[image: image1]Accurate segmentation of infrared images for circuit board diagnosis using an improved Deeplabv3+ network

		ORIGINAL RESEARCH
published: 13 July 2023
doi: 10.3389/fphy.2023.1223548


[image: image2]
Accurate segmentation of infrared images for circuit board diagnosis using an improved Deeplabv3+ network
Jianxin Hao1*, Xuan Xia2, Li Wang3, Zhixin Li2 and Meng Zhu2
1Engineering Techniques Training Center, Civil Aviation University of China, Tianjin, China
2Institution of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
3Vocational and Technical College, Civil Aviation University of China, Tianjin, China
Edited by:
Ming Yang, Civil Aviation Flight University of China, China
Reviewed by:
Huijun Cao, Xiamen City University, China
Guo Le, University of Electronic Science and Technology of China, China
* Correspondence: Jianxin Hao, jxhao@cauc.edu.cn
Received: 16 May 2023
Accepted: 30 June 2023
Published: 13 July 2023
Citation: Hao J, Xia X, Wang L, Li Z and Zhu M (2023) Accurate segmentation of infrared images for circuit board diagnosis using an improved Deeplabv3+ network. Front. Phys. 11:1223548. doi: 10.3389/fphy.2023.1223548

An effective infrared image segmentation algorithm is essential for non-contact fault diagnosis of circuit boards. However, the uneven grayscale of the infrared images, multiple target regions, and large radiation noise pose challenges to achieving accurate segmentation and efficient data extraction for the interested regions. In this paper, we propose a segmentation algorithm based on the Deeplabv3+ network, using the lightweight MobileNetV2 as a replacement for the original Xception backbone network to improve computational efficiency and reduce overfitting. We also employ a composite loss function and cosine annealing learning rate to balance foreground-background segmentation and avoid local optima. Furthermore, we integrate the Convolutional Block Attention Module (CBAM) to extract and combine important spatial and channel features, allowing the algorithm to focus on identifying elements of the circuit board instead of background pixels, thereby improving segmentation accuracy. Experimental results demonstrate that our proposed algorithm achieves state-of-the-art performance in terms of both segmentation accuracy and computational efficiency on our self-built infrared circuit board dataset, with a MIoU of 90.34%, MPA of 95.26%, and processing speed of 25.19 fps. Overall, our proposed segmentation algorithm can effectively identify the key regions of interest in infrared images of circuit boards, providing technical support for non-contact diagnosis.
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1 INTRODUCTION
The proper functioning of the airborne electronic system is crucial for the safe operation of civil aircraft. However, traditional fault diagnosis techniques face challenges with the current airborne circuit systems, which have high component density and large circuit scale [1]. These challenges result in difficulties in diagnosis, low generalization, long time consumption, and low accuracy of traditional contact diagnosis methods [2]. To overcome these issues, non-contact fault diagnosis technology based on Infrared Thermography has emerged as a promising alternative [3]. Infrared Thermography uses an infrared camera to obtain temperature information from key components of the circuit, facilitating the fault diagnosis of circuit components. However, the success of infrared-based fault diagnosis depends on accurately acquiring temperature information from the heating element regions, which requires the development of an effective and accurate segmentation algorithm for the infrared image region of interest.
There are two main categories of existing semantic segmentation methods: traditional methods and deep learning-based methods. Traditional image segmentation methods frequently utilize machine learning algorithms, such as thresholding [4], edge detection [5], and clustering [6], and often depend on handcrafted features, such as histograms of oriented gradient [7] and scale-invariant feature transform [8]. With the rapid development of deep learning technology, researchers have increasingly applied it to image segmentation tasks, including semantic segmentation [9–11] and instance segmentation. Considering the focus of this paper is on the segmentation of electronic components on circuit boards, we will primarily discuss the development of deep learning-based semantic segmentation methods.
In the field of semantic segmentation, U-Net [12] and SegNet [13] are two commonly used models. U-Net adopts a symmetrical structure and is known for its ability to fuse features from different levels during the upsampling and downsampling processes to recover missing local information. On the other hand, SegNet employs a unique pooling method that records the position of the maximum value during the downsampling process. This allows for the restoration of positional information during upsampling, mitigating the loss of spatial information caused by pooling. The research in the Deeplab series primarily focuses on the receptive field characteristics of convolutional networks, considering the spatial features of the current, surrounding, and entire image. Various improvement methods have been introduced, such as the atrous pyramid pooling module [14], the encoder with fully connected CRF [15, 16], the integration of contextual information [17], and the dense convolutional layers [18]. These methods enable the algorithm to extract contextual semantic information more effectively by incorporating features obtained from multi-scale image receptive fields, thus enhancing the capability of semantic segmentation. Similarly, PSPNet [19] adopts the spatial pyramid pooling module to perform pooling on the feature maps, enhancing the semantic information of the image context through scaled feature pooling, effectively expanding the global receptive field and improving segmentation performance.
In recent years, attention mechanisms have gained significant attention in semantic segmentation algorithms. They assign weights to information in both spatial and channel dimensions to emphasize their relevance to key information and improve network prediction accuracy. DANet [20] utilizes both spatial attention and channel attention mechanisms to evaluate the spatial and channel relationships between features. EncNet [21] leverages the strong correlation between scene context and the probability of category existence to selectively enhance category-related feature weights through weighted fusion. OCNet [22] employs clustering to obtain contextual information based on object regions for each pixel and proposes a context aggregation strategy. PSANet [23] can adaptively learn attention weights and establish connections between pixels in different positions using the PSA (Point-wise Spatial Attention) module, overcoming the limitations of local region-based methods. CCNet [24] emphasizes the significance of long-distance dependencies in providing useful contextual information and utilizes the cross-attention mechanism to extract pixel features, enabling each pixel to capture long-distance dependencies from all other pixels.
Building upon attention mechanism algorithms, researchers have begun exploring new directions while improving accuracy. HANet [25] focuses on training attention modules specifically for street scenes to enhance segmentation performance in such contexts. CRNet [26] introduces a mask optimization module that effectively handles limited training samples and improves the accuracy of k-shot learning through fine-tuning. Furthermore, as fully supervised learning has reached its limitations, many semantic segmentation algorithms based on weakly supervised information, such as images, object frames, and point labels, are emerging. To accelerate the algorithms and make them suitable for mobile and embedded devices, researchers have proposed relatively lightweight network architectures. LAANet [27], achieved a balanced trade-off between segmentation accuracy, inference speed, and model size for real-time semantic segmentation; ELU-Net [28], a lightweight U-Net variant with deep skip connections, demonstrates improved brain tumor segmentation using different loss functions, and achieves effective results. However, none of the aforementioned research findings specifically focus on image semantic segmentation of electrical components on circuit boards. Clearly, this is incomplete in terms of semantic segmentation for circuit boards.
In this paper, we propose an improved Deeplabv3+ network to address the challenges of accurate infrared image segmentation. By replacing the original Xception [29] backbone with a lightweight MobileNetV2, we improve the computational efficiency of Deeplabv3+. We also incorporate the CBAM into our algorithm to strengthen the extraction and fusion of features from both spatial and channel dimensions, thereby enhancing segmentation accuracy without substantially increasing computational cost. Furthermore, we introduce a composite loss function to overcome the difficulty of segmenting large background regions in infrared circuit board images. We conduct extensive experiments on our self-built infrared circuit board image dataset. The results demonstrate that our proposed method achieves state-of-the-art performance in terms of segmentation accuracy and efficiency.
The remainder of this paper is organized as follows. In Section 2, we briefly review the relative basic theory. In Section 3, we elaborate the proposed method in detail, including the network architecture, loss function, and implementation specifics. In Section 4, we introduce the dataset, experimental setup, and results. Finally, Section 5 concludes the paper.
2 RELATE WORK
2.1 Deeplabv3+ algorithm
Deeplabv3+ is an advanced semantic segmentation algorithm that utilizes a prominent encoder module and a streamlined decoder module, as depicted in Figure 1.
[image: Figure 1]FIGURE 1 | Deeplabv3+ network structure.
The encoder module is primarily comprised of the backbone network and the atrous spatial pyramid pooling (ASPP) module, which work together to extract features from the input image. In contrast, the decoder module upsamples the output feature map generated by the encoder module, and concatenates it with the low-dimensional feature map. The final segmentation result is obtained by restoring the size of the input image via bilinear interpolation.
2.2 The backbone network
During the coding phase, Deeplabv3+ employs the optimized and enhanced Xception as its backbone network to extract features. Figure 2 displays the network structure of this optimized version, which boasts several improvements over the original Xception network.
[image: Figure 2]FIGURE 2 | Improved Xception network structure.
Firstly, the middle flow is repeated multiple times, resulting in a deeper network. Secondly, all instances of maximal pooling in the original network are substituted with depth-wise separable convolutions that have a step size of 2 and a convolution kernel size of 3 × 3. This modification enables the network to take advantage of the separable characteristics of convolutional extraction at any resolution mapping.
2.3 Atrous spatial pyramid pooling
Atrous Spatial Pyramid Pooling (ASPP) is a crucial module within the Deeplabv3+ architecture that facilitates multi-scale feature extraction. It achieves this by applying atrous convolutions at multiple dilation rates to a single input feature map, generating several parallel branches with different receptive field sizes. The ASPP module in Deeplabv3+ employs dilation rates of 6, 12, 18, and 24, as depicted in the network structure. Furthermore, there is a batch normalization layer for data normalization after each operation. The feature maps generated by each branch are concatenated, and a 1 × 1 convolution is used to compress and integrate the features.
2.4 Depth-wise separable convolution
Deeplabv3+ employs Depth-wise Separable Convolution (DSC) as the primary convolutional operation in the Xception encoder module to extract feature maps. The basic idea behind DSC is to decompose a complete convolution into two separate operations: depth-wise convolution and pointwise convolution, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Depth-wise Separable Convolution structure.
During the Depth-wise convolution operation, each channel of the input tensor is convolved with its corresponding channel of the filter tensor. The resulting output channels are then combined in the point-wise convolution operation, which applies a 1 × 1 convolution to the Depth-wise output. This approach significantly reduces the number of parameters in the algorithm and enhances computational efficiency.
3 PROPOSED ALGORITHM
This paper proposes a novel algorithm for applying the improved Deeplabv3+ to segment specific circuit board infrared images. The proposed algorithm combines a Convolutional Block Attention Module [30] (CBAM) with an improved trunk network and composite loss function, as shown in Figure 4. To improve the algorithm’s running speed and reduce complexity, the lightweight MobileNetV2 [31] is used to replace Xception in the original network. The compound loss function, M loss, is utilized during network training to reduce the dominant degree of background regions. Additionally, the CBAM module is used for feature weighting after extraction to further reduce interference in the background area and improve the algorithm’s attention to the components in the infrared image of the circuit board.
[image: Figure 4]FIGURE 4 | Improved Dense-Deeplabv3+ network structure.
3.1 Improved Deeplabv3+ backbone network
Compared to a high-resolution visible image with three channels, an infrared image has a lower resolution and a single channel. Additionally, due to the real-time detection requirements in circuit board fault detection systems, the segmentation algorithm needs to provide faster response times. To address this challenge, we adopted a lightweight network, MobileNetV2, as a replacement for the Xception backbone network. MobileNetV2 is based on deep convolutional neural networks but can prevent overfitting and improve the running speed of the algorithm. Compared to the traditional network, the new backbone network has greatly reduced training parameters, with only 1/32 of the original parameters, without sacrificing accuracy.
MobileNetV2 adopts a inverted residual architecture, as shown in the Figure 4. The input data is first processed through a [image: image] convolution operation to increase the number of channels, which allows the backbone network to extract more feature data. To handle the increased amount of data resulting from the channel expansion, the network uses hierarchical convolution for subsequent processing. This approach reduces the number of training parameters and speeds up the algorithm operation. The end of the backbone network uses [image: image] convolution for downsampling, which ensures that the input and output data have consistent dimensions. By applying the MobileNetV2 backbone network with a reverse residual structure, the network’s training parameters are reduced, which helps prevent overfitting and ensures accuracy, while also ensuring real-time performance in processing infrared images.
3.2 Convolution block attention module
The Convolutional Block Attention Module (CBAM) combines the channel attention module and spatial attention module, as illustrated in Figure 5. CBAM can identify important features and suppress unnecessary ones by inferring attention mapping along the channel and spatial dimensions of a given intermediate feature map.
[image: Figure 5]FIGURE 5 | Convolutional block attention module.
The channel attention module treats each channel of the input feature map as a feature detector for image classification. First, spatial pooling of the feature map is performed using maximum pooling and global average pooling, resulting in two channel attention vectors. These vectors are then separately inputted into a shared MLP network to generate two [image: image] attention vectors. Finally, the corresponding positions of the two vectors are added and activated with the sigmoid function to obtain the channel attention vector of dimension [image: image], as shown in Eq. 1.
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Here, [image: image] denotes the input intermediate feature map, [image: image] represents the output feature map of the channel attention module, [image: image] denotes global average pooling, [image: image] indicates maximum pooling, [image: image] is the Rectified Linear Unit activation function, [image: image] and [image: image] represent shared weights in the MLP, and [image: image] denotes the Sigmoid activation function.
The channel attention mechanism module compresses the spatial dimension of each feature map through average pooling and maximum pooling, allowing the module to gather significant clues for distinguishing features. In this stage, each channel of the feature map is considered a feature detector, and the focus is on identifying “what” component is present in the input infrared image. On the other hand, spatial attention is different from the channel attention mechanism as it aims to identify the location of features, thus complementing channel attention. Initially, maximum pooling and average pooling are applied to the features processed by the channel attention module to obtain two feature maps of the same dimension. The two feature maps are then concatenated and convolved, and the Sigmoid function is used to activate the feature map after convolution, resulting in the generation of a spatial attention vector, as shown in Eq. 2.
[image: image]
Here, [image: image] represents the feature vector processed by the channel attention module, [image: image] represents global average pooling operation, [image: image] indicates the maximum pooling operation, [image: image] indicates concatenation operation, [image: image] represents convolution operation with kernel size of [image: image]. [image: image] denotes the Sigmoid activation function. The use of spatial attention modules allows the algorithm to focus on “where is” the components are on the infrared image of the circuit board.
Therefore, the convolutional attention module, which consists of the aforementioned two modules, addresses the issues of feature recognition and localization, respectively. Given the practical application scenario of this paper, namely, the segmentation of various electronic components in infrared images of circuit boards, the background information is deemed irrelevant and can be disregarded. The implementation of CBAM significantly enhances the accuracy of the algorithm.
3.3 Optimization of loss function and learning rate
In the DeepLab V3+ network, the loss function used in multi-classification problems is cross-entropy, which is expressed as Eq. 3.
[image: image]
Here, [image: image] represents the number of samples, [image: image] represents the algorithm output, and [image: image] represents the label. If the category is [image: image], then [image: image] equals 1; otherwise, it equals 0. The cross-entropy loss function calculates the loss value pixel by pixel, which accumulates in the process of network backpropagation. However, in the case of infrared images of circuit boards, the area occupied by components is relatively small compared to the area occupied by background pixels in the region of interest. As a result, the cross-entropy loss function tends to overemphasize the contribution of background pixels, leading to the background region dominating the training network and reducing the accuracy of chip region recognition. To address this issue, this paper proposes a compound loss function, M loss, shown in Eq. 4.
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Among them, [image: image] is the proportional coefficient, and [image: image] is the loss function introduced in this paper, which is used to solve the problem that the background area of infrared image of circuit board is too large. As shown in Eq. 5, the value range of this loss function is 0–1, and the larger the value, the stronger the prediction ability.
[image: image]
Here, [image: image] represents the algorithm’s output set, [image: image] represents the real set. Additionally, to avoid the traditional gradient descent method from falling into a local optimal solution, the cosine annealing learning rate is used in the experiment, enabling the mutation of the learning rate to avoid local optima and find the global optimal solution.
4 SEGMENTATION RESULTS AND ANALYSIS
4.1 Build and optimize the dataset
The German InfraTec-R5300 infrared camera was used to capture infrared images of a power module in a certain avionics system. The size of the infrared image was 320 × 256, with a measurement accuracy of ±1% and a temperature resolution of 0.015K or less.
[image: image]
To facilitate subsequent data processing, the temperature information was converted to grayscale using Eq. 6. Here, [image: image] and [image: image] denote the grayscale and temperature values of corresponding pixels, respectively. [image: image] and [image: image] represent the minimum and maximum values of pixel temperature, respectively. The grayscale image of the processed infrared image is presented in Figure 6.
[image: Figure 6]FIGURE 6 | The grayscale image corresponding to the infrared image of the circuit board.
To augment the sample dataset, a GAN network generated 1,400 simulated images using 600 grayscale images of circuit boards as training data. The simulated images were merged with the original images to yield a total of 2,000 grayscale images of the circuit board. The regions of interest of all images were labeled using Labelme labeling software. To enhance the sample data, techniques such as translation, rotation, mirror flipping, noise addition, contrast adjustment, and Gaussian blur were randomly applied to generate a total of 6,000 circuit board image data sets. These were then divided into training, validation, and testing sets in a 3:1:1 ratio. To ensure the reliability of the data, the test set did not include simulated images.
4.2 Evaluation metrics
Evaluation metrics are commonly used to assess the detection performance of a semantic segmentation algorithm. Some widely used metrics include pixel accuracy (PA), mean pixel accuracy (MPA), and mean intersection over union (MIoU).
PA calculates the ratio of the number of correctly classified pixels to the total number of pixels.
[image: image]
MPA calculates the proportion of correctly classified pixels for each class and then averages across all classes.
[image: image]
MIoU is a standard metric for segmentation problems that calculates the ratio of the intersection and union of two sets.
[image: image]
ere, [image: image] represents the number of categories, [image: image] represents the number of pixels correctly classified, and [image: image] represents the number of pixels belonging to the [image: image] category but classified into the [image: image] category.
4.3 Experimental conditions and algorithm training
The segmentation algorithm in this paper was trained using Google Collab under the Python framework, with a Tesla T4 GPU, 16 GB of graphics memory, and 12 GB of RAM. The algorithm was initialized with a learning rate of 0.01, and the SGD optimizer in the PyTorch framework was used to adaptively optimize and update the algorithm parameters. The momentum and weight attenuation terms were set to 0.9 and 0.0005, respectively. Furthermore, the algorithm employed the cosine annealing learning rate change strategy during training.
The experimental data used in this paper was established in Section 4.1 of the paper, comprising of 3,600 images for the training set, 1,200 images for the validation set, and 1,200 images for the test set. To expedite the network training process, the training phase loaded pre-trained MobileNetV2 weights and kept the backbone network parameters frozen during the first 50 epochs. Subsequently, during the last 50 epochs, the backbone network parameters were unfrozen to fine-tune the algorithm.
Figure 7 shows the loss value curve for both the training and validation sets. The x-axis represents the number of training iterations, while the y-axis represents the corresponding algorithm loss value. The improved algorithm presented in this paper achieves lower training and validation loss values in fewer iterations, and the loss value continues to decrease throughout the training process until convergence. After approximately 80 iterations, the training loss reaches a relatively small value, indicating that the algorithm has not overfitted and has achieved an optimal training performance.
[image: Figure 7]FIGURE 7 | Train and validation loss.
4.4 Segmentation experimental results
The paper utilizes infrared image data of a circuit board to train and evaluate the performance of several algorithms, including PSPNet, HRNet [32], DeepLab V3+, MDeepLab V3+, GAN-SUNet, and the algorithm proposed in the paper. The segmentation performance of each algorithm on the circuit board’s infrared image dataset is verified, and the results are presented in Figure 8.
[image: Figure 8]FIGURE 8 | Results of the proposed segmentation over existing algorithm. 
In the segmentation image, the red, green, and olive sections correspond to chips, capacitors, and diodes, respectively. It is observed that for capacitors and integrated chips that are widely spaced, all algorithms except PSPNet can effectively determine the spatial position and partial contour of components amidst the complex circuit board background and generate reasonable segmentation results. However, when the distance between components is small and the thermal radiation of diodes is weak, HRNet, DeepLab V3+, and MDeepLab V3+ produce segmentation results with varying degrees of region merging, and the edge segmentation of components is not well-defined.
In contrast, GAN-SUNet and the algorithm proposed in this paper demonstrate accurate segmentation of the diode region with minimal false segmentation in the edge pixels of the components. This shows a superior segmentation performance, with reduced instances of both false and missing segmentation, resulting in segmentation results that closely resemble the original labeled image.
The running time and detection accuracy of each algorithm are described in Table 1, in addition to the visual perception. It is important to note that the detection accuracy mentioned refers to the accuracy of detecting interested components only after removing the influence of the background. The evaluation results of each algorithm align with the visual perception observations. PSPNet’s segmentation performance is significantly lower than the other algorithms. While HRNet’s segmentation index is comparable to other algorithms, its running speed is noticeably slower. The running speed of DeepLab v3+ and GAN-SUNet, which both use VGG16 as their main backbone network, is slower than that of MDeepLab v3+ which uses MobileNetV2 as its main backbone network, as well as the proposed algorithm algorithm. Under the same lightweight MobileNetV2 backbone network, the proposed algorithm algorithm with CBAM module and optimization loss function improves segmentation accuracy by 1.88% compared to MDeepLab v3+ while maintaining a similar running speed. The proposed algorithm’s running time for processing the same image is 40 ms, which is only 54% of GAN-SUNet’s running time. Therefore, the proposed algorithm’s running speed is significantly faster while maintaining a similar segmentation accuracy.
TABLE 1 | Segmentation performance of different algorithms on infrared images.
[image: Table 1]Referring to the evaluation index in Table 1 and the intuitive visual perception of the segmentation results in Figure 8, the proposed algorithm based on the characteristics of infrared images exhibits faster running speed and better segmentation performance than the original network. Although there may still be erroneous segmentation of edge pixels in the edge part of some components, there will be no adhesion of components in the division area, which is a significant improvement. Therefore, this paper concludes that the use of the MobileNetV2 network, which is more suitable for infrared images, the introduction of the CBAM, and the optimization of the training loss function and learning rate of the network all contribute positively to improving the segmentation performance of the network. These improvements can effectively enhance the accuracy and speed of image segmentation of interested components in the infrared images of the circuit board.
4.5 Ablation experiment
To provide a scientific explanation for the performance advantage of the proposed algorithm, an ablation experiment was conducted in comparison to the original DeepLab V3+. Table 2 presents the segmentation performance data for the algorithm in the ablation experiment. The “with_Mbn” column indicates that the backbone network is replaced by MobileNetV2; “OLF&LR” represents the optimized loss function and learning rate added to the algorithm, and “CBAM” indicates the addition of the CBAM module to the algorithm.
TABLE 2 | Comparison table of ablation experiment results.
[image: Table 2]Comparing algorithm 1 and 2, it can be seen that using MobileNetV2 as the backbone network instead of Xception increases the running speed and segmentation accuracy of the algorithm by 190% and 3.61%, respectively, indicating that the new backbone network is better suited for feature extraction from infrared images. Comparing algorithm 2 and 3, it can be seen that further optimization of the loss function and learning rate increases the segmentation accuracy of the algorithm by 1.26%, without decreasing the running speed due to the optimization of the loss function. Finally, comparing algorithm 3 and 4, it can be seen that the addition of the CBAM module can simultaneously extract and combine important features in space and channel, promoting the training intensity of the algorithm’s positive weight while suppressing unnecessary features.
Although the addition of the CBAM module leads to a slight decrease in computing speed, the segmentation accuracy of the algorithm is improved again. Therefore, this paper believes that the limited loss of speed decrease is worthwhile. Figure 9 also supports this point visually. Specifically, when CBAM is turned off, the segmentation results show noticeable changes, including smaller edge distance between the two green areas representing capacitance, increased edge missegmentation of the yellow segment representing the diode, and uneven edges.
[image: Figure 9]FIGURE 9 | Impact of CBAM on proposed segmentation results.
4.6 Generalization experiment
To evaluate the generalization ability of the proposed algorithm and demonstrate its applicability, we utilize an unseen dataset to assess its performance. It is important to note that this dataset is entirely new and acquired independently after the completion of model training. Furthermore, this dataset was obtained while the circuit board was operating under new parameters. Subsequently, the proposed algorithm is employed to segment the infrared images, and the results are presented in Figure 10.
[image: Figure 10]FIGURE 10 | The segmentation of proposed algorithm on unseen data.
On the new dataset, the proposed algorithm maintains its strengths by precisely segmenting each region of interest for individual components. The segmented regions exhibit clear boundaries, with no erroneous adhesion between components of comparable spatial proximities. Upon evaluation, the MIoU remains at a high of 90.12%, despite a marginal decrease relative to the original training set. The algorithm is still capable of maximizing the discriminative features of infrared images under the constraint of small sample sizes, achieving a high segmentation accuracy and effectively partitioning the infrared image of the circuit board to determine the spatial positions of its constituents. These results suggest the algorithm possesses a degree of generalization capability.
5 CONCLUSION
In this paper, we present an improved region of interest component segmentation algorithm based on Deeplabv3+, aiming to address the challenges posed by the limited data set size, large background pixel area, and small area of interested components in infrared images of circuit boards. The proposed algorithm leverages the infrared image data to support fault diagnosis of the circuit board by constructing a training and verification data set.
Firstly, to expand the dataset and minimize overfitting, a GAN network and image enhancement technology are utilized. Secondly, to better adapt to infrared images, MobileNetV2 is adopted as the backbone network of the algorithm, which accelerates training and diagnosis and enables future real-time deployment. Furthermore, the composite loss function and cosine annealing learning rate are employed to avoid local optimal solutions and minimize the impact of background pixels on segmentation accuracy. Finally, the CBAM is integrated into the algorithm to focus on component regions of interest, reduce the effect of background, and improve segmentation performance.
The experimental results demonstrate that the proposed algorithm can accurately and efficiently segment the component regions of interest in the infrared images of circuit boards. Specifically, the segmentation time for a single circuit board on the test set is only 40 ms, with MIoU and MPA reaching 90.34% and 95.26%, respectively. These results show that the algorithm achieves a high level of segmentation accuracy while significantly improving the running speed.
By incorporating the proposed algorithm into the circuit board fault diagnosis system, the segmentation of the regions of interest can be quickly completed, thereby providing crucial technical support for subsequent fault diagnosis research. Overall, the algorithm can be easily adapted to accommodate the expansion of infrared image datasets of self-built circuit boards and can be effectively utilized for practical applications, primarily owing to the improved network architecture and optimization approach.
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