρn . (u.∇)u − ]∇×∇× u − €xi − ∂ui
∂t[ ]. In the far

field boundary, ∂ui∂t � −€xi, while on the surface ∂ui
∂t � 0 and ui � 0.

In the current method, the equation describing the motion of the
cylinder is modeled as a simple harmonic motion in the direction of
the flow. This motion is caused by an external force acting on the
cylinder:

x � Ax sin 2πfext( ) (3)
Where Ax and fex stand for the amplitude and excitation

frequency of the cylinder, respectively, of the oscillations in a
dimensionless form.

These equations that govern the system are solved using a non-
staggered grid topology [19]. We calculated the spatial differences
using a second order central difference method, except for
convective differences, which used QUICK discretization [20].
For time advancement, we used a fractional step approach, where
the predictor step predicted an intermediate velocity, and the
corrector step updated the velocity by solving the pressure-
Poisson equation for the new time step. We used a semi-implicit
scheme with Adams-Bashforth method to discretize the convection
terms and the Crank-Nicolson scheme to discretize the diffusion
terms. To simulate the flow over a circular cylinder, an “O”-type grid
is used as depicted in Figure 1. The boundary conditions at the
inflow are specified using Dirichlet boundary conditions, while the
outflow boundaries use Neumann boundary conditions. At the
surface of the cylinder, a no-slip and no-penetration boundary
condition is enforced. We used domain decomposition approach
for parallel computing. In this approach, we divide a large
computational domain into smaller sub-domains that can be
processed independently by different processors as shown in
Figure 2. The processors exchange data at the interfaces between
the sub-domains to ensure that the calculations are performed
correctly. This technique enables the parallelization of large-scale
simulations, which would otherwise require an impractical amount
of time to execute on a single processor, and each sub-domain is
processed independently by the corresponding processor [24–26].

To calculate the forces exerted on a cylinder by a fluid, the
pressure and shear stress over the cylinder’s surface are integrated.
The pressure force is determined by integrating the pressure, while
the shear force is determined by integrating the shear stress. The
resulting fluid force is then separated into appropriate coordinate
system components. Two components, lift and drag, are used to
describe the net fluid force on the cylinder. The nondimensional lift
coefficient (CL) and the nondimensional drag coefficient (CD) are
defined by normalizing the lift and drag forces using the dynamic
pressure, which is half of the fluid density (ρ) multiplied by the

square of the freestream velocity (U∞) and then we obtained the
final simplified solution as:

CL � − 1
Lz

∫
Lz

0

∫
2π

0

p sin θ − 1
ReD

ωz cos θ( )dθdz (4)

CD � − 1
Lz

∫
Lz

0

∫
2π

0

p cos θ − 1
ReD

ωz sin θ( )dθdz (5)

Here, ωz represents the vorticity component in the spanwise
direction at the surface of the cylinder. The reference area (Lz × 1) is
the cross-sectional area of the cylinder perpendicular to the freestream
flow. By nondimensionalizing the forces in this way, they can be
compared across different flow conditions and geometries.

2.2 Validation

To verify the accuracy of the parallel CFD solver’s [24, 24] for
inline oscillations, we compared the current simulation results with
the data observed experimentally by Tanida, Okajima andWatanabe
[9]. In their experiments, they used oil at a flow Reynolds number of
80 and an inline motion amplitude of Ax/D = 0.14. As shown in
Figure 3, we plotted the forcing frequency to the vortex shedding
frequency ratio (fex/fvs) on the y-axis and the forcing frequency
(fex) on the x-axis, similar to Figure 3 in Tanida, Okajima [8] and

FIGURE 5
Changes in the root mean square (rms) value of the lift
coefficient.

TABLE 1 Limitations on controlled variables.

Variables Minimum value Maximum value

Amplitude (Ax) 0.1 0.3

Frequency (fex) 0.5fst 2.5fst
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Watanabe’s paper. Our results showed good agreement with their
experimental data. In addition, we compared the mean drag
coefficient with the forcing frequency in Figure 4, and observed
favorable agreement with Tanida, Okajima [8] and Watanabe’s
results in Figure 4.

2.3 Coupling of CFD solver with the VTdirect

We integrated the parallel CFD code [24] with the parallel
deterministic global optimization algorithm VTDIRECT95 [22,
23] to achieve global optimization. We did this by utilizing an
interface function that calculates the lift coefficient for the flow past a
circular cylinder undergoing inline oscillation. VTDIRECT95 is a
package written in Fortran 95, designed for deterministic global
optimization. The package includes the subroutines VTdirect
(serial) and pVTdirect (parallel), which implement a variant of
the DIRECT algorithm [7]. This algorithm is widely utilized in
physical science applications and multidisciplinary engineering
problems due to its efficiency in avoiding local optimum points
and searching for global optimum points through three key
operations:

1. Identifying boxes with high potential for containing the global
optimum point.

2. Collecting data by sampling points within those boxes.
3. Dividing the boxes that were identified in step 1 into smaller sub-

boxes.

For further information about the VTdirect code, including its
serial and parallel implementations, please refer to [22, 23].
Deterministic algorithms like VTDIRECT95 are notable for their
efficient utilization of function evaluations, unlike population-based
evolutionary algorithms. In our investigation, we consider a uniform
flow where a circular cylinder undergoes one-dimensional harmonic
motion in the inline direction at a Reynolds number of 500. Our goal
is to reduce the fluctuating component of the fluid force
perpendicular to the flow. We use a mathematical way of
measuring this called the root mean square (RMS) value of that
perpendicular force. We frame the optimization problem as follows

minCLrms vx( )
Subject to

vx ∈ D

where vx represents the control parameter vector, while D, is an
n-dimensional bounded box whereD � vx ∈ Rn| lx ≤ vx ≤ ux{ },CLrms

is the root mean square value of the lift coefficient. The control
parameters, in this case, are the amplitude and frequency of the
oscillatory motion.

Integrating the CFD solver with the optimization code VT-
DIRECT95 has significant advantages. Previous studies [9, 10]
investigating the reduction of lift through inline oscillatory motion
of circular cylinders have mostly explored variations of a single control
parameter. In such cases, identifying the optimal point requires a
thorough sweep within a specified range of the control parameter.
For instance, to minimize lift force, researchers usually consider the
forcing frequency as the control parameter while keeping the amplitude
of oscillation constant. Including more control parameters would
necessitate a large number of experimental or numerical runs to
determine the optimal point where the lift force is minimized. The
lift force on a circular cylinder can be decreased or eliminated by
causing it to undergo inline oscillation at specific frequencies and
amplitudes. This reduction in lift force is caused by the interaction
between the shed vortices and the oscillating cylinder, resulting in
modifications to the flow structure and shedding pattern. Experiments
were conducted by Tanida, Okajima and Watanabe [9, 10] while
Marzouk and Nayfeh [10] performed numerical simulations.
According to their findings, they observed a complete suppression
of lift within a specific frequency range, where the forcing frequency
reached twice the Strouhal frequency. Finding this regime required
conducting many experiments, simulations, and spending a significant
amount of computation time to explore the frequency range.

In order to test how well VTdirect works, we did a study where
we changed the frequency of the inline oscillation in one direction
while keeping the amplitude the same. We only varied the frequency
within a certain range (0.5 fst ≤ fex ≤ 2.5 fst), and we set the
amplitude to a specific value Ax = 0.2 (i.e., vx = fex). Our goal is to
find out the best frequency to reduce the amount of lift (or upward
force) on a circular cylinder. VTdirect does some calculations using

FIGURE 6
The data points that were selected by VTdirect.

TABLE 2 Overview of the best settings.

Cases Amplitude f ex/f st ĈLrms

1 0.2074 2.1172 0.0059

2 0.2049 2.0925 0.0066

3 0.2074 2.0925 0.0068

4 0.2000 2.0925 0.0080

Marzouk and Nayfeh’s [10] 0.2000 1.81 0.0087

Frontiers in Physics frontiersin.org06

Mehmood et al. 10.3389/fphy.2023.1213274

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1213274


different frequencies in a certain range and runs simulations to see
how well they work. Then, based on the results of each simulation,
VTdirect uses a clever method to predict which frequency we should
try next. We use a module called an interface to tell VTdirect how
much lift there is for each simulation, which helps it find out the best
frequency to use in the next CFD simulation. We created a graph
that shows how the root mean square (RMS) value of the lift
coefficient (CLRMS) changes depending on the frequency
(fex/fst) as shown in Figure 5. We compared our results with
those of Marzouk and Nayfeh [10], who studied a similar problem,
by presenting CLrms relative to its value when the cylinder was not
moving. Our simulation results matched up pretty well with theirs,
especially in terms of how much lift was reduced. VTdirect was able
to find the right frequency after only five attempts, which was much

faster than if we had tried every possible frequency using a brute
force approach.

3 Results and discussion

3.1 Lift reduction in 2-D flow

We explore various possibilities for the magnitude of cylinder’s
displacement and its speed (frequency). Theminimum andmaximum
values for these options, which we will employ in our CFD
simulations, are displayed in Table 1. We find these values based
on the optimal location identified in previous studies [9]. These
options encompass a broad spectrum that includes both

FIGURE 7
Time trace of the lift coefficient for the optimal case as identified by VTdirect.

FIGURE 8
The contours of vorticity are shown at Ax = 0.20 and fex/fst = 1.0, which is the pre-synchronized region.

Frontiers in Physics frontiersin.org07

Mehmood et al. 10.3389/fphy.2023.1213274

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1213274


synchronous and nonsynchronous regimes, and will aid us in
achieving our objective more efficiently. Marzouk and Nayfeh [10]
conducted research on the oscillation of cylinders and found that at an
amplitude of 0.2, the lift decreased significantly from 1.696 at
fex/fst = 1.8 to 0.0087 at fex/fst = 1.81, as shown in Figure 5.
They varied only the frequency fex in their investigation to avoid
excessive computational costs. In our study, we used an interface
module that combined VTdirect with the CFD solver to identify the
synchronization region more quickly, thereby reducing the time and
computational resources needed for the task.

We established conditions to determine when the optimizer
should stop running, such as limiting the number of iterations,
minimum change in the objective function, and minimum box
diameter. We used an interface module that combined VTdirect
with the CFD solver to identify the synchronization region, as
shown in Figure 6. In this figure, the CLrms values were normalized
by dividing them by max (CLrms), which was equal to 1.3296. The
results gave us insight into the synchronization region’s location while
requiring less computational resources than the traditional approach.
The figure showed that VTdirect sampled more data points in the
synchronization regions than in the non-synchronization regions,
where the lift coefficient was higher. It also gave an estimate of

contour levels for the lift coefficient and the frequency-amplitude
response. From Figure 6, it can be inferred that the lift coefficient
reached amaximumnearfex/fst = 1.5 and decreased significantly just
beyond fex/fst = 2 as the amplitude of the oscillations varied. Table 2
summarizes the four best values for the oscillation frequencies and
amplitudes, along with the root-mean-square (RMS) value of the lift
coefficient. A comparison of our findings with those of Marzouk and
Nayfeh [10] is presented in the same table. Our optimal results, which
were obtained using VTdirect, show a greater reduction in lift due to
the identification of the appropriate frequencies and amplitudes of the
inline oscillations.

The plot in Figure 7 illustrates how the lift coefficient varies over
time or the best values of the parameters found using VTdirect. The
plot indicates that the root mean square value of CL is significantly
reduced. To ensure a steady-state flow field, the excitation begins after
a 20-time unit delay. At the beginning of cylinder inline oscillation,
there is a transient response, but then the flow becomes synchronized,
and the lift is substantially reduced. Additionally, the plot includes a
zoomed-in view of the lift response between 80 and 100-time units,
highlighting the minimal lift magnitude.

To comprehend the flow physics of the synchronized
configurations better, we have added vorticity contour plots for two

FIGURE 9
The contours of vorticity are shown at Ax = 0.2074 and fex/fst = 2.1172, which is the synchronized region.

TABLE 3 Flow parameters computed from different simulations and experiments.

Cases Reynolds number Mean drag coefficient Maximum lift coefficient Strouhal frequency

Two-Dimensional [10] 500 1.37 1.02 0.217

Two-Dimensional Current Simulations 500 1.3431 1.09 0.2197

Three-Dimensional DNS [6] 525 1.24 0.64 —

3D DNS Current Simulations 500 1.2864 0.9489 0.2075

Experiment [29] 1,000 1.0 — 0.21

Two-Dimensional [30] 1,000 1.54 — 0.238

Two-Dimensional Current Simulations 1,000 1.429 1.3822 0.2319

Three-Dimensional DNS [30] 1,000 1.02 — 0.202

Three-Dimensional DNS Current Simulations 1,000 1.11 1.1004 0.205
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cases, shown in Figures 8, 9. In a non-synchronized case as shown in
Figure 8, where the cylinder is vibrating along the direction of flow, the
vortices shed alternatively because of the shedding frequency of
vortices in the wake, resulting in lift generation on the cylinder
surface. In the non-synchronized case, it alternately creates a low-
pressure region on one side of the cylinder and then the other. This
causes the vortices to shed alternatively from one side to the other. In a
synchronized case as shown in Figure 9, where a cylinder is vibrating

along the direction of flow, the vortices shed simultaneously due to
lock-in/synchronization. Lock-in occurs when the frequency of the
cylinder vibration matches the natural frequency of the vortices in the
wake, causing the shedding of vortices to become synchronized with
the cylinder vibration. This synchronized shedding of vortices can
significantly reduce the lift force on the cylinder, as both the vortices
cancel the effect of each other.

3.2 2-D and 3-D simulations

Reducing upward force (lift suppression) can be useful in situations
where sideways forces are not desirable [11]. However, in real-world
applications, we need to take into account three-dimensional (3-D)
effects. This is because when the fluid flow becomes unstable at Re of
around 180 forMode A and around 260 forMode B, the 3-D structures
of the swirling fluid can have a big impact on the way that the fluid
moves behind the object (the wake) [5, 6, 27, 28]. This means that CFD
simulations that only consider two dimensions (2-D) and do not
capture these swirling vortices in the direction of fluid flow cannot
accurately predict the way that the fluid will move. Moreover, as shown
in Table 3, simulations that take 3-D effects into account can provide
more accurate predictions of how the fluid will move compared to
simulations that only consider 2-D effects.

In numerical simulation of 2-D flow, we used a grid of size 192 ×
256 with a domain size of 30 times the diameter of the cylinder, while
for the numerical simulations of 3-D flow, we used a grid size of 192 ×
256 × 32 with a span of π times the cylinder diameter. We plotted in
Figure 10 the root mean square (rms) of the lift coefficient, which was
compared to the stationary case, and was obtained using a forcing
amplitude equivalent to 0.2 times the diameter of the cylinder. The
region where synchronization occurs, as predicted by Marzouk and
Nayfeh [10], was also observed in our simulations.

To better understand how synchronization starts to occur, we
conducted numerous simulations of fluid flow using both 2-
Dimensional and 3-Dimensional setups. In our numerical
computations, we varied the amplitude and frequency of the
cylinder’s movement and recorded the resulting synchronization
maps for Reynolds numbers of 500 and 1,000. We plotted the results
in Figure 10, which shows the non-dimensional amplitude of the
cylinder’s movement (Ax/D) as a function of the ratio between the
frequency of the movement (fex) and the Strouhal frequency (fst)
of the stationary cylinder. The lines on the graph separate regions of
synchronization and non-synchronization. Based on the
simulations, we made the following observations:

1. During our 2-D simulations, we noticed that when the Reynolds
number was increased from 500 to 1,000, the synchronization
boundary shifted towards the left. This suggests that a smaller
amplitude of movement was required to synchronize at the same
frequency. In contrast, our 3-D simulations showed that when
the Reynolds number was increased from 500 to 1,000, the
synchronization boundary shifted towards the right. This
indicates that a larger amplitude of movement was required to
synchronize at the same frequency.

2. We observed that the slope of the synchronization boundary
remained almost unchanged in both our 2-D and 3-D
simulations.

FIGURE 10
Synchronization maps comparison obtained by Marzouk and
Nayfeh [10] for a 2-D setupwith Reynolds number of 500 (represented
by a solid line) to the ones we obtained through our simulations. Our
simulations were conducted with 3-D setups and included
Reynolds numbers of 500 (represented by a dashed line) and 1,000
(represented by a dotted line for 3-D and a dashed-dot line for 2-D).

FIGURE 11
3-D simulated relative root-mean-square (rms) lift coefficient
(CL) changes with the non-dimensional ratio of the forcing-to-
shedding frequency (fex/fst) for two different Reynolds numbers (Re =
500 and Re = 1,000). Four different forcing amplitudes are tested
(Ax/D = 0.18, 0.22, 0.24, and 0.27), and each is represented by a
different line style and marker shape.
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3. We noticed that for both Reynolds numbers of 500 and 1,000,
achieving synchronization in 3-D flow required a higher
frequency of movement compared to 2-D flow with the same
amplitude of movement.

To investigate how the frequency of movement affects lift
suppression, we kept the amplitude of movement constant and
varied the frequency of oscillation for two different Reynolds
numbers. We chose a frequency range of 1.6–2.3 times the vortex

FIGURE 12
Images showing the vorticity contours in a three-dimensional flow at Reynolds numbers of 500 [(A)-Stationary-(C) non-Synchronous, and (E)-non-
Synchronous] and 1,000 [(B)-Stationary-(D) non-Synchronous, and (F)-non-Synchronous] were captured.
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shedding frequency and performed 3-D simulations. In Figure 11,
we plotted the root mean square of the lift coefficient relative to the
stationary cylinder for four different amplitudes of movement and
two Reynolds numbers. We noticed that before synchronization
occurred, the amplitude of lift was higher than that of the stationary
cylinder. However, once synchronization took place, the amplitude
of lift decreased sharply and lift was completely suppressed. The
mean drag coefficient also exhibited similar behavior, but it only
reduced by 20% and then remained constant irrespective of the
frequency of movement.

To reduce lift in three-dimensional flows, stronger amplitude
and frequency are needed. This is because of the vortical structures
that form in the wake. When a flow passes over a stationary cylinder,
increasing the Reynolds number from 500 to 1,000 causes the
structured wake to become unstable, resulting in the breakdown
of larger vortices, as seen in Figures 12A, B. These findings agree
with previous studies byWilliamson [2] andMittal et al [6, 27]. If the
cylinder oscillates in a non-synchronous regime, vortex shedding
occurs in an alternating manner, leading to changes in the lift force
on the cylinder, as demonstrated in Figures 12C, D. In the
synchronous regime, however, symmetric vortices are shed from
both sides of the cylinder, as shown in Figures 12E, F.

Synchronization in dynamical systems happens when the natural
frequency coincides with the frequency of the external force. When
synchronization is achieved, the cylinder’s movement in the flow
direction takes precedence over the formation of alternating vortex
shedding. Consequently, vortices are shed simultaneously from both
the top and bottom surfaces of the cylinder, resulting in symmetrical
flow in the flow direction, which is known as “inertia coupling” to
avoid confusion. This leads to a symmetrical pressure distribution
with respect to the flow direction, resulting in the suppression of lift.
In essence, this illustrates the synchronization phenomenon.

We provide reasoning for each event depicted in Figure 10 with
the following arguments:

1. For the two-dimensional case, as the Reynolds number increases
from 500 to 1,000, the synchronization curve moves to the left.
This is because the wake’s vorticity increases, causing the vortices
to be more tightly packed. As a result, inertia coupling occurs at
lower frequencies and amplitudes. However, in three-
dimensional flows, increasing the Reynolds number causes the
wake to become unstable. As a result of this, the wake becomes
less densely populated and comprises intricate vortical patterns,
including ribs, hairpin, and horseshoe vortices. Consequently,
greater energy (in the form of increased inline frequency ratio or
amplitude) is required to induce inertia coupling in the flow.

2. The behavior of inertia coupling is generally consistent across all the
cases presented in this study. It can be used as an indication of the
amount of energy needed to sustain this coupling on a frequency-
amplitude graph. Nonetheless, this pattern deviates from linearity
when frequencies and amplitudes are extremely high or low.

3. After the occurrence of Mode A instability at a constant Reynolds
number, the flow destabilizes in the spanwise direction due to the
introduction of the third dimension. This results in the creation
of intricate vortical structures in the wake, necessitating greater
inertia to overcome and attain synchronization. Thus, for
Reynolds numbers of both 500 and 1,000, the synchronization
curve shifts to the right. This shift is more significant for a

Reynolds number of 1,000 than for 500, as the wake’s structures
become more complex at higher Reynolds numbers.

Understanding the influence of variations in the wake and
spanwise direction is vital in exploiting the suppression of lift
force connected with the inline forcing of circular cylinders in
engineering and industrial contexts. This investigation focuses on
the suppression of lift force that materializes when the speed of
inline oscillations is approximately two times the frequency of vortex
shedding. Our results demonstrate that the synchronization maps
shift towards higher frequency ratios and amplitudes of oscillations,
revealing that accomplishing synchronization in three-dimensional
flows necessitates greater energy.

4 Conclusion

We employed a parallel 3-D Computational Fluid Dynamics
(CFD) code along with a global optimization algorithm called
VTdirect95 to optimize the performance of a cylinder undergoing
inline oscillations with the flow direction. We obtained optimal values
for the amplitude and frequency of the cylinder’s motion, which led to
a significant reduction in lift compared to previous studies. The lift
coefficient’s time trace in the optimal case showcased a steady-state
flow field with minimal lift magnitude. Additionally, vorticity contour
plots provided further insight into the flow physics, highlighting the
impact of synchronized shedding of vortices on lift force reduction.

To account for three-dimensional effects and achieve accurate
predictions of fluid flow behavior, we conducted both 2-D and 3-D
simulations. The results demonstrated that incorporating swirling
vortices in the wake through 3-D setups improved prediction
accuracy compared to 2-D simulations. We analyzed synchronization
maps and the root mean square of the lift coefficient for various
Reynolds numbers and amplitude-frequency variations. This analysis
illustrated the influence of 3-D effects on lift suppression. Notably, we
observed that synchronization occurred when the cylinder’s frequency
matched the natural frequency of the vortices in the wake, resulting in
symmetrical shedding and subsequent lift suppression. The behavior of
synchronization was influenced by factors such as Reynolds number,
wake vorticity, wake instability, and spanwise direction effects.

Overall, our research enhances the understanding of lift
suppression and provides valuable insights into optimal
parameters for achieving synchronization and reducing lift in
fluid flow scenarios. The significance of considering three-
dimensional effects and the influence of wake structures in future
studies and real-world applications is underscored by our findings.
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