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In the present work, the semiconductor material is used to study the moisture
diffusivity when a modified Moore–Gibson–Thompson (MGT) model is taken into
account. The influence of moisture concentration is included in the governing
equations throughout the photothermal transfer process. Based on the dissimilar
relaxation durations of the coupled optoelectronic and thermoelastic waves, the
MGT model is used to investigate the issue at hand. The method of the Laplace
transform is used to obtain analytical solutions for the physical quantities,
constitutive relationships, elastic waves, carrier density, heat equation
conduction, and moisture diffusivity for the thermo-elastic medium. To extract
the primary physical quantities in the space–time domain, the boundary
conditions, temperature, plasma, displacement, and mechanical stress are
inverted numerically using the Laplace transform. The effect of the new
parameter like the reference moisture parameter with various values is
discussed graphically on the primary physical quantities. The comparison
between silicon and germanium is taken into account to achieve numerical
computations.
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1 Introduction

The stress field is responsible for producing the temperature field, and the stress field
modulates the strain and stress fields. Force loads and thermal stresses are common sources
of damage to structural parts. A crack may occur if the strains are great enough or if the
strains combine with mechanical stresses from external loads. Recently, many scientists have
been concerned with semiconductor materials; this is due to their many modern
applications, such as aircraft electronics and sensors. In semiconductors, some materials
have unique properties like highly conductive materials such as copper. In semiconductors,
the most important effect property in modern industries is the photothermal (PT) excitation
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process that happens when temperature increases to release
electrons to the surface of the material, which makes the material
a good conductor of electricity. The process of electrons gaining
energy because of increasing temperature is called electronic
deformation (plasma), and this process causes an electric current.
Light absorbed by the material causes a local increase in temperature
and pressure, and a proportional increase in volume, according to
the PT effect.

Biot [1] was the first to highlight the solution for the coupled
thermo-elasticity. The Fourier heat conduction theory is considered
the basis for the conventional dynamic (CD) theory of the thermo-
elasticity theory. The CD assumes that wave propagation can travel
at an unlimited speed because of the parabolic form found in the
governing equations, and this theory was unacceptable for the
physical experiments. Because of this inconsistency, Lord and
Shulman (LS) [2] introduced a new model by putting one
relaxation time in the equations, which makes the system of
equations take the hyperbolic form, making the thermal waves
propagate at a finite speed. Green–Lindsay (GL) [3] modified a
new model of thermoelasticity containing two relaxation times,
which makes many researchers utilize this model to conduct
numerous studies. Many authors [4, 5] have used the GL theory
known as the generalized thermoelasticity theory. After adding the
relaxation factor to the suggested heat equation to Green–Naghdi III
(GN-III) by Abouelregal et al. [6], many authors tend to utilize the
modified thermoelastic theory in the context of the MGT equation
because of its importance in many applications and also it was
derived using a third-order differential equation. Othman et al. [7]
studied the transient disturbance according to the moving heat
source in the generalized magneto-thermoelasticity theory.
Quintanilla [8, 9] has developed thermoelastic MGT heat
conduction. Marin et al. [10–13] analyzed the thermoelasticity
theory in the context of the MGT model’s starting values, as set
by the dipolar elastic property. Recent evidence [14] shows that the
MGT equation may be used in a wide range of contexts. Using a
thermoelastic semiconductor material, Lotfy et al. [15, 16] employed
the MGT model to prove the stability of their analytical solutions.

We argue that the fundamental ideas behind heat transmission
and moisture transport are similar. Mechanically induced stresses
may have significant effects on how heat and moisture are
distributed. Understanding the relationship between mechanical
deformation and diffusion caused by temperature and moisture is
so crucial. There are a wide variety of engineering problems where
the correlation between humidity, temperature, and deformation
may be seen. When a solid is subjected to both moisture and heat, a
phenomenon known as hygro-thermoelasticity takes place. Szekeres
[17, 18] published research discussing moisture’s impact on
conventional heat transmission. More so than mechanical
loadings, Gasch et al. [19] discussed temperature and moisture
fluctuations. Szekeres and Engelbrecht [20] established a
fundamental analogy between heat and moisture before
proceeding with creating equations governing coupled hygro-
thermoelasticity.

Semiconducting materials found widespread use in contemporary
engineering because of technological advancements. There is both
theoretical and practical usefulness in learning more about how
waves travel through a semiconducting material. Unfortunately, the
author was unable to find any previous documentation of the wave

propagation issue in semiconducting media during a PT process. The
fundamental principle shared by all PT techniques is the detection of
short-lived thermal waves generated in the sample upon its absorption
of modulated light. When an appropriate transducer picks up these
pressure fluctuations in the surrounding gaseous medium, we obtain
the photoacoustic (PA) signal. This happens because the absorbed
energy is transformed into heat both in the bulk and on the surface of
the sample. The PA technique uses a PA signal obtained experimentally
to determine where the heat is coming from that is causing the thermal
waves. So, in addition to the optical characteristics of the sample, we
may also learn about its thermal parameters, structural formations, and
inhomogeneities from the PA response. Several authors have created
cutting-edge approaches to investigate the laser–semiconductor
interaction in photoacoustic spectroscopy [21, 22]. Several physical
studies using PT techniques [23–27] confirmed the accurate
temperatures, internal displacements, thermal diffusion, and other
electrical features of nano-composite semiconductor materials.
Elastic oscillations in the atomic lattices of a material are directly
responsible for the electronic deformation induced by light. Hobiny
and Abbas [28] used a semiconductor-filled cylinder cavity to
investigate PT waves in free space. When a semiconducting material
is subjected to PT waves with hydrostatic stress, moisture diffusivity
with non-local parameters, two temperatures, laser pulses, and the
resulting strain stresses become problematic [29, 30]. Applying the
photo-thermoelasticity hypothesis to the case of the
Moore–Gibson–Thompson (MGT) stability model in a photonic
semiconductor material subject to a two-temperature theory,
Chteoui et al. [31] found support for their theory. On the other
hand, Hobiny and Abbas [32–34] used a theoretical analysis to
obtain the effect of a moving heat source with laser irradiation on
skin tissue during thermal damage. Many applications according to the
bioheat model based on the thermoelasticity theory are studied for
living tissue [35–38].

In recent years, the MGT equation has gained a lot of attention
because it may be used in a variety of contexts. Recent years have
seen a rise in the profile of research into PT phenomena within the
context of the subject of material science. It may be used in the
evaluation of the thermal, optical, and electrical properties of various
materials. In this research, moisture diffusivity is used to analyze the
moisture and heat equation that occurs during the PT MGT process
in one dimension when the mechanical force and moisture
diffusivity are both in play. The issue is posed at the free surface
of a semi-infinite semiconducting material in its most general form.
To solve the system and obtain an analytical solution for the primary
physical fields, the Laplace transform is used. To declare the physical
numbers, the numerical inverse of the Laplace transform must be
executed by utilizing a computer language. In conclusion, the results
of all calculations regarding the distribution of temperature, carrier
intensity, normal displacement, normal force stress, and moisture
concentration are visually depicted.

2 Main equations

During the PT transport phase, the medium is analyzed with the
overlapping processes of plasma–thermal and moisture diffusion in
mind if the thermo-elastic semiconductor material exhibits linear
elastic properties and is homogeneously transversely anisotropic. In
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this problem, the fundamental distributions in this problem are the
carrier density (intensity) N(ri, t), moisture concentration m(ri, t),
the temperature change of a material particle T(ri, t), and the
displacement vector u(ri, t), (ri represents the position vector,
and t represents the time). Tensor forms of the equations for the
interaction of plasma–thermal–elastic waves and moisture diffusion
are given in [15, 16]:

zN ri, t( )
zt

� DEN,ii ri, t( ) − N ri, t( )
τ

+ κ T ri, t( ), (1)

ρCe DT k
z

zt
+ k*( )T,ii ri, t( ) + 1 + τ0

z

zt
( )Dm

Tm,ii ri, t( )( ) �

1 + τ0
z

zt
( ) ρCe

zT ri, t( )
zt

+ γtT0
zui,j ri, t( )

zt
− Eg

τ
N ri, t( )( )
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,

(2)
km Dm k

z

zt
+ k*( )m,ii ri, t( ) +DT

mT,ii ri, t( )( ) �

km
zm ri, t( )

zt
− Eg

τ
N ri, t( ) + γmm0Dm

zui,j ri, t( )
zt

( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (3)

In tensor form, the motion equation is similar to [1–3]:

ρ
z2ui ri, t( )

zt2
� σ ij,j. (4)

Both the displacement and strain tensor may be represented
using the same equation:

εij � 1
2

ui,j + uj,i( ). (5)

With increasing humidity, the tensor form of stress,
displacement, and plasma temperature is similar to the following
equation:

σ ij � Cijklεkl − βij αtT + dnN( ) − βmij m, i, j, k, l � 1, 2, 3. (6)

In the aforementioned equations, the diffusivity parameters
areDT and Dm, which refer to the temperature diffusivity and the
moisture diffusion coefficient, respectively. The coupled
diffusivities are Dm

T and DT
m. On the other hand, DE represents

the carrier diffusion coefficient, and m0 refers to the reference
moisture. The moisture diffusivity is km, Cijkl represents the
isothermal parameter tensor of the medium, εkl represents the
strain tensor, and βij and βmij represent the isothermal
thermoelastic coupling tensor material coefficients of moisture
concentration. The thermal activation coupling parameter is
κ � zN0

zT
T
τ , and N0 represents the equilibrium carrier

concentration [10, 12]. The energy gap, the photogenerated
carrier lifetime, the density, Lame’s elastic constants, the
volume thermal expansion, and the absolute temperature of
the medium are Eg, τ, ρ, μ, λ, γt � (3λ + 2μ)αT and T0,
respectively, where αT represents the linear thermal expansion
coefficient. The specific heat of the semiconductor is Ce, and δn
represents the conductive deformation potential with the valence
band, where k* represents the rate of thermal conductivity.

When the surface boundary conditions are thermally insulated,
the rod representing the semiconductor elastic media is released
from the constraints of the electrical short (closed circuit),
isothermal, and stress loads. To that purpose, all analyses are

performed along the x-axis (the direction of wave propagation is
along the x-axis), and all physical values are arbitrary to the
yz-coordinate system.

The following are the 1D descriptions of the physical
quantities [30]:

zN
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� DE

z2N

zx2
− N

τ
+ κT, (7)
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( ) ρCe

zT
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m
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τ
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� ρCeDT k
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z2T
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z2T
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km
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z

zt

zu

zx
( ) − kmDm k

z
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+ k*( ) z2m
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τ
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mkm

z2T
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(9)
For Eq. 4, we have

ρ
z2u

zt2
� 2μ + λ( ) z2u

zx2
− γt

zT

zx
− δn

zN

zx
− γm

zm

zx
. (10)

Here, γt,m � β αt,m and δn � βdn, β � 3μ + 2λ.
In one dimension, the constitutive equation is similar to the

following equation:

σxx � 2μ + λ( ) zu
zx

− β αtT + dnN( ) − γmm � σ. (11)

The MGT model according to the PT excitation can be
expressed as a general form of the LS and GN-III models. In this
case, the principal models of the photo-thermoelasticity theory
under the MGT effect (k, k*, and τ0 are non-negative) are
reduced to the following cases [31]:

(i) When k* � τ0 � 0, the classical thermoelastic (CTE) model is
obtained.

(ii) When k* � 0 only, the Lord and Shulman (LS) model is
attained.

(iii) When k � τ0 � 0, the GN-II model is observed.
(iv) When τ0 � 0, the GN-III model is obtained.

3 The mathematically formulized
problem

The following non-dimensional variables are provided for
convenience:

x′, u′( ) � x, u( )
CTt*

, t′, τ0′( ) � t, τ0( )
t*

, T′, N′( ) � γtT, δnN( )
2μ + λ

,

σ′ � σ

μ
, e′ � e, m′ � m. (12)

To simplify Eq. 7, Eq. 8, Eq. 9, Eq. 10, and Eq. 11, we may use Eq.
12 to remove the dashes and obtain

z2

zx2
− q1 − q2

z

zt
( )N + ε1 T � 0, (13)
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k
z
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ze

zt
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� 0,
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k
z
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+ k*t*( ) z2m
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− a4

zm

zt
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z2T
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+ a6N − a7

z2u

ztzx
� 0, (15)

z2
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− z2

zt2
( )u − zT

zx
− zN

zx
− a8

zm

zx
� 0. (16)

The 1D stress component takes the following form in the non-
dimensional form:

σxx � a9
zu

zx
− T +N( )( ) − a10m � σ, (17)

where q1 � kt*
DEρτCe

, q2 � k
DEρCe

, ε1 � dnkκt*
αTρCeDE

, V1 � kC2
Tt*

DT
,

V2 � t*Dm
T γt

ρCeDT(2μ+λ), t* � k
ρCeC2

T
, V3 � αTEgt*

τdnρCeDT
, V4 � γ2t T0t*

ρCeDT
, a4 � C2

Tt*
Dm

,

a5 � DT
m(2μ+λ)
Dmγt

, a6 � Eg(2μ+λ)t*a4
kmδnτ

, a10 � γm
μ , a7 � γmm0C2

Tt*
km

, a8 � γm
2μ+λ,

a9 � 2μ+λ
μ , C2

T � 2μ+λ
ρ , and δn � (2μ + 3λ)dn.

The coupled parameter ε1 is named the coupling thermoelectric
coefficient.

According to the properties of homogeneity of the problem, the
following initial conditions to solve the problem analytically are
presented:

u x, t( )|t�0 � zu x,t( )
zt

∣∣∣∣t�0 � 0, T x, t( )|t�0 � zT x,t( ) |
zt

∣∣∣∣t�0 � 0, m x, t( )|t�0 � zm x,t( )
zt

∣∣∣∣t�0 � 0

σ x, t( )|t�0 � zσ x,t( )
zt

∣∣∣∣t�0 � 0, N x, t( )|t�0 � zN x,t( )
zt

∣∣∣∣t�0 � 0.

(18)

4 The solution to the problem

Laplace transforms used, which are defined for any function
Θ(x, t), are as follows:

L Γ x, t( )( ) � �Θ x, s( ) � ∫
∞

0

e−stΘ x, t( ) d t. (19)

Applying Eq. 19 to the main aforementioned Eqs 13–17, the
following equations are obtained:

D2 − α1( ) �N + ε1 �T � 0, (20)
V10D

2 − α2( ) �T + α3D
2 �m + α4 �N − α5D�u � 0, (21)

α6D
2 − α7( ) �m + a5D

2 �T + α8 �N − α9D�u � 0, (22)
D2 − s2( )�u −D �T −D �N − a8D �m � 0, (23)
�σxx � a9 D�u − �T + �N( )( ) − a10 �m, (24)

where D � d
dx, α1 � q1 + q2 s, V10 � ks + k*t*,

α2 � (1 + τ0s)sV1, α3 � (1 + τ0s)V2, α4 � (1 + τ0s)V3,
α5 � (1 + τ0s)sV4, α6 � V10, α7 � a4s, α8 � a6, and α9 � a7s.

Solving the converted Eqs 20–22 and Eq. 23 by the elimination
technique between �T, �u, �N, and �m, the following equation is
obtained:

D8 −∏
1
D6 +∏

2
D4 −∏

3
D2 −∏

4
( ) �m, �N, �T, �u{ } x, s( ) � 0,

(25)

where the main coefficients of Eq. 25 are given as follows:

Π1 � 1
V10 α3 − V10 α6( ) ( − ( − s2V10 α3 + s2V10 α6 − V10 a8α5 + V10 a8α9

−V10 α1α3 + V10 α1α6 + V10 α7 + α2α6 − α3α9 + α5α6)),
Π2 � 1

V10 α3 − V10 α6( ) ((s
2V10 α1α3 − s2V10 α1α6 − s2V10 α7

−s2 α2α6 + V10 a8α1α5 − V10 a8α1α9 − V10 α1α7

−a8α2α9 − α1α2α6 + α1α3α9 − α1α5α6 − α3α8ε3

+α3α9ε3 + α4α6ε3 − α5α6ε3 − α2α7 − α5α7)),
Π3 � −1

V10 α3 − V10 α6( ) ((s
2V10 α1α7 + s2 α1α2α6 + s2 α3α8ε3 − s2 α4α6ε3

+s2 α2α7 + a8α1α2α9 − a8α4α9ε3 + a8α5α8ε9

+α1α2α7 + α1α5α7 − α4α7ε3 + α5α7ε3)),

Π4 � s2 α1α2α7 − s2 α4α7ε3
V10 α3 − V10 α6( ) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

To solve the differential Eq. 25, the factorization method is given
as follows:

D2 −m2
1( ) D2 −m2

2( ) D2 −m2
3( ) D2 −m2

4( ) �T, �u, �N, �m{ } x, s( ) � 0.

(27)
The quantitiesm2

i (i � 1, 2, 3, 4) are the roots that are chosen real
and positive when x → ∞. The linearity solution for thermal
distribution according to the differential Eq. 27 can be written as
follows:

�T x, s( ) � ∑4
i�1
Di s( ) e−mix. (28)

The other linear solutions of remain quantities are expressed in
the following form:

�N x, s( ) � ∑4
i�1
D′

i s( ) e−mix � ∑4
i�1
H1iDi s( ) e−mix, (29)

�u x, s( ) � ∑4
i�1
Di″ s( ) exp −mix( ) � ∑4

i�1
H2i Di s( ) exp −mix( ), (30)

�m x, s( ) � ∑4
i�1
D‴

i s( ) exp −mix( ) � ∑4
i�1
H3i Di s( ) exp −mix( ), (31)

�σ x, s( ) � ∑4
i�1
D 4( )

i s( ) exp −mix( ) � ∑4
i�1
H4i Di s( ) exp −mix( ). (32)

Here, the parameters Di,D′
i , D

″
i , and Di‴, i � 1, 2, 3, 4 can be

determined when the elimination method between the main Eqs
25–30 is used. The following are the relationships between both of
the unknown parameters Di, D′

i , D
″
i , and Di‴:

H1i � −ε3
mi

2 − α1
, H4i � a9 miH2i + 1 +H1i( )( ) + a10H3i ,

H2i � −m V10a8 − α6( )m4
i + −V10a8α1 + α1α6 + α6ε3 + α7( )m2

i − α8a8ε3 − α7α1 − ε3α7

m2
i − α1( ) α6m4

i + −s2α6 − a8α9 − α7( )m2
i + α7s

2( ) ,

H3i � − m6
i V10 + −s2V10 − V10α1 − α9( )m4

i + s2V10α1 + α1α9 − α8ε3 + α9ε3( )m2
i + s2α8ε3

m6
i α6 + −s2α6 − a8α9 − α1α6 − α7( )m4

i + s2α1α6 − s2α7 + a8α1α9 − α1α7( )m2
i − s2α1α7

.

The foregoing values provide the domain solution for
Laplace’s main variable transformations in terms of unknown
parametersDi(s), which are derived from the following boundary
conditions.
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5 Boundary conditions

Assume that the elastic semiconductor medium is subjected to
mechanical, plasma, and thermal stresses, with the loss of control
over these variables (Di). These forces are imposed on the
unconfined (external) surface of the material. Laplace
transformations are used in all conditions.

(I) For x � 0, we define the free-surface isothermal boundary
condition (thermally isolated system) exposed to thermal
shock as follows:

�T 0, s( ) � T0Z s( ). (33)
Accordingly,

∑4
n�1

Di s( ) � T0

s
. (34)

(II) Application of the Laplace transformation to the condition of
mechanical normal stress (pressure) components at the free
surface x � 0 produces

�σxx 0, s( ) � −n. (35)
Therefore,

∑4
i�1

a9 miH2i + 1 +H1i( )( ) + a10H3i{ } Di( ) � −n. (36)

(III) When the carrier density is diffusively transported and
photosynthesized during recombination processes,
the plasma boundary condition at the free surface (x � 0)
may be reformulated as follows using the Laplace transform:

�N 0, s( ) � ƛ
~sDE

�R s( ). (37)

The following equation is obtained:

∑4
i�1
H1iDi x, s( ) � ƛ

s~sDE
. (38)

(IV) The free-surface displacement boundary condition is given as
follows:

�u 0, s( ) � l. (39)
On the other hand, the following relation is obtained:

∑4
i�1
H2iDi x, s( ) � n. (40)

The quantities (Z(s), R(s)), n, and l are the Heaviside unit
function, stress pressure, and roughness coefficient, respectively.
The symbol ƛ is a chosen constant.

TABLE 1 Physical constants of Si and Ge materials.

Name (unit) Symbol Si Ge

Lamé’s constants (N/m2) λ 6.4 × 1010 0.48x 1011

μ 6.5 × 1010 0.53x 1011

Density (kg/m3) ρ 2330 5300

Absolute temperature (K) T0 800 723

Photogenerated carrier lifetime (s) τ 5x 10−5 1.4x 10−6

Carrier diffusion coefficient (m2/s) DE 2.5 × 10−3 10−2

Coefficient of electronic deformation (m3) dn −9 x 10−31 −6 x 10−31

Energy gap (eV) Eg 1.11 0.72

Coefficient of linear thermal expansion (K−1) αt 4.14x 10−6 3.4x 10−3

Thermal conductivity of the sample (Wm−1K−1) k 150 60

Specific heat at constant strain (J/(kgK)) Ce 695 310

Recombination velocities (m/s) ~s 2 2

Temperature diffusivity DT
k

ρCe

k
ρCe

m2 %H2O( )/s K( )( ),
m2s K( )/ %H2O( )( ) Dm

T 2.1 × 10−7 2.1 × 10−7

DT
m 0.648 × 10−6 0.648 × 10−6

Reference moisture m0 10% 10%

m2s−1 Dm 0.35 × 10−2 0.35 × 10−2

cm/cm(%H2o) αm 2.68 × 10−3 2.68 × 10−3

kg/msM km 2.2 × 10−8 2.2 × 10−8

N 10 10
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6 Inversion of the Fourier–Laplace
transforms

Dimensionless physical fields in the time domain may be
obtained by inversion of the Laplace transform. In this case, the
Laplace transform may be approximated numerically using the
Riemann sum method [39].

In the Laplace domain, the inverse of the function �ζ(x, s)may be
expressed as follows:

ζ x, t′( ) � L−1 �ζ x, s( ){ } � 1
2πi

∫n+i∞

n−i ∞
�ζ x, s( )est′ds. (41)

In this case, s � n + iΜ (n,Μ ∈ R). Hence, we can rewrite the
inverse Eq. 41 as follows:

FIGURE 1
Representation of the variations of physical quantities with the x-axis (distance) under the effect of moisture diffusion at different values of reference
moisture m0.

Frontiers in Physics frontiersin.org06

El-Sapa et al. 10.3389/fphy.2023.1224326

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1224326


ζ x, t′( ) � exp nt′( )
2π

∫∞

−∞
exp iβt( )�ζ x, n + iβ( )dβ. (42)

The following relation is obtained by expanding the Fourier
series for the function ζ(x, t′) in the closed interval [0, 2t′]:

ζ x, t′( ) � ent′

t′
1
2
�ζ x, n( ) + Re∑N

k�1
�ζ x, n + ikπ

t′( ) −1( )n⎡⎣ ⎤⎦. (43)

Here, i � ���−1√
, and Re is the real part. The sufficient N can be

chosen in a large integer but can be selected in the notationnt′ ≈ 4.7 [40].

FIGURE 2
Representation of the variations of physical quantities with the x-axis (distance) for different photo-thermoelastic theories.
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7 Numerical results and discussion

To create the numerical simulation, the numerical parameters of the
physical fields are used. These factors include temperature, moisture,

normal stress, displacement, and carrier density. The simulation is carried
out by using substances known as silicon (Si) and germanium (Ge). The
following table presents the physical constants with their SI unit
representations according to Table 1 [27–31]:

FIGURE 3
Representation of the variations of the main field with the x-axis (distance) for two different semiconductors.
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7.1 The moisture reference influence

Figure 1 (the first group) shows the semiconductor constants of
silicon utilized to obtain the graph of the main physical quantities:
thermal waves (thermal temperatures), normal stress (mechanical
waves), plasma waves (carrier density), elastic waves (displacement
distribution), and moisture field against the x-axis (distance). All
calculations of the numerical results are made when the
thermoelastic coupling parameters V4 � 0.678 and the
thermoelectric coupling parameters ε1 � −2.65 · 10−36. The first
subfigure describes the positivity of the variation of the elastic waves
with thex-axis; we noted that the displacement distribution begins from
the maximum positive value and decreases sharply due to the moisture
effect. Because of the increasingmoisture effect, we noted the decreasing
amplitude of the physical quantity. The second subfigure describes the
plasma waves (carries density) against the x-axis; we noted that it starts
from the maximum positive value in the three cases of the effect of
moisture concentration and decreases gradually for a whole range
which propagated in exponential behavior as it is mentioned in the
plasma condition. Moreover, by increasing the moisture concentration,
it shows the increasing curvature of the carrier density. The third
subfigure shows the moisture concentration parameter (three values)
effect that is utilized to mention the description of the thermal waves.
The three cases describe the distribution of thermal waves that starts
from the positive value on the surface and increases until the maximum
value is reached after that decreasing in exponential behavior until
arriving at the state of stability at the zero line inside the medium. The
fourth subfigure describes the moisture concentration effect on the
mechanical waves (normal stress distribution) against the x-axis, which
satisfies the mechanical condition and begins from a negative value due
to the moisture effect and stress pressure; the mechanical waves
decrease sharply until it arrives at the minimum value in the three
cases of increasing the values of reference moisture. After that, when
observed far from the surface (within the semiconductor medium), the
mechanical waves gradually increase until they reach the steady state
with convergence from the zero line. The fifth subfigure represents the
moisture field against the x-axis at different values for moisture
concentration; we see that by increasing the value of moisture
reference, the amplitude of the moisture field increases. The graph
starts from the positive value and increases gradually in the three cases
of the effect of moisture until it reaches the maximum value and
decreases exponentially in its behavior until it arrives at the zero line.
According to Liu et al. [41], the numerical results of photo-thermo-
physical properties in this problem agree with the experimental results.

7.2 The photo-thermoelastic model effect

The second kind of model depicts changes in photo-
thermoelasticity models with increasing vertical distance,
which may be used to investigate the effects of these
variations on the basic dimensionless physical fields. Four
different theories of photo-thermoelasticity are shown in
Figure 2 (the second group) by showing the variations of the
main physical field variables with distance (thermoelastic and
photoelastic models). The outcomes fall within a range 0≤ x≤ 5.
For the Si medium, the full complement of computational
findings was obtained in a relatively short time. Figure 2

shows the effect of varying the parameters of thermal memory
on the distance against the propagation of non-dimensional
thermal waves, plasma waves, mechanical waves, moisture
concentration, and elastic waves. There is no discernible
difference in the behavior between Figure 2 and Figure 1.
Models of photo-thermoelasticity are generalized in the MGT
PT model. The MGT PT model shows potential to fix some of the
physical problems seen in older versions. To a large extent, all
field distributions are affected by the MGT PT model.

7.3 The comparison between two
semiconductor materials

Silicon (Si) and germanium (Ge) are both semiconductor
materials, and Figure 3 demonstrates the comparison when their
physical constants are employed in the computations. All
calculations are prepared according to the MGT model when
V4 � 0.678. It is evident from this figure that the results of
numerical calculations on the propagation of waves in a
semiconductor medium will rely on the numbers (input
parameters) used in the computations.

8 Conclusion

This study offers an original account of the thermal and elastic
relaxation time-dependent model applications (MG, GN(III), CTE,
and LS) used to characterize the interference of elastic, thermal, and
plasma waves in a semiconductor medium. Under the framework of
MGT’s elasticity theory, the photo-thermoelastic interactions in an
infinite semiconducting material have been investigated. A high
quantity of moisture affects the semiconductor media. As various
models have been developed to represent photo-thermoelasticity
issues, the MGT model is a natural progression. The photo-
thermoelastic models and the moisture diffusivity have drastically
different standard deviations. The value of the moisture diffusivity
parameter has a significant impact on the rate of change of the
primary distribution variation. This means that the moisture
content is a better indicator of heat transfer than it formerly was.
The comparison of the wave propagations shows that the value of
the physical parameters of the medium significantly affects the
patterns of field distributions in this study. The physical
assumptions are consistent with the notion that waves travel at
limited speeds, as predicted by the MGT model and other photo-
thermoelastic models.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

KL: Conceptualization, Methodology, and Supervision. MS and
ALB: Software, Data curation. AE-D: and Writing-Original draft

Frontiers in Physics frontiersin.org09

El-Sapa et al. 10.3389/fphy.2023.1224326

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1224326


preparation. SE-S: Visualization, Investigation, Software, Validation.
NB and HC: Writing-Reviewing and Editing. All authors
contributed to the article and approved the submitted version.

Acknowledgments

The authors extend their appreciation to Princess Nourah
bint Abdulrahman University for fund this research under
Researchers Supporting Project number (PNURSP2023R154)
Princess Nourah bint Abdulrahman University, Riyadh, Saudi
Arabia. The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA for
funding this research work through the project number “NBU-
FFR-2023-0028”.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Biot MA. Thermoelasticity and irreversible thermodynamics. J Appl Phys (1956) 27:
240–53. doi:10.1063/1.1722351

2. Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity. J.Mech
Phys Sol (1967) 15:299–309. doi:10.1016/0022-5096(67)90024-5

3. Green AE, Lindsay KA. Thermoelasticity J Elasticity (1972) 2(1):1–7. doi:10.1007/
bf00045689

4. Abo-Dahab S, Lotfy K. Generalized magneto-thermoelasticity with fractional
derivative heat transfer for a rotation of a fibre-reinforced thermoelastic. J Comput
Theor Nanoscience (2015) 12(8):1869–81. doi:10.1166/jctn.2015.3972

5. OthmanM, LotfyK. Two-dimensional problemof generalizedmagneto-thermoelasticity
with temperature dependent elasticmoduli for different theories.MultidisciplineModelMater
Structures (2009) 5(3):235–42. doi:10.1163/157361109789016961

6. Aboueregal A, Sedighi H, Shirazi A, Malikan M, Eremeyev V. Computational
analysis of an infinite magnetothermoelastic solid periodically dispersed with varying
heat flow based on non-local Moore–Gibson–Thompson approach. Contin Mech
Thermodyn (2022) 34:1067–85. doi:10.1007/s00161-021-00998-1

7. Othman M, Lotfy K, Farouk R. Transient disturbance in a half-space under
generalized magneto-thermoelasticity with internal heat source. Acta Physica Pol A
(2009) 116(2):185–92. doi:10.12693/aphyspola.116.185

8. Quintanilla R. Moore-Gibson-Thompson thermoelasticity. Math Mech Sol (2019)
24:4020–31. doi:10.1177/1081286519862007

9. Quintanilla R. Moore-Gibson-Thompson thermoelasticity with two
temperature. Appl Eng Sci (2020) 1:100006. doi:10.1016/j.apples.2020.100006

10. Vlase S, Năstac C, Marin M, MihălcicăM. A method for the study of the vibration
of mechanical bars systems with symmetries. Acta Tech Napocensis, Ser Appl Math
Mech Eng (2017) 60(4):539–44.

11. Abouelregal A, Marin M. The size-dependent thermoelastic vibrations of
nanobeams subjected to harmonic excitation and rectified sine wave heating.
Mathematics (2020) 8(7):1128. doi:10.3390/math8071128

12. Abouelregal A, Marin M. The response of nanobeams with temperature-
dependent properties using state-space method via modified couple stress theory.
Symmetry (2020) 12(8):1276. doi:10.3390/sym12081276

13. Scutaru ML, Vlase S, Marin M, Modrea A. New analytical method based on
dynamic response of planar mechanical elastic systems. Bound Value Problem (2020)
2020:104. doi:10.1186/s13661-020-01401-9

14. Kaltenbacher B, Lasiecka I, Marchand R. Wellposedness and Exponential decay
rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound.
Control Cybernet (2011) 40:971–88.

15. Lotfy K, Seddeek M, Hassanin W, El-Dali A. Analytical solutions of photo
generated moore–gibson–thompson model with stability in thermoelastic
semiconductor excited material. Silicon (2022) 14:12447–57. doi:10.1007/s12633-
022-01927-w

16. Lotfy K, Elidy E, Tantawi R. Piezo-photo-thermoelasticity transport process for
hyperbolic two-temperature theory of semiconductor material. Int J Mod Phys C (2021)
32(7):2150088. doi:10.1142/S0129183121500881

17. Szekeres A. Analogy between heat and moisture. Comput Structures (2000) 76:
145–52. doi:10.1016/s0045-7949(99)00170-4

18. Szekeres A. Cross-coupled heat and moisture transport: Part 1 theory. J Therm
Stresses (2012) 35(1-3):248–68. doi:10.1080/01495739.2012.637827

19. Gasch T, Malm R, Ansell A. A coupled hygro-thermo-mechanical model for
concrete subjected to variable environmental conditions. Int J Sol Structures (2016) 91:
143–56. doi:10.1016/j.ijsolstr.2016.03.004

20. Szekeres A, Engelbrecht J. Coupling of generalized heat and moisture transfer.
Periodica Polytechnica Ser Mech Eng (2000) 44(1):161–70.

21. Gordon JP, Leite RCC, Moore RS, Porto SPS, Whinnery JR. Long-transient effects
in lasers with inserted liquid samples. Bull Am Phys Soc (1964) 119:501. doi:10.1063/1.
1713919

22. Kreuzer LB. Ultralow gas concentration infrared absorption spectroscopy. J Appl
Phys (1971) 42:2934–43. doi:10.1063/1.1660651

23. Tam AC. Ultrasensitive laser spectroscopy. New York, NY: Academic Press (1983).
p. 1–108.

24. TamAC.Applications of photoacoustic sensing techniques.RevModPhys (1986) 58:381.

25. Tam AC. Photothermal investigations in solids and fluids. Boston: Academic Press
(1989). p. 1–33.

26. Todorovic DM, Nikolic PM, Bojicic AI. Photoacoustic frequency transmission
technique: Electronic deformation mechanism in semiconductors. J Appl Phys (1999)
85:7716–26. doi:10.1063/1.370576

27. Song YQ, Todorovic DM, Cretin B, Vairac P. Study on the generalized
thermoelastic vibration of the optically excited semiconducting microcantilevers. Int
J Sol Struct (2010) 47:1871–5. doi:10.1016/j.ijsolstr.2010.03.020

28. Mahdy A, Lotfy K, El-Bary A, Sarhan H. Effect of rotation and magnetic field on a
numerical-refined heat conduction in a semiconductor medium during photo-
excitation processes. Eur Phys J Plus (2021) 136(5):553–63. doi:10.1140/epjp/s13360-
021-01552-3

29. El-Sapa S, Lotfy K, El-Bary A, Ahmed M. Moisture diffusivity and photothermal
excitation in non-local semiconductor materials with laser pulses. Silicon (2023). doi:10.1007/
s12633-023-02333-6

30. Lotfy K. Photothermal waves for two temperature with a semiconducting medium
under using a dual-phase-lag model and hydrostatic initial stress. Waves Ran Comp
Med (2017) 27(3):482–501. doi:10.1080/17455030.2016.1267416

31. Chteoui R, Lotfy K, Seddeek M, El-Dali A, Hassanin W.
Moore–gibson–thompson stability model in a two-temperature photonic
semiconductor excited medium affected by rotation and initial stress. Crystals
(2022) 12(12):1720. doi:10.3390/cryst12121720

32. Hobiny A, Abbas I. Theoretical analysis of thermal damages in skin tissue induced
by intense moving heat source. Int J Heat Mass Transf (2018) 124:1011–4. doi:10.1016/j.
ijheatmasstransfer.2018.04.018

33. Hobiny A, Abbas I. Nonlinear analysis of dual-phase lag bio-heat model in living
tissues induced by laser irradiation. J Therm Stresses (2020) 43:503–11. doi:10.1080/
01495739.2020.1722050

Frontiers in Physics frontiersin.org10

El-Sapa et al. 10.3389/fphy.2023.1224326

https://doi.org/10.1063/1.1722351
https://doi.org/10.1016/0022-5096(67)90024-5
https://doi.org/10.1007/bf00045689
https://doi.org/10.1007/bf00045689
https://doi.org/10.1166/jctn.2015.3972
https://doi.org/10.1163/157361109789016961
https://doi.org/10.1007/s00161-021-00998-1
https://doi.org/10.12693/aphyspola.116.185
https://doi.org/10.1177/1081286519862007
https://doi.org/10.1016/j.apples.2020.100006
https://doi.org/10.3390/math8071128
https://doi.org/10.3390/sym12081276
https://doi.org/10.1186/s13661-020-01401-9
https://doi.org/10.1007/s12633-022-01927-w
https://doi.org/10.1007/s12633-022-01927-w
https://doi.org/10.1142/S0129183121500881
https://doi.org/10.1016/s0045-7949(99)00170-4
https://doi.org/10.1080/01495739.2012.637827
https://doi.org/10.1016/j.ijsolstr.2016.03.004
https://doi.org/10.1063/1.1713919
https://doi.org/10.1063/1.1713919
https://doi.org/10.1063/1.1660651
https://doi.org/10.1063/1.370576
https://doi.org/10.1016/j.ijsolstr.2010.03.020
https://doi.org/10.1140/epjp/s13360-021-01552-3
https://doi.org/10.1140/epjp/s13360-021-01552-3
https://doi.org/10.1007/s12633-023-02333-6
https://doi.org/10.1007/s12633-023-02333-6
https://doi.org/10.1080/17455030.2016.1267416
https://doi.org/10.3390/cryst12121720
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018
https://doi.org/10.1080/01495739.2020.1722050
https://doi.org/10.1080/01495739.2020.1722050
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1224326


34. Hobiny A, Abbas I. Analytical solutions of fractional bioheat model in a spherical
tissue. Mech Based Des Struct Mach (2021) 49:430–9. doi:10.1080/15397734.2019.
1702055

35. Ghanmi A, Abbas I. An analytical study on the fractional transient heating within
the skin tissue during the thermal therapy. J Therm Biol (2019) 82:229–33. doi:10.1016/j.
jtherbio.2019.04.003

36. Zenkour A, Abbas I. Nonlinear transient thermal stress analysis of temperature-
dependent hollow cylinders using a finite element model. Int J Struct Stab Dyn (2014)
14(7):1450025. doi:10.1142/s0219455414500254

37. Alzahrani F, Abbas I. Analytical estimations of temperature in a living tissue
generated by laser irradiation using experimental data. J Therm Biol (2019) 85:102421.
doi:10.1016/j.jtherbio.2019.102421

38. Saeed T, Abbas I. Finite element analyses of nonlinear DPL bioheat model in
spherical tissues using experimental data. Mech Based Des Struct Mach (2020) 50:
1287–97. doi:10.1080/15397734.2020.1749068

39. Honig G, Hirdes U. A method for the numerical inversion of Laplace
Transforms. Comp Appl Math (1984) 10(1):113–32. doi:10.1016/0377-0427(84)
90075-x

40. Brancik L. Programs for fast numerical inversion of Laplace transforms in
MATLAB language environment. In: Proceedings of the 7th Conference.
MATLAB’99; November 10, 1999; Czech Republic Prague (1999). p. 27–39.

41. Liu J, HanM,Wang R, Xu S,Wang X. Photothermal phenomenon: Extended ideas
for thermophysical properties characterization. J Appl Phys (2022) 131:065107. doi:10.
1063/5.0082014

Frontiers in Physics frontiersin.org11

El-Sapa et al. 10.3389/fphy.2023.1224326

https://doi.org/10.1080/15397734.2019.1702055
https://doi.org/10.1080/15397734.2019.1702055
https://doi.org/10.1016/j.jtherbio.2019.04.003
https://doi.org/10.1016/j.jtherbio.2019.04.003
https://doi.org/10.1142/s0219455414500254
https://doi.org/10.1016/j.jtherbio.2019.102421
https://doi.org/10.1080/15397734.2020.1749068
https://doi.org/10.1016/0377-0427(84)90075-x
https://doi.org/10.1016/0377-0427(84)90075-x
https://doi.org/10.1063/5.0082014
https://doi.org/10.1063/5.0082014
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1224326

	Moore–Gibson–Thompson model with the influence of moisture diffusivity of semiconductor materials during photothermal excit ...
	1 Introduction
	2 Main equations
	3 The mathematically formulized problem
	4 The solution to the problem
	5 Boundary conditions
	6 Inversion of the Fourier–Laplace transforms
	7 Numerical results and discussion
	7.1 The moisture reference influence
	7.2 The photo-thermoelastic model effect
	7.3 The comparison between two semiconductor materials

	8 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


