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Background and objectives: Implementation of patient-specific quality assurance
(PSQA) is a crucial aspect of precise radiotherapy. Variousmachine learning-based
models have showed potential as virtual quality assurance tools, being capable of
accurately predicting the dose verification results of fixed-beam intensity-
modulated radiation therapy (IMRT) or volumetric modulated arc therapy
(VMAT) plans, thereby ensuring safe and efficient treatment for patients.
However, there has been no research yet that simultaneously integrates
different IMRT techniques to predict the gamma pass rate (GPR) and explain
the model.

Methods: Retrospective analysis of the 3D dosimetric verification results based on
measurements with gamma pass rate criteria of 3%/2 mm and 10% dose threshold
of 409 pelvic IMRT and VMAT plans was carried out. Radiomics features were
extracted from the dose files, from which the XGBoost algorithm based on
SHapley Additive exPlanations (SHAP) values was used to select the optimal
feature subset as the input for the prediction model. The study employed four
different machine learning algorithms, namely, random forest (RF), adaptive
boosting (AdaBoost), extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM), to construct predictive models. Sensitivity,
specificity, F1 score, and AUC value were calculated to evaluate the
classification performance of these models. The SHAP values were utilized to
perform a related interpretive analysis on the best performing model.

Results: The sensitivities and specificities of the RF, AdaBoost, XGBoost, and
LightGBM models were 0.96, 0.82, 0.93, and 0.89, and 0.38, 0.54, 0.62, and 0.62,
respectively. The F1 scores and area under the curve (AUC) values were 0.86, 0.81,
0.88, and 0.86, and 0.81, 0.77, 0.85, and 0.83, respectively. The explanation of the
model output based on SHAP values can provide a reference basis for medical
physicists when adjusting the plan, thereby improving the efficiency and quality of
treatment plans.

Conclusion: It is feasible to use amachine learningmethod based on radiomics to
establish a gamma pass rate classification prediction model for IMRT and VMAT
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plans in the pelvis. The XGBoost model performs better in classification than the
other three tree-based ensemble models, and global explanations and single-
sample explanations of the model output through SHAP values may offer reference
for medical physicists to provide high-quality plans, promoting the clinical
application and implementation of GPR prediction models, and providing safe
and efficient personalized QA management for patients.

KEYWORDS

machine learning, intensity-modulated radiation therapy, radiomics, gamma pass rate,
model interpretation

1 Introduction

Radiotherapy is a vital means of tumor treatment. With the
rapid development and advancement of treatment techniques,
multidisciplinary collaboration is becoming increasingly
important [1]. Intensity-modulated radiation therapy (IMRT)
allows the adjustment of the intensity distribution of radiation
within the field, providing a highly conformal dose distribution
to different shaped tumor target volumes while reducing the dose to
surrounding normal tissues [2]. Due to the complexity of IMRT/
VMAT treatment delivery, it is essential to implement patient-
specific quality assurance (PSQA) in advance of treatment
delivery to ensure that delivery is carried out safely [3]. To date,
PSQA has been conducted using a measurement-based approach
that compares the dose calculated by the treatment planning system
(TPS) with the measured dose [4, 5]. The method used to evaluate
the difference between calculated and measured doses is γ analysis,
which enables the quantitative assessment of areas that pass versus
fail criteria [6]. The specific QA based on the phantommeasurement
includes a series of processes such as dose recalculation, data
transmission, phantom placement, beam transmission, and γ
analysis on the phantom, which requires a lot of time and
resources, and not only increases the burden of medical
physicists but also delays the time of first treatment of patients
[7]. To improve the efficiency and safety of IMRT/VMAT treatment
plan implementation, utilizing treatment plan complexity indicators
can reliably identify those QA plans that are not likely to pass the
criteria before treatment [8].

In recent years, with the rapid development of artificial
intelligence technology, machine learning and deep learning-
based methods have been increasingly used in radiotherapy QA
[9, 10]. [11] developed a method to predict the gamma pass rate
(GPR) of IMRT plans, which used lasso-based Poisson regression to
learn the relationship between features and GPR. [12] accurately
predicted the GPR for portal dosimetry-based IMRT using plan
complexity indicators and machine characteristics. Three tree-based
learning models were used, where the maximum error was less than
4% and the average absolute error was less than 1%. [13] used a
combination of plan complexity features as input to predict the GPR
of VMAT plans, achieving an error of less than 3% for 94% of the
plans when the random forest regression (RFR) and support vector
regression (SVR) models were used. The use of machine learning-
based models as virtual QA tools has shown significant potential. It
can quickly and accurately predict the dose verification results of
IMRT or VMAT plans, ensuring the patient with safe and efficient
treatment [14–17]. However, there have been no studies on the

prediction of GPR incorporating different intensity-modulated
radiotherapy techniques simultaneously.

[18] in 2017 proposed the SHapley Additive exPlanations
(SHAP) value as a method to solve the interpretability of the
model, combined with the machine learning algorithm which can
assign a specific predicted contribution value to each feature, and
proposed the SHAP value as the unique measure of feature
importance in the prediction model. Therefore, this paper aims
to explore the feasibility of a classification prediction model of the
GPR combining IMRT and VMAT plans using a radiomics-based
machine learning method, and to try interpreting the output of the
best performing model of the four integrated tree models using
SHAP values.

2 Materials and methods

2.1 Data preparation

In this study, 409 pelvic patients (220 cervical cancer, 73 rectal
cancer, 91 uterine cancer, and 25 others) who received IMRT or VMAT
at the Radiotherapy Centre of Hunan Cancer Hospital from November
2020 toDecember 2022were retrospectively collected. TheQAplanwas
calculated with the Pinnacle3 treatment planning system (Version 9.2,
Philips) for 196 cases of IMRT. The dose grid was 3 mm, and
Delta4 device (ScandiDos, Sweden) was used to perform dose
verification on the Varian linear accelerator. The QA plan was
calculated with Eclipse (Version 13.6, Varian) and Monaco (Version
5.11.03, Elekta) treatment planning systems for 213 cases of VMAT.
The dose grid was 3 mm, and the ArcCHECK device (Sun Nuclear,
United States) was used to perform dose verification on the Varian and
Elekta linear accelerators. The linear accelerators and the measuring
devices were regularly calibrated during the measurement period to
ensure that the equipment is in a good performance state.

As recommended by the American Association of Physicists in
Medicine (AAPM) TG 218 report [19], the mean value of GPR was
96.2% ± 3.2% (the range was 78.8%–100%) based on the criterion of
absolute dose, 3%/2 mm, global normalization, and a 10% dose
threshold. For the classification model, the setting of the tolerance
value of the treatment plan “pass” and “fail” affects the performance
of the model [20]. In order to build a classification prediction model
with better performance for the data of this institution, 99.5% of the
average measured GPR, i.e. 95.7%, was used as the threshold of the
GPR classification. When the GPR was greater than this threshold,
the measured GPR was expressed as “pass” and recorded as “1”,
otherwise, “fail” and recorded as “0”.
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2.2 Feature extraction and selection

Radiomics features refer to the semi-quantitative and/or
quantitative features extracted from radiography (medical
images), which, combined with artificial intelligence technology,
play important roles in radiotherapy [21]. The 10% isodose line of
the maximum dose was included as the area where the radiomics
features were extracted in this study. Batch extraction of the features
was performed using the radiomics library in Python 3.7. The image
types included the original image (Original), the wavelet transform
image (Wavelet), and the Gaussian filter image (LoG). There were
seven different types of features: shape features 2D/3D, first-order
features, gray-level co-occurrence matrix (GLCM), gray-level size
zone matrix (GLSZM), gray-level run length matrix (GLRLM),
neighboring gray tone difference matrix (NGTDM), and gray-
level dependence matrix (GLDM); altogether, 1,130 features
(Original:107, Wavelet:744, and LoG:279) were extracted in total.

The whole dataset is randomly divided, with 90% of the data
(368 cases) being used as the training set and 10% being used for the
test set. Due to the imbalance of the data, the stratified sampling
method was used, making the proportion of all kinds of data in the
training set and the test sets consistent with the original data. Feature
selection technology is a key link in building a machine learning
prediction model based on radiomics, which can avoid high-
dimensional data disaster problems, reduce the training time,
increase the interpretability of the model, and enhance the
prediction performance of the model [22]. In addition to
interpreting the output of machine learning models, the SHAP
value can also be used as a feature selection method for
processing high-dimensional data [23]. In this work, the SHAP
value, combined with the XGBoost algorithm, was used in feature
selection.

The training set was input into the XGBoost model, and the
SHAP value of each feature in the sample was subsequently
calculated to measure feature importance, which was obtained by
averaging the contributions in all possible per-mutations of the
special collection [24]. The SHAP value of feature i was defined, as
shown in Eq. 1.

φi � ∑
S⊆N\ i{ }

S| |! N| | − S| | − 1( )!
N| |! ] S ∪ i{ }( ) − ] S( )( ), (1)

where N denotes the feature sets of the original data and S represents
any feature subset in N. S ⊆ N\ i{ } represents a subset of all elements
in the sequence before feature i, ](S) represents the output of a
machine learning model for a feature subset S, and ](S ∪ i{ }) − ](S)
denotes the cumulative contribution of feature i. The sequence
number of features started from 0 by default, and the top
45 features (See Supplementary Data Sheet S1) were ultimately
selected as the optimal feature subset to be input into the four
classification prediction models.

2.3 Model training and evaluation

Normalization was performed on the training set, and this
transformation was subsequently applied to the testing set to
prevent information leakage from the testing data. Four tree-based

machine learning algorithms, namely, RF, AdaBoost, XGBoost, and
LightGBM, were selected to fit the training data. Grid searching [25]
and five-fold cross-validation were used to obtain the model with the
highest performance parameters applied to the test data.

RF is a special bagging method, which finds the optimal solution
among randomly selected features of a decision tree to split each
node and integrates these predictions of the decision tree to avoid
overfitting of the model [26]. AdaBoost is a practical boosting
algorithm, which creates a highly accurate classifier by adjusting
a relatively weak and inaccurate combination of weights for the same
training set [27]. XGBoost is an improved algorithm based on the
gradient boosted decision tree (GBDT), where the entire dataset is
used to generate each decision tree and the residuals between the
predicted and true results of the previous decision tree model are
taken into account in the generation of the latter decision tree [28].
LightGBM mainly proposed the gradient-based one-side sampling
algorithm, mutually exclusive feature binding algorithm, parallel
features, and data to solve the multi-feature problem of large data
encountered in practical applications [29].

The performance of the binary classification model was evaluated
using precision, sensitivity, specificity, F1 score, and the area under the
curve (AUC). The curve is the receiver operating characteristic curve
(ROC). Precision indicates the ratio of correctly predicted positive
instances to the total number of instances predicted as positive (Eq. 2).
Sensitivity represents the ratio of correctly predicted positive instances
to the actual number of positive instances (Eq. 3). Specificity represents
the ratio of correctly predicted negative instances to the actual number
of negative instances (Eq. 4). The F1 score is a measure of a model’s
accuracy that takes into account both precision and recall (Eq. 5). The
ROC is a curve with the false positive rate at different thresholds as the
horizontal coordinate and the true rate as the vertical coordinate, and
the AUC value represents the area of the region below the ROC curve.
TP and FP represent the number of positive and negative samples which
are predicted as positive. TN and FN represent the number of positive
and negative samples which are predicted as negative. The modeling
and analysis procedures were performed using Python 3.7.

precision � TP

TP + FP( ), (2)

sensitivity � TP

TP + FN( ), (3)

specificity � TN

FP + TN( ), (4)

F1 − score � 2* precision*sensitivity( )
precision + sensitivity( )

. (5)

3 Results

3.1 Model classification performance
evaluation

Figure 1 shows the confusion matrix of the four classification
prediction models. The classification performance of each model on
the testing set can be calculated based on the confusion matrix, as
shown in Table 1. The results show that the RF model achieves a
sensitivity of 0.96, and the specificity of the XGBoost and LightGBM
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models was 0.62. The precision and F1 score of the XGBoost model
were 0.84 and 0.88, respectively. Figure 2 shows the ROC curves of
the four classification prediction models, where the AUC values of
RF, AdaBoost, XGBoost, and LightGBM were 0.81, 0.77, 0.85, and
0.83, respectively.

3.2 Interpretation of the model output

Figure 3 shows the SHAP summary plots for the four different
models on the test set. The importance of the input features was ranked
by SHAP values, where the most important features in the RF,
AdaBoost, XGBoost, and LightGBM models were features 41, 19, 3,
and 2, respectively. The higher the ranking of features, the greater the
influence on the model output, and the overall influence of each feature
on the model output can be observed. Different colors represent feature
values (high values are in red, and low values are in blue), andwide areas
indicate large sample clusters. As shown in Figure 3C, most of the blue
points of feature 3 were distributed in regions with positive SHAP

values. The lower value of feature 3 will have a positive driving effect on
the model output and improve the probability of plan passing. Most of
the red points in feature 1 were distributed in regions with positive
SHAP values, indicating that the higher value of feature 1 increases the
probability of plan passing. Table 2 shows the names of the top
10 significant features of the XGBoost model.

The SHAP force plot for two samples under the XGBoost model
is shown in Figure 4. The length of the arrow in the figure indicates
the magnitude of the feature’s impact, where red represents a
positive effect and blue represents a negative effect on the final
output of the sample. For example, Figure 4A shows the force plot of
sample 0 in the test set under the XGBoost model, demonstrating the
influence of each input feature on this sample’s predicted output.
The model’s base_value was 1.074, and the predicted output_value
f(x) for this sample was 0.915. The difference between the total
length of the red arrows and that of the blue arrows equals the
distance between the base_value and the output_value. Figure 4B
shows the SHAP force plot for sample 1 that has the same base_
value, and its predicted output_value f(x) was −0.853.

4 Discussion

Before treatment, implementing individualized IMRT/VMAT
QA of patients is a crucial step in the clinical radiotherapy process to

FIGURE 1
Confusion matrix of four classification prediction models. (A) RF
model, (B) AdaBoost model, (C) XGBoost model, and (D) LightGBM
model.

TABLE 1 Assessment of the performance of the four classification prediction models.

Machine learning model Assessment indicators

Precision Sensitivity Specificity F1 score

RF 0.77 0.96 0.38 0.86

AdaBoost 0.79 0.82 0.54 0.81

XGBoost 0.84 0.93 0.62 0.88

LightGBM 0.83 0.89 0.62 0.86

FIGURE 2
ROC curves of the four classification prediction models.
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ensure accurate dose delivery. Establishing a GPR classification
model is advantageous in aiding medical physicists to judge
whether plans are “passed” or “failed” without an actual
measurement, thus reducing the delay in patient treatment that

may result from the failed plans. Most studies utilize machine
learning models based on plan complexity parameters to predict
the GPR [30]. [31] extracted radiomics features from VMAT plans
of multiple sites for the first time to develop a GPR prediction model

FIGURE 3
SHAP values of the four different models: (A) RF mode. (B) AdaBoost model. (C) XGBoost model. (D) LightGBM model.

TABLE 2 Names of the top 10 important features of the XGBoost model.

Feature number Name of radiomics feature

3 wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

1 original_glcm_Correlation

5 wavelet-LHL_ngtdm_Busyness

0 log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformityNormalized

19 log-sigma-2-0-mm-3D_glszm_GrayLevelVariance

4 wavelet-LLH_glszm_GrayLevelNonUniformityNormalized

2 wavelet-HLL_glcm_MCC

38 wavelet-HHL_glrlm_HighGrayLevelRunEmphasis

23 original_glszm_SmallAreaHighGrayLevelEmphasis

9 log-sigma-2-0-mm-3D_ngtdm_Busyness
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and compared it with the prediction model based on features related
to plan complexity. In this study, a radiomics-based machine
learning method was utilized to establish the GPR classification
prediction model for IMRT combined with VMAT plans under the
3%/2 mm evaluation criterion.

The XGBoost model performed best among the four models,
with the sensitivity and specificity values of 0.93 and
0.62 respectively, followed by the LightGBM model, while the
AdaBoost model performed poorly. It scored the highest in
precision, F1 score, and AUC value, obtaining better predictions
than the model trained by [31] when the same criteria were imposed.
The reason for the difference may be related not only to the inherent
differences between different machine learning algorithms but also
to the features selected for the calculation of SHAP value using the
XGBoost algorithm [32]. As far as we know, there have been no
studies on the GPR classification prediction model incorporating
both IMRT and VMAT plans simultaneously. This study shows that
a GPR classification prediction model incorporating IMRT and
VMAT plans can be constructed using the machine learning
technique based on radiomics for 3%/2 mm criteria and the
specific tolerance threshold.

[33] demonstrated the rationale of using radiomics features in
assessing dose verification results, where first-order features and
texture features were selected as the most important features. In
this study, 45 features were input into the model, including
11 first-order features and 34 texture features (GLSZM:14,
GLCM:9, GLDM:5, GLRLM:4, and NGTDM:2). Among the
four models, the most significant features belong to the
GLSZM and GLCM categories. As shown in Figure 3, the top
10 features were ranked differently in importance among the
four models due to differences in model mechanisms. Features
0 and 1 were both included in the top 10 most significant features
of the four models, and features 2, 3, 5, and 9 appeared three
times. It indicates that these features have a significant impact
on model outputs. In contrast to previous studies, features
5 and 9 belonging to the NGTDM category were included in
this study, which may be due to the patients being treated
with different IMRT and VMAT technologies. In addition, five

of the top 10 features belong to the GLSZM category, and the
top-ranked feature 3 also belongs to the GLSZM category,
indicating that the GLSZM radiomics feature is a significant
indicator in this study on GPR classification prediction. The
global interpretation of the XGBoost model by the SHAP value
can obtain the ranking of important features and the effect
distribution of the model output, while the single-sample
interpretation based on the SHAP value can derive the specific
effect of all input features predicting the output value in that
sample. The relationship between these significant features and
model output can provide a reference for medical physicists in
planning and parameter optimization, which helps improve the
efficiency and quality of treatment planning.

The study employed three different and unique equipment
combinations, namely, Varian 600CD + Pinnacle + Delta4,
Varian Trilogy + Eclipse + ArcCHECK, and Elekta Infinity +
Monaco + ArcCHECK, for planning and dosimetric verification.
The results indicated that the machine learning model has some
universality across different equipment combinations and can serve
as the basis for future GPR prediction research that involves more
diverse equipment combinations. Additionally, this study is mainly
a preliminary exploration of a GPR prediction model that merges
different radiotherapy technologies. The data only include IMRT
and VMAT plans; however, patients with the same tumor site may
require different IMRT techniques to be implemented on the same
or different machines. Future research will explore and verify the
data on patients who receive various treatment techniques such as
TOMO for a specific site. In addition, radiomics-based features of
the dose distribution were input into the model. However, due to the
complex relationship between radiomics features and “failed” plans,
there is still a lack of direct and accurate troubleshooting methods if
the result shows that the treatment plan fails in the dose verification.
This study focused on GPR classification prediction for a single
institution. However, multi-institutional validation is essential to
promote the application of machine learning prediction models in
clinical practice. [34] demonstrated the feasibility and effectiveness
of establishing GPR prediction models for IMRT plans in different
institutions. In the future studies, more universal and robust

FIGURE 4
SHAP force plots for a single sample under the XGBoost model. (A) and (B) show the SHAP force plot of samples 0 and 1 in the testing set.
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machine learning prediction models based onmulti-center and large
data will be established to promote the prospective clinical
implementation and verification of virtual QA systems.

In summary, a radiomics-based machine learning technique can
be used to develop a GPR classification prediction model for IMRT
and VMAT plans of pelvic cases. The XGBoost model performs
better in classification than the other three tree-based ensemble
models, and global explanations and single-sample explanations of
the model output through SHAP values may offer reference for
medical physicists to provide high-quality plans, promoting the
clinical application and implementation of GPR prediction models,
and providing safe and efficient personalized QA management for
patients.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

This study was approved by the Hunan Cancer Hospital Ethics
Committee. All methods involved in the collection of these data were
performed in accordance with the relevant guidelines and regulations.

Author contributions

Concept development: QN and XY. Data analysis: QN, LC, JZ,
JT, and JP. Manuscript writing: QN, LC, and XS. All authors
contributed to the article and approved the submitted version.

Funding

The study was supported by the Science and Technology
Innovation Program of Hunan Province (project no:
2021SK51116), the Scientific Research Plan Project of Hunan
Provincial Health Commission (project nos: 202109031926 and
202218015767), and the Key Research and Development Project
of Climbing Scientific Research Plan of Hunan Cancer Hospital
(YF2021006).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2023.1217275/
full#supplementary-material

References

1. ChandraRA,Keane FK,Voncken FEM,ThomasCR.Contemporary radiotherapy: Present
and future. The Lancet (2021) 398(10295):171–84. doi:10.1016/S0140-6736(21)00233-6

2. Portelance L, Chao KSC, Grigsby PW, Bennet H, Low D. Intensity-modulated
radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients
with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol
(2001) 51(1):261–6. doi:10.1016/s0360-3016(01)01664-9

3. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, et al. Guidance
document on delivery, treatment planning, and clinical implementation of IMRT:
Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med
Phys (2003) 30(8):2089–115. doi:10.1118/1.1591194

4. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, et al.
IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report
from AAPM task group 119. Med Phys (2009) 36(11):5359–73. doi:10.1118/1.3238104

5. Siochi RAC, Molineu A, Orton CG. Patient-specific QA for IMRT should be
performed using software rather than hardware methods: Point/Counterpoint. Med
Phys (2013) 40:070601. doi:10.1118/1.4794929

6. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative
evaluation of dose distributions. Med Phys (1998) 25(5):656–61. doi:10.1118/1.598248

7. Kusunoki T, Hatanaka S, Hariu M, Kusano Y, Yoshida D, Katoh H, et al. Evaluation
of prediction and classification performances in different machine learning models for
patient-specific quality assurance of head-and-neck VMAT plans. Med Phys (2022)
49(1):727–41. doi:10.1002/mp.15393

8. Crowe SB, Kairn T, Kenny J, Knight RT, Hill B, Langton CM, et al. Treatment plan
complexity metrics for predicting IMRT pre-treatment quality assurance results.
Australas Phys Eng Sci Med (2014) 37(3):475–82. doi:10.1007/s13246-014-0274-9

9. Kalet AM, Luk SMH, Phillips MH. Radiation therapy quality assurance tasks and tools:
The many roles of machine learning.Med Phys (2020) 47(5):e168–77. doi:10.1002/mp.13445

10. Chan MF, Witztum A, Valdes G. Integration of AI and machine learning in
radiotherapy QA. Front Artif Intell (2020) 3:577620. doi:10.3389/frai.2020.
577620

11. Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD. A
mathematical framework for virtual IMRT QA using machine learning. Med Phys
(2016) 43(7):4323–34. doi:10.1118/1.4953835

12. Lam D, Zhang X, Li H, Deshan Y, Schott B, Zhao T, et al. Predicting gamma
passing rates for portal dosimetry-based IMRT QA using machine learning. Med Phys
(2019) 46(10):4666–75. doi:10.1002/mp.13752

13. Salari E, Shuai Xu K, Sperling NN, Parsai EI. Using machine learning to predict
gamma passing rate in volumetric-modulated arc therapy treatment plans. J Appl Clin
Med Phys (2023) 24(2):e13824. doi:10.1002/acm2.13824

14. Li B, Chen J, Guo W, Mao R, Zheng X, Cheng X, et al. Improvement using
planomics features on prediction and classification of patient-specific quality assurance
using head and neck volumetric modulated arc therapy plan. Front Neurosci (2021) 15:
744296. doi:10.3389/fnins.2021.744296

15. Zhu H, Zhu Q, Wang Z, Yang B, Zhang W, Qiu J. Patient-specific quality
assurance prediction models based on machine learning for novel dual-layered MLC
linac. Med Phys (2023) 50(2):1205–14. doi:10.1002/mp.16091

16.Wall PDH, Fontenot JD. Application and comparison of machine learning models
for predicting quality assurance outcomes in radiation therapy treatment planning.
Inform Med Unlocked (2020) 18:100292. doi:10.1016/j.imu.2020.100292

17. Li J, Wang LE, Zhang X, Liu L, Jun L, ChanMF, et al. Machine learning for patient-
specific quality assurance of VMAT: Prediction and classification accuracy. Int J Radiat
Oncol Biol Phys (2019) 105(4):893–902. doi:10.1016/j.ijrobp.2019.07.049

18. Lundberg SM, Lee SI. A unified approach to interpreting model predictions.
Proceedings of the 31st International Conference on Neural Information Processing

Frontiers in Physics frontiersin.org07

Ni et al. 10.3389/fphy.2023.1217275

https://www.frontiersin.org/articles/10.3389/fphy.2023.1217275/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2023.1217275/full#supplementary-material
https://doi.org/10.1016/S0140-6736(21)00233-6
https://doi.org/10.1016/s0360-3016(01)01664-9
https://doi.org/10.1118/1.1591194
https://doi.org/10.1118/1.3238104
https://doi.org/10.1118/1.4794929
https://doi.org/10.1118/1.598248
https://doi.org/10.1002/mp.15393
https://doi.org/10.1007/s13246-014-0274-9
https://doi.org/10.1002/mp.13445
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.1118/1.4953835
https://doi.org/10.1002/mp.13752
https://doi.org/10.1002/acm2.13824
https://doi.org/10.3389/fnins.2021.744296
https://doi.org/10.1002/mp.16091
https://doi.org/10.1016/j.imu.2020.100292
https://doi.org/10.1016/j.ijrobp.2019.07.049
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1217275


Systems. Red Hook, NY,USA, December 2017, (2017):4768–77. doi:10.5555/3295222.
3295230

19. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance
limits and methodologies for IMRT measurement-based verification QA:
Recommendations of AAPM Task Group No. 218. Med Phys (2018) 45(4):e53–e83.
doi:10.1002/mp.12810

20. Thongsawad S, Srisatit S, Fuangrod T. Predicting gamma evaluation results of
patient-specific head and neck volumetric-modulated arc therapy quality assurance
based on multileaf collimator patterns and fluence map features: A feasibility study.
J Appl Clin Med Phys (2022) 23(7):e13622. doi:10.1002/acm2.13622

21. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with
artificial intelligence for precision medicine in radiation therapy. J Radiat Res (2019)
60(1):150–7. doi:10.1093/jrr/rry077

22. Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr
Eng (2014) 40(1):16–28. doi:10.1016/j.compeleceng.2013.11.024

23. Marcílio WE, Eler DM. From explanations to feature selection: Assessing
shap values as feature selection mechanism, Proccedings of the 2020 33rd
SIBGRAPI conference on Graphics, Patterns and Images (SIBGRAPI). Porto de
Galinhas, Brazil, November 2020, IEEE, (2020):340–7. doi:10.1109/
SIBGRAPI51738.2020.00053

24. Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of machine
learning models using shapley additive explanation and application for real data in
hospital. Comput Meth Prog Bio (2022) 214:106584. doi:10.1016/j.cmpb.2021.106584

25. Xia Y, Liu C, Li YY, Liu N. A boosted decision tree approach using Bayesian hyper-
parameter optimization for credit scoring. Expert Syst Appl (2017) 78:225–41. doi:10.
1016/j.eswa.2017.02.017

26. Breiman L. Random forests. Mach Learn (2001) 45(1):5–32. doi:10.1023/A:
1010933404324

27. Schapire RE. Explaining adaboost. Empirical inference. Berlin, Heidelberg:
Springer (2013). p. 37–52. doi:10.1007/978-3-642-41136-6_5

28. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining.
New York, NY, USA August 2016, (2016):785–94.doi:10.1145/2939672.2939785

29. Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision
tree. Proceedings of the 31st International Conference on Neural Information Processing
Systems. Red Hook, NY,USA, December 2017, (2017):3149–57.doi:10.5555/3294996.3295074

30. Osman AFI, Maalej NM. Applications of machine and deep learning to patient-
specific IMRT/VMAT quality assurance. J Appl Clin Med Phys (2021) 22(9):20–36.
doi:10.1002/acm2.13375

31. Hirashima H, Ono T, Nakamura M, Miyabe Y, Mukumoto N, Iramina H, et al.
Improvement of prediction and classification performance for gamma passing rate by
using plan complexity and dosiomics features. Radiat Oncol (2020) 153:250–7. doi:10.
1016/j.radonc.2020.07.031

32. Liu Y, Liu Z, Luo X, Zhao H. Diagnosis of Parkinson’s disease based on SHAP
value feature selection. Biocybern Biomed Eng (2022) 42(3):856–69. doi:10.1016/j.bbe.
2022.06.007

33. Lizar JC, Yaly CC, Bruno AC, Viani GA, Pavoni JF. Patient-specific IMRT QA
verification using machine learning and gamma radiomics. Phys Med (2021) 82:100–8.
doi:10.1016/j.ejmp.2021.01.071

34. Valdes G, Chan MF, Lim SB, Scheuermann R, Deasy JO, Solberg TD. IMRT QA
using machine learning: A multi-institutional validation. J Appl Clin Med Phys (2017)
18(5):279–84. doi:10.1002/acm2.12161

Frontiers in Physics frontiersin.org08

Ni et al. 10.3389/fphy.2023.1217275

https://doi.org/10.5555/3295222.3295230
https://doi.org/10.5555/3295222.3295230
https://doi.org/10.1002/mp.12810
https://doi.org/10.1002/acm2.13622
https://doi.org/10.1093/jrr/rry077
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1109/SIBGRAPI51738.2020.00053
https://doi.org/10.1109/SIBGRAPI51738.2020.00053
https://doi.org/10.1016/j.cmpb.2021.106584
https://doi.org/10.1016/j.eswa.2017.02.017
https://doi.org/10.1016/j.eswa.2017.02.017
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.1002/acm2.13375
https://doi.org/10.1016/j.radonc.2020.07.031
https://doi.org/10.1016/j.radonc.2020.07.031
https://doi.org/10.1016/j.bbe.2022.06.007
https://doi.org/10.1016/j.bbe.2022.06.007
https://doi.org/10.1016/j.ejmp.2021.01.071
https://doi.org/10.1002/acm2.12161
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1217275

	Establishment and interpretation of the gamma pass rate prediction model based on radiomics for different intensity-modulat ...
	1 Introduction
	2 Materials and methods
	2.1 Data preparation
	2.2 Feature extraction and selection
	2.3 Model training and evaluation

	3 Results
	3.1 Model classification performance evaluation
	3.2 Interpretation of the model output

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


