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Revealing quantum effects in
bosonic Josephson junctions: a
multi-configuration atomic
coherent state approach

Yulong Qiao and Frank Grossmann*

Institut fur Theoretische Physik, Technische Universitat Dresden, Dresden, Germany

The mean-field approach to two-site Bose—Hubbard systems is well-established
and leads to non-linear classical equations of motion for population imbalance
and phase difference. It can, for example, be based on the representation of the
solution of the time-dependent Schrodinger equation either by a single Glauber
state or by a single atomic (SU(2)) coherent state [S. Wimberger et al,, Phys. Rev. A
103, 023326 (2021)]. We demonstrate that quantum effects beyond the mean-
field approximation are easily uncovered if, instead, a multiconfiguration ansatz
with a few time-dependent SU(2) basis functions is used in the variational principle.
For the case of plasma oscillations, the use of just two basis states, whose time-
dependent parameters are determined variationally, already gives a good
qualitative agreement of the phase space dynamics with numerically exact
quantum solutions. In order to correctly account for more non-trivial effects,
like macroscopic quantum self-trapping, moderately more basis states are
needed. For the onset of spontaneous symmetry breaking, however, a
multiplicity of 2 gives a significant improvement already. In any case, the
number of variational trajectories needed for good agreement with the full
quantum results is orders of magnitude smaller than that in the semi-classical
case, which is based on multiple mean-field trajectories.

KEYWORDS

bosonic Josephson junction, atomic coherent state, variational principle, time-
dependent Schrédinger equation, multiconfiguration ansatz

1 Introduction

The Bose-Hubbard (BH) model of S interacting (bosonic) atoms in optical lattices is the
basis of many state-of-the-art experimental [1-4] and theoretical efforts [3, 5, 6]. The cold
atom Hubbard tool box introduced in [5] puts a focus on strongly interacting many-body
dynamics and embraces the fields of quantum optics, quantum computation, and solid-state
physics. The BH model is a paradigm for the rich physical phenomena exhibited in these
areas, such as quantum phase transitions between the superfluid and the Mott insulator
phase [1], self-trapping in bosonic Josephson junctions [7], and quantum chaology [6].

Restricting the amount of lattice sites makes the quantum dynamics of the BH model
easily tractable numerically for moderate particle numbers. A recent theoretical work has
thus focused on the cases of four (and six) sites [8] with different levels of approximation:
exact, semi-classical, and classical (mean-field or truncated Wigner approximation (TWA)).
In addition, the trimer (ring) case has been studied because it leads to the melting of discrete
vortices via quantum fluctuations [9] and that it is the smallest system that displays a mixed
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phase-space mean-field dynamics without an external driving term
[10, 11]. This system has also been dealt with using a group
theoretical [12, 13] and a semi-classical time-domain approach
[14]. With an additional drive (periodic kicks), even the double-
well case is showing signs of chaos [15]. Furthermore, the case of two
wells without external driving has been extensively studied. The
system dynamics has, for example, been investigated both in a mean-
field classical approximation and fully (and perturbatively) quantum
mechanically [7, 16-20], as well as also semiclassically, using a
phase-space picture
propagator [14, 22]. This same propagator has also been used in

[21], or employing the Herman-Kluk

a semi-classical time-domain study of the single-well problem [23].
Furthermore, the driven single-well problem has served as a model
in a study of dynamical tunneling [24].

An important lesson from the vast literature is that semi-classical
approaches do well in reproducing the full quantum results, while the
mean-field and truncated Wigner method have their limitations. The
TWA does not allow for the investigation of revival phenomena, present
in quantum dynamics [20]. In contrast, the macroscopic quantum self
trapping effect in bosonic Josephson junctions could already be
uncovered using a mean-field approach based on the Gross-Pitaevskii
equation [7]. However, it turns out that mean-field theory predicts the
transition to macroscopic quantum self-trapping at too large values of the
on-site interaction strength[25].

In the following, we will focus on the quantum dynamics in the
case of two wells, for which the direct experimental observation of
tunneling and self-trapping has become possible [26]. Theoretically,
this case has been reviewed in [27] as well as in [28], where the exact
solubility of the eigenvalue problem in terms of the Bethe- Ansatz has
been reviewed. Furthermore, a novel insight on finite size (i.e., finite
particle number) effects in the mean-fleld dynamics of those
Josephson junction systems has been given by Wimberger et al.
[25]. These authors have used a so-called atomic or SU(2)
generalized coherent state [29] to uncover mean-field 1/S
corrections to the more familiar mean-field results based on
standard Glauber coherent states. We will also employ those
favorable number conserving SU(2) states here. However, we will
not use them from the perspective of the mean-field, where just a
single state is taken to solve the time-dependent Schrodinger
(TDSE). 1In
consequences of non-trivial multiplicity, which has first been

equation contrast, we will investigate the
chosen to be just 2, i.e., we will use a superposition of two SU(2)
states to solve the TDSE. Inspired by the previous experience with
Gaussian-based approaches to solve the TDSE for molecular
31], as
problems [32-34], and due to the entanglement entropy
studies in [35] using two SU(2) states, we are confident that

Hamiltonians [30, well as for spin-boson-type

only a handful of suitable time-dependent basis states could be
enough to achieve satisfactory agreement with exact quantum
solutions if a full-fledged variational approach is taken. In order
to correctly account for more demanding quantum effects like
self-trapping, the multiplicity has to be increased, but it can still
be kept below the total number of time-independent Fock states
that has to be used in a full quantum calculation. Furthermore, it
is expected that the number of quantum trajectories needed for
convergence will be much reduced as compared to that of
semiclassical trajectory calculations that are based on multiple
mean-field trajectories.
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The study is structured as follows. In Section 2, we briefly
review the mean-field approach, based on a single atomic coherent
state (ACS), to the dynamics of the bosonic Josephson junction. At
the end of this section, a special focus will be given on the stability
analysis of the non-linear classical phase-space dynamics. In
Section 3, we then choose an ansatz wave-function with non-
trivial multiplicity, employing a small number of time-evolving
atomic coherent states to represent the quantum beat dynamics
(collapse and revival of population imbalance) of the BH dimer. In
a brief review of the quantum phase operator concept, we establish
the relation between the phase difference in the mean-field
approach and its quantum analog. This allows us to compare
with the
corresponding solution of the TDSE. We will cover a broad
range of system parameters as well as initial conditions. It is

numerical results for phase-space trajectories

observed that there are cases, close to the equilibrium point of
the classical dynamics, in which just two ACSs will suffice to
achieve reasonable agreement with the exact results. However, at a
larger distance from the equilibrium point of classical dynamics,
the number of ACS will have to be increased. In Section 4, we give
future work.

conclusions and an outlook on possible

Methodological details can be found in Section 5.

2 Two-site BH model and mean-field
dynamics

2.1 The Hamiltonian

The simplest Hamiltonian for the bosonic Josephson junction
(two-site BH model) in normal ordered form reads

. s UGS .
H= —](a;ra2+a;a1)+z Za;zai, (1)
j=1
where the bosonic ladder operators d; and d} with the commutation
relation [ﬁj,ﬁ;] =T annhilate or create, respectively, a particle (a
bosonic atom) in the site labeled by the index j. Furthermore,

Aj = d}aj, j=12, )
counts the number of particles per site and S = 7, + 7, is the total
number-operator, and its expectation value S is a conserved quantity
because S commutes with H.

The (dimensionless) parameters U and ] > 0 denote the strength
of the on-site interaction, determined by the s-wave scattering length
of the atomic species considered, and the tunneling amplitude,
respectively. Later on, we will consider positive and negative
values of U, corresponding to repulsive and attractive interaction
between the atoms, respectively.

2.2 Mean-field dynamics

The evolution of the BH model is governed by the TDSE
iV (D) = HIY (1), 3)

for the wave-function |¥(#)). Here, as well as in the remainder of this
paper, we have set 72 = 1. In order to solve for the dynamics, in the
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present section, we will be closely following the mean-field work
presented in [25].

We start the discussion by recalling the eigenvalue equation of
the annihilation operator in the form

ajla; (£)) = a; (0)la; (1)) = \[n; (£)e* Ola; (£)), (4)

with the time-dependent Glauber coherent state [36] (displacement
operator applied to the ground state)

la; (1)) = el OF 20 gy 5)

and time-dependent average particle number 7;(¢) and phase ¢;(t) of
the site indexed by j. The position space representation of this state is
a displaced Gaussian wave-function [30].

The approximate mean-field dynamics can then be obtained by

using an ansatz in terms of a single ACS [29], defined by
1 [1 +z(t) 4

N
¥ (1)) = \T’v<\l 5 al+ \J/I —Zz(t) e—w(r)d;) 0,0)

S
- s, /1 +z(t), 1- Z(t)emp(o)
2 2

Here, |0, 0) is a shorthand notation for the direct product of

two single-particle vacuum states, and the time-dependent
parameters

_m)-m()

z(t) S , 7)

and

(/)(t) = ¢1 (t) - ¢z (t)r (8)

are the (normalized) population imbalance and the relative phase of
the two sites, respectively [25]. The time-dependent particle number
expectations at site j can take on fractional values. As a simple
example, we consider the case of S = 2 and initial z(0) = 1/2, for
which 7n,(0) = 3/2 and n,(0) = 1/2.

If the system dynamics is governed by a harmonic
oscillator Hamiltonian or a Rabi model (single harmonic
mode coupled to a spin system), the use of the Glauber
coherent states mentioned previously is common [37, 38].
In the present case, we opt for using the generalized
coherent states (GCSs) [39, 40], which for two modes are
the ACS introduced above, instead of a direct product of
Glauber coherent states. This is because the former are
better
dynamics, as the latter consist of a superposition of number

suited to describe particle number conserving
states in the general case [41, 42]. For Bose-Einstein
condensates (BECs), this observation has also been made by
Schachenmayer et al. [43], who showed that the multi-well
Glauber coherent state ansatz is equivalent to the GCS ansatz
only in the case of large particle numbers. Furthermore, it is
worthwhile to note that the highly entangled GCS is the
ground state of the “free-boson” model, i.e., the BH model
with vanishing on-site interaction, U = 0 [7, 44-46].

The representation of the ACS in the last line in Eq. 6 is
motivated by the general expression of a multimode generalized
coherent state (total number of modes given by M) in the form [47]
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M S
15, =j§(25fa:> l0,0,...,0, 9)

where the entries of the vector 2 are the complex parameters {¢},
which obey the “normalization” condition Zf\fllmz =1. The
representation of the unit operator in these states has been used
in [48]to establish an exact variational dynamics of the multi-mode
BH model. The number of independent real parameters of the GCS
in the two-site case, M = 2, is 3 (two complex numbers minus the
normalization condition mentioned previously) but there is an
overall phase factor that is irrelevant, however, so that we just
remain with the two real parameters z and ¢ introduced
previously. In the case of arbitrary site numbers, the equations
for the parameters & are referred to as discrete non-linear
Schrodinger equations, which can be viewed as the discrete
analog of the Gross-Pitaevskii equation for a BEC [6].

In the remainder of this study, we will focus on the Josephson
junction case. The mean-field equations for the real parameters z(t)

and ¢(t) are given by [25]:

z=2JV1-2%sin¢ = f, (10)
¢=—21\/1L__chos¢—t](s-1)z = fa (11)

which are equations of motion of non-rigid pendulum type [49-51].
A stationary solution of these coupled nonlinear equations is given
by the equilibrium points (0, 27zn) with n = 0, £1, +2, .. ..

In the next step, we linearize the system of equations around one
of the equilibrium points. The Jacobian matrix [52] at (2%, ¢*) = (0,
0) is given by

an N
0z | 59" g | Z¢” 0 2] b

J= of af2 “\=27-(-1U 0 ) (12)
o |7 o | e

and its eigenvalues are

A= Vi -2+ 22 (13)
I
The so-called strength parameter
A=US-1/@]), (14)

is an appropriate parameter combination to be used frequently in
the following section. More details on the linearized mean-field
equations around the stationary points can be found in Section 5.1.

A qualitative change in the mean-field dynamics will occur when
the radicand in Eq. 13 changes sign, which happens at the critical
value Agsp = —1, where the index SSB stands for spontaneous
symmetry breaking [45]. If A > — 1, both eigenvalues are
imaginary, which indicates that the aforementioned equilibrium
point is a stable one and the solution is symmetric around the origin,
whereas A < — 1 will lead to the emergence of another class of stable
equilibrium points. The symmetry breaking solutions are located
around the new stationary point(s)

(ZSSB;¢SSB) — (i A1 - %,Zﬂl’l),

(15)
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FIGURE 1
Phase-space trajectories from the mean-field dynamics for different initial conditions and different values of on-site interaction strength: (A) U/J =
0.1 and (B) U/J = —0.12. The number of particles is S = 20 in both cases.

of the system of Eqs 10, 11, where n € Z [25]. The corresponding  TABLE 1 Hamiltonian and initial state parameters to be investigated in detail in

Jacobian matrix is Section 3. The initial phase was zero in all cases. PO: plasma oscillation, MQST:
macroscopic quantum self trapping, and SSB: spontaneous symmetry
0 2] breaking.
2
= VAT, (16) Section 3341 332 34 35
=2JA(1+AVA) 0
oy 0.1 0.1 12 >0.12
and its eigenvalues are
0.53
4 NI
A=+ M (17) (S, 2(0)) (20, < 1) (20, 0.5) (20, 0.5) (20, 0.71)
: e
(50, 0.5) (50, 0.5) (50, 0.83)
If A < — 1, these are imaginary and the solution of the linearized
. . . . Phenomenon PO PO MQST SSB
equations around the SSB points is oscillatory. Both cases are

displayed in Figure 1, with the left panel showing motion around
the stable fixed point for U/J = 0.1 and the right panel showing the
trajectories in case of U/J = —0.12, where the stable fixed point at the
origin has turned into an unstable one and new stable fixed points  Strength parameter introduced previously, the onset of self-trapping

appear at positive and negative values of z. For an experimental is at [54]

realizati.on of this .scenjario, see .[53].. In Section ?.1, an analytic N 14+ T=22(0) cos $(0) "
expression for the linearized solution in panel B of Figure 1 at small MQST = 22(0)/2 > (19)

values of z and ¢ is given.

In [25], it is shown that the mean-field prediction for the onset of ~ depending strongly on the initial position in phase space. In contrast
SSB based on single Glauber coherent states fails dramatically at  to the case of SSB, the mean-field MQST effect sets in at too large
small particle numbers. The mean-field result based on a single  positive values of U (repulsive interaction), whereas the mean-field
SU(2) coherent state does better than the Glauber state prediction at  theory predicts the onset of SSB at too small values of |U] [25].
small S but is not exact. However, both mean-field predictions
reproduce the full quantum result more faithfully at large values

of S, as can be seen in Figure 4 of [25]. 3 Beyond mean-field dynamics
It can be further concluded from the mean-field Eqs 10, 11 that
the quantity Due to the shortcomings of the mean-field approach for U # 0, like

Us the absence of collapses and revivals of population imbalance [17], as
E= = (S=1)z% = JSVI =z cos o, (18)  well as failures in the prediction of the onset of MQST as well as SSB
[25], we will now go beyond the mean-field approach by employing a

is a constant of motion [25]. This leads to the existence of a  multi-configuration ansatz for the solution of the TDSE.
parameter regime, in which the imbalance cannot become We first give an explicit derivation of the equations of motion
0 during an oscillation cycle and, therefore, the average value of  followed by a brief review of the phase operator concept, which is
zwill be non-zero. The condition for this macroscopic quantum self-  needed to display our quantum results. The parameter regimes of
trapping (MQST) effect is E(2(0), ¢(0)) > E(0, ) = JS. In terms of the  the results to be presented are given in Table 1, from which it can
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be inferred that we select parameters bordering, as well as inside
the Josephson regime (1 < A < §%), intermediate between the Rabi
and Fock regimes [27], for which A < 1 and A > §, respectively. In
the Josephson regime, the parameters we chose lead from simple to
more complex collapse and revival dynamics, with increasing
breathing amplitude, to the phenomena of MQST and SSB,
mentioned in the previous section. The Rabi regime is
considered to be the most trivial of the three commonly studied
regimes, while the Fock regime cannot be described reliably by our
approach.

3.1 Equations of motion

As a step toward the exactness of the solution, we replace the
wave-function of Eq. 6 by a linear combination of N time-dependent
SU(2) coherent states, written as in the general SU(M) case of Eq. 9,
leading to

N
M) = Y Ac (OIS, E (1), Ea (1)) (20)
k=1

We stress that all the parameters, compactly written as vectors A
(with N entries) and & (with 2N entries), are time-dependent and
complex-valued. Their (non-linear) equations of motion, again
derived from the TDVP, in the general case of arbitrary
multiplicity N as well as the site number M, have been given in
matrix form in the appendix of [48].

For being self-contained, here, we explicitly review the
variational procedure for the double-well problem. With the trial
state from Eq. 20 the Lagrangian L = i{¥|0;|¥) — (VIH|Y) takes
the explicit form

N

L =Y AfAEIE) +is Z AZA; kafﬂm B

k,j=1 k,j=1

= ) ARATS(8 €+ £ 6 ) CELIED

k,j=1
U 22 22 _”)_'?
+5868 = D(EaE, + 638, )<E 18D |- 1)

The corresponding Euler-Lagrange equations are given by

oL d oL

—-— =0, 22
duf  dt oup @22

where u; denotes one element of the set {Ay, &1, &} of 3N complex
valued parameters in |¥). For the coefficients, this leads to the
equations of motion

le &I, >+stA ka,fﬂ<£k|£ > - (23)
j=1 i=1
where
aA* ZA IS(E & + &0 €5 )EIE] >+— —1);€k?f§,.<?2|?}> :

(24)

For the coherent state parameters &, (m = 1, 2), we get
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N A)H N . - =
18| ) ARAE, CEIED + ) ARAE,CEIED
j=1

j=1

[N}

+(S_ I)ZAI:A]ZEI« E}xf]m<£k|£ >] EH 0)

i=1

(25)
where
o _ aza [ JSERCEIED — 155 - D(Ea £ + E3E,)EnEIED
1 j=1
+US(S - 1)& &, & 1€;) + %S(S— D(S-2) ) &8 1§ >],
(26)

and an analogous equation for the second index being 2.

Some numerical tricks to solve the highly non-linear,
implicit equations of motion in Eqs 23, 25 have been devised
n [55] for the case of Glauber coherent basis state functions.
Because of the restriction to M = 2 of the site number in the
present investigation, at least for moderate particle numbers,
the TDSE can also be solved easily by an expansion of the wave-
function in (time-independent) Fock states, whose coefficients
fulfill a (numerically more well-behaved) system of coupled
linear first-order differential equations. The number of Fock
states required is determined by the particle number via S + 1.
More details on the full quantum (Fock space) calculations,
whose results will be referred to as exact quantum results, are
given in Section 5.2.

We stress that in all exact and beyond mean-field calculations
to be presented, we take a single ACS as the initial condition of
the dynamics. For the beyond mean-field calculations, this means
that a single element out of the set {A;} is non-zero initially,
whereas all other elements will take non-zero values only in the
course of time.

3.2 Brief review of phase operator concept

From the wave-function given by Eq. 20, we can calculate the
time-dependent site populations by taking expectation values of the
operators from Eq. 2, and from this the imbalance z between the two
sites. For the analog of the relative phase ¢, we use the quantum
phase operator concept [9, 56], leading to the expectation values

<d;ﬁ1 + &2d1>

o = v iy @7)
N iKala, —ala,)
0 = i+ s iy @s)
AT A \2 A Aty\2
(sintgy = L (@) + (@) ) (9)

2 2<2ﬁ1ﬁ2 + ﬁ] + ﬁ2> ’

of the cosine and sine of the phase operator and its sine square. In
addition, the variance of the sine is defined by

A(sin g?)) = (sinng) — {sin gZ))Z. (30)

(sin®p + cos’¢py =1 and the
expectation of coszqg from [9] have been used to derive Eq. 29.

The normalization condition
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FIGURE 2

Phase-space trajectories in: (A) mean-field, (B) beyond mean-field using ACS with N = 2, and (C) exact quantum dynamics. Different initial
conditions are indicated by different line styles: z = 0.01 (solid blue), z = 0.05 (dashed red), and z = 0.1 (dash-dotted yellow). System parameters are U/J =

0.1and S = 20.

The relation between the sine of the classical phase variable,
displayed in Figure 1, and the expectation of the sine of the quantum
phase is

SV1 -22
VS(S-1)(1-2%)+2S

as can be derived by applying the operator in Eq. 28 to an ACS. For

(sin ) = sin ¢, (31)

S — 00, the prefactor on the RHS of the aforementioned equation
becomes unity and the quantum and classical expressions become
identical. Furthermore, in [9] it has been shown that the melting of
coherence between the two sites is mirrored by the vanishing of the
expectation of cos ¢ and the occurrence of large fluctuations of the
corresponding variance.

In the following section, we will focus on parameters on the
border and inside of the most interesting regime, the so-called
Josephson regime [27]. Depending on the initial conditions,
beyond mean-field effects can be observed in this case. In
addition, we will also allow for negative values of the strength
parameter A smaller than -1, in order to study the SSB case and
will use large positive A values close to the (mean-field) MQST
regime.

3.3 Plasma oscillations

In the following section, we first consider the case of a small on-
site interaction. In addition, the initial imbalance shall first be small.
In the second step, this imbalance shall be large at ¢ = 0.

3.3.1 Small initial population imbalance
For small values of U and z, we only include two ACS in the

ansatz in Eq. 20, ie, we use N = 2. Initially, & can be still be
parameterized in analogy to the procedure of the previous section
by (Elpflz \/1_%% \/ﬁ 7l¢‘ (&a1,820) = ( sz

l’%e“‘bz To highlight the changes that the inclusion of an
additional basis state leads to, for the first SU(2) state, we use three
different initial conditions, namely, z; € {0.01, 0.05, 0.1}, ¢; = 0,
A, = 1. For the second SU(2) state, the initial values are identical
and are fixed as z, = 0, ¢, = 271/3, A, = 0.

and
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The phase-space trajectories in three different levels of
approximation and for the three different initial conditions are
shown in Figure 2, for § = 20 and an on-site interaction strength
of U = 0.1, implying US/(2]) = 1. We stress that the expectation
value of the sine of the phase operator is plotted on the y-axis. Its
relation to the sine of the phase difference in the mean-field case is
given in Eq. 31.

In mean-field approximation, displayed in panel A of
Figure 2, all the three initial conditions give rise to an
ellipsoidal phase space pattern as shown in the previous
section. Going beyond the mean-field approach by allowing
for just one additional ACS, we see a qualitatively different
behavior, displayed in panel B of Figure 2, which corresponds
to a beating of the population imbalance, here displayed by a
spiraling motion that first moves inward and then outward for all
three initial conditions. This is shown not to be an artifact by
comparison to the full quantum solution, displayed in panel C of
Figure 2, which exhibits an almost quantitative agreement with
the ACS solution of multiplicity 2. We stress that the choice of the
initial phase of the second ACS is decisive for the quality of our
beyond mean-field results. Choosing ¢, to be 0, e.g., would lead to
a spiraling in the wrong direction.

In the case of the smallest imbalance displayed in Figure 2, the
beating amplitude (the width of the blue ring) is the smallest and the
description of the quantum dynamics with a single classical (mean-
field) trajectory is almost adequate, as it would be in the Rabi-
oscillation regime, in which A < 1, a case we are not considering
herein. However, as shown in [14], in order to cope with the collapse
and revival of the population imbalance oscillations, a multitude of
classical trajectories is needed. A ballpark number for the sample size
in the Monte-Carlo integrations performed by Simon and Strunz is
10*. The TWA based on a similar sampling procedure does not
capture the revival oscillations, but a full-fledged semiclassical
approach is required to this end. To put our work in context, we
stress that to capture the quantum behavior displayed in Figure 2
almost quantitatively, we need only two “trajectories,” i.e., two ACSs.
This dramatic reduction in the basis size is due to the fact that in our
present case, also the trajectories (the dynamical evolution of the
basis function parameters) undergo the full variational procedure,
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Exact quantal phase-space trajectories for times up to Jt = 100 in the case U/J = 0.1 for (A) S = 20 and (B) S = 50. The initial condition is z = 0.5 in both
cases.
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FIGURE 4

Comparison of beyond mean-field and exact quantum results for (A) S = 20 and (B) S = 50. The initial condition is z = 0.5, ¢ = 0 in both cases. The
system parameter is U/J = 0.1. The expectation values of the sine of the phase (exact results: solid blue line and multi ACS results: dotted yellow line) and
its variance (exact results: dash-dotted red line and multi ACS results: dashed purple line) are displayed.

i.e., they are not mean-field trajectories. We are thus losing the
intuitive appeal of a semiclassical method at the benefit of much
lesser computational effort, although the calculation of the
quantum trajectories is more involved than that of the mean-
field ones. In summary, we note that in a comparison of the
hierarchy of variational methods based on Glauber coherent
states, applied to the anharmonic Morse potential in [30], the
reduction in basis function size was counteracted by the
(numerical) complexity of the solution of the variational
equations of motion.

3.3.2 Large initial population imbalance

The small initial imbalance in the previous case has led to an
incomplete collapse, i.e., the oscillation amplitude was still rather
large in all the three cases at all times, with only small beating
amplitude. In order to suppress the total oscillation amplitude,
i.e,, to see very small oscillations at least temporarily, we have to
allow for larger initial imbalances, which will be carried out next. For
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the case of U = 0.1] and with initial z = 0.5, the exact quantum
dynamics for two different total particle numbers, S = 20 and S = 50,
is shown in Figure 3. Corresponding mean-field calculations (not
shown) would display a closed single-loop oscillation without any
spiraling in (decrease of the oscillation amplitude). In the quantum
case, however, we see an almost complete collapse of the amplitude,
the larger the particle number. For the larger S, in addition, the
population imbalance and the expectation of the sine of the phase
operator are 0 for a longer time (see also Figure 4).

In Figure 4, we display the time evolution of the sine of the phase
operator and its variance. The results of the beyond mean-field
approach and exact quantum calculations are compared. First, we
observe the collapse and revival in the case of S = 20. For S = 50, the
maximum time considered is too short to observe the revival. In
addition, we can see that the suppression of the oscillation amplitude
of (sin ¢) comes along with an increase in the amplitude of variance
oscillation. Furthermore, agreement almost within line thickness
between the exact and ACS results can be achieved, but only if the
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Phase-space trajectories for times up to Jt = 50 in mean-field approximation (solid blue), multi ACS (dash-dotted red), and exact quantum dynamics
(dotted yellow). The initial condition is (z(0), ¢(0)) = (0.5, 0). System parameters are as follows: (A) U/J = 1.2 and S = 20 and (B) U/J = 0.53 and S = 50.

multiplicity is increased considerably compared to the previous case
of small initial imbalance. The multiplicities needed are N = 8 in the
case of S = 20 and N = 20 in the case of S = 50. The occurrence of
large amplitude oscillations in the variance has to be accounted for
by an increase in the multiplicity because in the single ACS case, the
relative phase is well-defined. We note that both multiplicities are
smaller than the total number of Fock states required, which is S + 1.
Furthermore, the choice of the initial conditions for the initially
unpopulated ACS is carried out in the random fashion explained in
detail in [48].

3.4 Macroscopic quantum self-trapping

In order to observe self-trapping in the Josephson regime, i.e.,
the restriction of the population dynamics such that the population
on one side is always larger than on the other side, the initial
condition and/or the on-site interaction strength has to be changed.
From a mean-field argument, the condition given in Eq. 19 has
been derived, which is valid at all times. In the following section, we
will use z(0) = 0.5 and ¢(0) = 0. This leads to Ayjqst = 15. We choose
the total number of particles and the on-site interaction strength
such that the actual value of A is just below the critical mean-field
one and that the classical dynamics, therefore, will not be trapped,
but the strength parameter is large enough for the quantum
trajectory to be trapped at positive values of z [25]. For S = 20,
we take U/J = 1.2 and for S = 50, we take U/J = 0.53, leading to A =
144 and A = 13.0, respectively. Both values are deep inside the
Josephson regime.

In Figure 5, the results for the phase-space trajectories followed
up to a total time of T = 50] are displayed. As dictated by our choice
of parameters, the mean-field results do not display the MQST effect
just yet. However, the quantum MQST has set in already. The fact
that in the exact quantum results, MQST happens for smaller
coupling strengths than in mean-field has also been reported in
[25]. It was found that the use of a single ACS does not allow one to
observe this quantum effect (the reduction of the critical A value). By
observing the red curves in Figure 5, it can be seen that in order for
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the ACS-ansatz to show the correct quantum behavior (early onset
of MQST), a non-trivial multiplicity has to be employed. In our
present case, this is N = 12 for the case S = 20 (displayed in panel A)
and N = 25 for the case S = 50 (displayed in panel B). The high
multiplicities needed are due to the fact that both the initial
condition in z and also U are rather large. A single ACS will
only give the exact result for U = 0.

3.5 Spontaneous symmetry breaking

So far, we have focused on the case of positive on-site interaction
strength. However, it was already observed on the mean-field level
that a spontaneous symmetry breaking is triggered by negative
values of U beyond a certain threshold. The comparison of the
mean-field with the full quantum solution and our multi-
configuration ACS approach for this case will be the focus of the
present section.

Because the mean-field prediction for SSB is good for large
particle numbers [25], in Figure 6, we first consider the case of S =
50 and we take U/J = —0.12, leading to A < — 1. The results of three
different levels of approximation are again displayed: mean-field,
ACS with small multiplicity (here N = 10), and full quantum. In
the mean-field case, displayed in panel A, we observe that the
elliptic orbit for small deviations from the symmetry breaking
equilibrium point (z%° = 0.94, ¢*°® = 0), for larger displacements
turns into a plectrum-shaped orbit around the new stable fixed
point (see also panel B of Figure 1). As in the previous section,
multiconfiguration ACS with a small multiplicity of N = 10
displays the spiraling away from the mean-field orbit (the
“quantum effect”) in a very faithful way. The further away

from z°8

the initial condition is, the broader the range of the
spiraling motion turns out to be, both in the ACS (panel B) and
the exact results (panel C).

The case of smaller particle numbers S = 20 and U/J = -0.15
leads to z°%® =~ 0.71. The on-site interaction parameter lies just
between the classically predicted onset of SSB and the quantum

prediction. In the quantum case, it was shown that the SSB effect
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Phase-space trajectories for times up to Jt = 100 in (A) mean-field, (B) beyond mean-field with N = 10, and (C) exact quantum dynamics. Different
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Parameters are U/J = -0.12 and S = 50.
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comes along with the switch of the amplitude from a unimodal
to a bimodal distribution in a Fock-space expansion of the
ground state of the Hamiltonian [45], which for large |U|
becomes a so-called Schrodinger cat (NOON) state, in our
notation a superposition proportional to |S, 0) + |0, S). For
smaller particle numbers, the onset of this effect, compared to
the mean-field prediction, is pushed to larger absolute values of
U (i.e., stronger attractive interaction), as shown in Figure 4 of
[25]. Thus, for the parameters mentioned previously, the phase-
space trajectories in the beyond mean-field case show a much
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different behavior than in the classical case. To visualize this
behavior, we have calculated the Husimi transform [42]

Q(z.¢) = QA YID), (32)
with |Q) =[S, z, ¢). This function is localized if the time-evolved
quantum state is localized around the stable fixed point, whereas it is
delocalized otherwise. Taking snapshots of its dynamics for U/J = —0.15,

displayed in panels A to C of Figure 7, a delocalization of the dynamics
can be observed, which is very different from the mean-field prediction,
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Comparison of the onset of SSB as a function of |U|/J predicted

by i) ACS mean-field (solid line), ii) multi-configuration ACS with N = 2
(red diamonds), and iii) exact result (blue dots), inferred from
bimodality of ground state.

which is already deep in the SSB regime. Using just two ACSs, we can
thus unravel this quantum effect dynamically, without having to
calculate the exact ground state. Increasing the absolute value of
the onsite interaction to |U|/J = 0.19, according to Eq. 5, the new
stable fixed points are moving towards larger |z| and we are
choosing an initial condition with a small displacement away
from the one with ¢ = 0 and a positive value of z. The beyond
mean-field result (with N = 2) now also shows a restriction of the
dynamics to positive values of z, i.e., it displays the phenomenon of
SSB. This fact can be observed in panels D to F of Figure 7. The fact
that there is no motion from right to left, when |U] is large, is due to
the large energy barrier that has to be overcome in order to go from
L,

z =~ 1, ie., approximately the state |[S, 0) to z
i.e., approximately the state |0, S) [57].

If one just wants to determine the transition from
delocalized to localized motion beyond the mean-field
prediction, it turned out that only two ACS trajectories
might be enough. We will show in the remainder of this
section that in order to almost faithfully predict the
occurrence of the SSB transition in terms of |U| for different
particle numbers, a multiplicity of N = 2 is indeed sufficient. To
show this, in Figure 8, we display the onset of SSB for different
values of S, as predicted by mean-field (using a single ACS),
yielding the hyperbolic dependence |U|/2] = 1/(S — 1) depicted
by the solid line, to the result for this onset from a multi-
configurational calculation with N = 2 (red diamonds). To

determine the location of the red diamonds, we have

propagated the dynamics up to large enough times (Jt =
1000) to be sure that the motion is either confined to the

right-hand side of phase space (i.e., z > 0) or not and have

used an interval nesting strategy to determine the onset of SSB.
These two results are then compared to those of the exact
quantum ones (blue dots), calculated by monitoring the
expansion of the ground state (GS) in terms of Fock states. If
the magnitude of coefficients shows a bimodal structure and
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(GS|S/2,8/2) = 0, the SSB range is reached [45]. The multi-
configuration ACS calculations with N = 2 show a surprisingly
good agreement with the exact quantum results, even for small
particle numbers.

4 Conclusion and outlook

We have reinvestigated some well-known physical phenomena in
the dynamics of the bosonic Josephson junction model using a powerful
multi-configuration technique to solve the TDSE. It was shown that, by
use of an expansion of the wave-function in multiple ACSs, a decisive
improvement of the classical mean-field results towards full quantum
results can be achieved. Although in a Fock-space calculation, the full
basis is always to be used, in the present approach, the size of the time-
dependent basis function can be increased in order to achieve
convergence and to reveal quantum effects. The equations of motion
for the (time-dependent) variational parameters and for the expansion
coefficients are derived from the time-dependent variational principle.
This technical aspect of the presented work is similar in essence to the
variational solution of the Gross-Pitaevskii equation with long-range
interactions, based on Gaussian wave packets (Glauber coherent states)
[58] as well as to the multi-configurational time-dependent
Hartree-Fock method for bosons [59], although in the latter case,
the employed basis functions are orthogonal. Furthermore, in contrast
to the Glauber coherent states, the ACS used here conserve the particle
number and are thus considered to be favorable in the present case [42].
In addition, we stress that in contrast to semiclassical methods that are
based on Monte Carlo sampling of the initial conditions for mean-field
trajectories and require around 10* samples, here we can get satisfactory
results with only a handful of variationally determined “trajectories.”
The semiclassical method employed by Tomsovic et al [8] requires an
order of magnitude less mean-field trajectories (even in the 6-well case)
than the semiclassical initial value method used in [14], but one has to
find saddle points in a complexified phase space, which is a
formidable task.

The parameter space that we have covered is characterized by the
strength (and the sign) of the on-site interaction, as well as by the total
particle number and the initial population imbalance. First, by taking
into account one additional ACS, i.e., by employing a total of just two
ACSs, the beating of the population imbalance (as well as of the
expectation of the sine of the phase operator) for small positive
values of U can be reproduced almost quantitatively exactly, if the
initial imbalance is rather small, i.e., if it is close to the classical
equilibrium point at the origin of phase space. The choice of the
initial phase variable of the second ACS was crucial to achieve this
agreement. For larger initial imbalance, the number of ACSs needed to
achieve reasonable agreement with the exact quantum results has to be
increased, with more and more states needed, the higher the total
particle number.

Second, our focus was on the more demanding parameter
regime of MQST. Here, we could show that the use of more than
10 ACSs is necessary, if the quantum reduction compared to the
mean-field value of the repulsive interaction strength at which
MQST sets in is to be uncovered. As had been noticed before by
Wimberger et al. [25], a single ACS is not enough to observe this
effect. In the case of higher multiplicities N > 2, the choice of initial
conditions for those ACS that are initially unpopulated (i, e., the
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ones, whose coefficients Ay in Eq. 20 are 0) was carried out by the
random sampling strategy described in [48].

Lastly, for negative values of the on-site interaction and for large
particle numbers, we observed a beating oscillation around the
symmetry-breaking equilibrium point, which still resembles the mean-
field trajectory, with the only quantum effect being the spiraling in and
out of the phase-space trajectory. However, for small particle numbers,
compared to the mean-field prediction, symmetry breaking only occurs
for larger attractive interaction in the quantum case [25]. The fact that
symmetry breaking is lost for parameters that would allow for symmetry
breaking in the mean-field theory is uncovered by using just two ACSs.
The new prediction of the onset of symmetry breaking in Figure 8 is very
close to the exact quantum result.

In future works, the fact that the addition of only a few
generalized coherent state basis functions allows for the
unraveling of quantum effects can be put to good use. A possible
extension of the present work would be keeping the site number at
2 but allowing for more than just a single atomic species [60].
Furthermore, driven bosonic Josephson junctions show dynamical
tunneling [61], and the addition of a decay term in one of the sites
allows for a characteristic modulation of self-trapping [62]. The
description of these effects beyond mean-field is a worthwhile topic
of future investigations. Finally, if one also allows the site number M
to increase, it might be the only possibility to use flexible time-
dependent GCS basis functions if numerical results showing
quantum effects are asked for. This is due to the fact that the
(M+S-1! and the

ST(M-1)!
Fock-state-based calculations thus become unfeasible.

number of Fock-state basis functions increases like

5 Methods

5.1 Linearized mean-field equations and
their solution

From the Jacobi matrix in Eq. 12 we read off the linearized
equations of motion

z=2]¢, (33)
¢=-[2]+U(S- D]z (34)

for the population imbalance and the phase difference, valid around
the phase space origin. Employing the initial conditions z(0) = z,
¢(0) = 0, their solution is given by

2(t) = % [621 —(TN 2 —(1+A)t]’ (35)
(1) :% —a+A) +A)[ezl STEVSTRSY) —(1+A)L:|’ (36)

with the strength parameter A, defined in Eq. 14 of the main text.
If A > - 1, we have the oscillatory solutions

z (t) = z cos (Qt) (37)
¢ (t) = —zoV1 + Asin (Qt) (38)

with the plasma frequency
Q=2JV1+A (39)
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We stress that for the specific choice of initial condition, the
oscillation amplitude of ¢ depends on the strength parameter,
while that of z does not.

If A < — 1, we obtain

z(t)=z0cosh[2] —(1+A) ], (40)
¢ (t) = zo\=(1 + A)sinh[2]/=(1 + A)t], (41)

which describes a solution like the ones displayed in panel B of
Figure 1, but only where the conditions |z], |¢|< 1 are still fulfilled.
Away from that regime the hyperbolic solution is unphysical.

5.2 Exact quantum calculation

For the exact quantum results, we employ an expansion of the
wave-function in terms of Fock states

S
¥ (1) = ) bi(DIF>, (42)
i=0

where the sum is taken over all the states {|F;)} that emerge if a total
of S particles is distributed over two sites. Due to the fact that one can
place from zero up to S particles in, e.g., the first site, it is obvious
that there are S + 1 different possibilities.

In order to completely specify the problem, the initial state has to
be known, from which the b coefficients at ¢ = 0 can be extracted. In
the present work, we consider an initial state that is given in terms of
a single ACS with parameters &, and &,. From the definition given in
Eq. 9 taken for M = 2, by applying the binomial theorem, due to
(El;r)"|0> = vnl|n), we find

¥ (0)) = +&a5)’10,0)

d SU sy .
= Z WEI jfﬂS—],]),
prd 14!

(43)

which is the Fock state expansion of the initial state, providing us
with the sought for coefficients at t = 0.

The first option to evolve the wave-function over time would be to
solve the coupled system of linear differential equations for the b
coefficients

S
ib; (t) = Y CF,|HIF)bi (t), (44)
i=0

that follows from the TDSE, e. g., by using a Runge-Kutta method
or by matrix exponentiation (which in the present case of time-
independent Hamiltonian turns out to be advantageous, because
the matrix exponential has to be calculated only once, before the
propagation loop is started). An alternative, second option,
which is also numerically exact, would require diagonalising
the BH Hamiltonian [16], e.g., in the Fock basis, see also
Section 2.3.1in [63]. The time evolution is then finally given
by (h =1)

S
¥ (1)) = ) c; exp{—iEit}|D)), (45)

i=0
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where {E;} are the eigenenergies and the {|®;)} are the eigenstates.
The time-independent c-coefficients follow from the expansion of
the initial wave-function in the eigenstates.

In both cases, the matrix elements of the Hamiltonian have to be
set up. This does not pose a major challenge in case of small site
numbers but in the general case it requires some clever way of
creating and labeling of the Fock states, as described in a pedagogical
way in [64].
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