
Quantum field theory for
coherent photons: isomorphism
between Stokes parameters and
spin expectation values

Shinichi Saito*

Center for Exploratory Research Laboratory, Research and Development Group, Hitachi, Ltd.,
Tokyo, Japan

Stokes parameters (S) on the Poincaré sphere are very useful values to describe
the polarisation state of photons. However, the fundamental principle on the
nature of polarisation is not completely understood, yet, because we have no
concrete consensus on how to describe spin of photons, quantum-mechanically.
Here, we have considered a monochromatic coherent ray of photons, described
by a many-body coherent state, and established a fundamental basis to describe
the spin state of photons, in connection with a classical description based on
Stokes parameters. We show that a spinor description of the coherent state is
equivalent to Jones vector for polarisation states, and obtain the spin operators
(Ŝ) of all components based on rotators in an SU(2) group theory. Polarisation
controllers such as phase-shifters and rotators are also obtained as quantum-
mechanical field operators to change the phase of the wavefunction for
polarisation states. We show that the Stokes parameters are quantum-
mechanical average of the spin operators, S � 〈Ŝ〉.
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1 Introduction

Stokes and Poincaré successfully established a systematic way to describe polarisation of
lights by using several real value parameters, known as Stokes parameters, which are
described as a vector on the Poincaré sphere [1–5]. This is a spectacular achievement at the
time, because it was before the discoveries of Plank and Einstein, that lights are composed of
a quanta, named a photon, with both particle and wave characters to establish quantum
mechanics [6–9]. It is intriguing to learn from words of Einstein [10], quote, All these
50 years of conscious brooding have brought me no nearer to the answer to the question,
“What are light quanta?”, unquote.

Here, we revisit a lemma of this grand challenge:What is spin of a photon? Our answer
to this question is polarisation. One might think this is obvious and already well-established,
but it is less obvious, because it is generally believed that the total angular momentum of a
photon is impossible to split [11] into spin and orbital angular momentum [4,5,12–17] in a
unique gauge invariant way [11,13–15,18]. It is beyond the scope of this paper to address
this mystery [19,20], however, we will focus on understanding the spin of a photon. We are
interested in a monochromatic coherent ray of photons emitted from a laser source, such
that we will investigate low-energy condensed-matter physics and we will not deal with the
Lorentz invariance, required for high-energy physics. The optical spin angular momentum
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was previously obtained by using many-body number operators, but
it was shown that the operators are commutable [13,15]. Therefore,
the quantum-mechanical nature of the spin of a photon is still not
completely understood, yet.

We think some of these issues are coming from various ways to
define the polarisation states of lights [21–24], spreading among
literature. Unfortunately, there is no unique standard for the
definitions, because the way to define rotation depends on
whether we are evaluating the polarisation state seen from the
light-source side or from the detector side. It is also different
among physicists and engineers whether we are going to use the
phase evolution as ei(kz−ωt), which is common for physicists, or
alternatively, as ei(ωt−kz), which is more often used for engineers,
where the parameters are time (t), the spatial axis along the direction
of the propagation (z), the wavenumber (k), and the angular
frequency (ω), as usual. Depending on this phase evolution over
t and z, the direction of the rotation of the polarisation state will be
changed. These differences impose unnecessary confusions among
researchers for considering the polarisation states of lights.
Therefore, we have summarised our preferential definition in
Supplementary Material. Our convention is similar to the
classical textbook of Jackson [4], but it is not necessarily common.

Spin is an intrinsic degree of freedom, inherent to an elementary
particle. A photon has spin 1 in the unit of Dirac constant (Z), and it
is described by Bose statistics, because of this integer spin [6–9]. For
an elementary particle of spin 1, in principle, there exists 3 major
components to describe the polarisation state as fundamental basis
states for Lie-algebra, however, one of the component with zero spin
component is not observable [9,25]. This is coming from the fact
that the lights are transverse waves, which is fundamentally coming
from the theory of relativity, based on the principle that there is no
rest frame for a photon, which is travelling at the speed of light c) in a
vacuum [25–27]. Consequently, the spin state of a photon can be
described by Lie-algebra of spin 1/2 [3,5,7,8,28–40].

The purpose of this work is to clarify the correlation between the
classical description of polarisation states by using Stokes
parameters in Poincaé sphere and a many-body description of
spin. We show that the vector described by Stokes parameters is
actually the quantum-mechanical expectation value of spin operators.
This means that the Stokes parameters are order parameters to
describe a coherent state of a ray from a laser, which is essentially
composed of a single mode with macroscopic number of photons
degenerated due to the Bose-Einstein condensation of photons. We
also show the equivalence of Poincaé sphere with Bloch sphere, and
explain how classical results for polarisation with various parameters
such as orientation angle (Ψ), ellipticity angle (χ), auxiliary angle (α),
and phase (δ), are all derived from simple geometrical consideration
on these spheres. We also show that the change of the basis states are
equivalent to the rotation in the special unitary of degree two
(SU(2)) Hilbert space to describe the polarisation state. Our
results show that it is quite natural to believe that the spin
operators are essentially equivalent to Stokes operators, which
reasonably work as standard quantum-mechanical angular
momentum operators. Angular momentum is an observable to
characterise a polarisation state on the Poincaré sphere, satisfying
commutation relationship, working as a generator of rotation, and
describing the polarisation state of a coherent state of photons.

2 Principles

2.1 Coherent state

A photon is an elementary particle and it must follow the
principle of quantum mechanics [6–9]. A photon can be created
in a laser source, or it can be annihilated in a detector. The creation
and annihilation are described by operators â†σ and âσ , respectively,
which satisfy the commutation relationships for Bose particles
[9,16,41,42] as [âσ , âσ′] � 0, [â†σ , â†σ′] � 0, and [âσ , â†σ′] � δσ,σ′,
where σ stands for the polarisation states such as σ = H for
horizontally polarised state and σ = V for vertically polarised
state. δσ,σ′ is the Kronecker delta, which becomes 1 if the
polarisation states of σ and σ′ coincide, and 0 if the polarisation
states are orthogonal. We can also choose another orthogonal base
such as linearly polarised states along diagonal (σ = D) and anti-
diagonal (σ = A) directions, or left (σ = L) and right (σ = R)
circularly-polarised states (Supplementary Material).

We are interested in a monochromatic coherent ray of photons
propagating in a material such as a waveguide or an optical fibre or
in a vacuum, emitted from a laser source [5], because lasers are
ubiquitously available. The coherent states [16,41,42] are described
as |αH, αV〉 = |αH〉|αV〉, where.

|αH〉 � e−
|αH |2

2 eαH â
†
H |0〉 (1)

|αV〉 � e−
|αV |2
2 eαV â

†
V |0〉, (2)

for which we assign αH � ���
NH

√ � ��
N

√
cos α, αV � ���

NV
√

eiδ ���
N

√
sin αeiδ with the average number of photons for each

polarisation given by NH and NV, and the total number of
photons in the system is N = NH + NV. The auxiliary angle of α
is the angle to split the electric field between horizontal and vertical
directions (Supplementary Material) and the relative phase of δ =
δy − δx is the amount of the phase shift for the vertical direction (δy),
measured from that for the horizontal direction (δx). The coherent
states have important characteristics.

âH|αH〉 � αH|αH〉 (3)
âV|αV〉 � αV|αV〉, (4)

which mean these are eigenstates of annihilation operators.
We consider the following complex electric field operator,

defined as,

Ê z, t( ) �
����
2Zω
ϵV

√
eiβ âHx̂ + âVŷ( ), (5)

where β = kz − ωt + δx, x̂ and ŷ are unit vectors along x and y
directions, respectively, ϵ is the dielectric constant of the material,
and V is the volume of the system. In a uniform material of the
refractive index n, the dispersion is simply obtained as ω = vk = ck/n
by solving the Maxwell equations (4) and (5). By applying Ê(z, t) to
|αH, αV〉 from the left, we obtain

Ê z, t( )|αH, αV〉 � E z, t( )|αH, αV〉, (6)
which means the coherent state is an eigenstate of this operator and
the operation did not change the state except for the factor, E(z, t),
which gives the complex amplitude of the electric field as
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E z, t( ) � Ex

Ey
( ) � E0e

iβ cos α
sin α eiδ

( ), (7)

with the amplitude of E0 �
����������
2ZωN/(ϵV)√

. Therefore,
Ê(z, t)|αH, αV〉 also works as a wavefunction to describe the
coherent state of photons. Then, we recognise that E(z, t) is
actually a spinor representation of the wavefunction, and it is
indeed rewritten as

E z, t( ) � E0Ψ z, t( )|Jones〉, (8)
whereΨ(z, t) = eiβ is the orbital part of the wavefunction, and |Jones〉
it the Jones vector to describe the polarisation states (Supplementary
Material). Therefore, the Jones vector is actually the wavefunction
itself to describe the spin state of the coherent photons, quantum
mechanically. It is interesting to note that the many-body coherent
state is described simply by a single mode of Ψ(z, t) with the spin
state as inherent internal degrees of freedom. This is coming from
the nature of the Bose-Einstein condensation for the coherent laser
beam, in which macroscopic number of photons are degenerate to
occupy the single mode.

In a real material with a specific geometrical structure, patterned
into a form of a waveguide or a fibre, we must solve the
Helmholtz equation

∇2Ψ r( ) � μ0ϵ r( ) ∂
2

∂t2
Ψ r( ), (9)

because the dielectric constant has a profile in the form of ϵ = ϵ(r),
due to the spacial distribution of material compositions. We are
aware that this is very important to take into account for the more
realistic considerations. By respecting the symmetry of the
waveguide [43], we can also consider various forms of the orbital
wavefunction, including the vortex nature of the beam with orbital
angular momentum [4,5,12–17]. Here, we consider only the plane
wave solution of the Helmholtz equation as Ψ(z, t) = eiβ, which
makes a lot of serious problems for separating the spin and orbital
parts of the angular momentum [11,13–15,18], as we shall see briefly
below. Nevertheless, the plane wave solution makes calculations
easy, such that it is still useful for a theoretical perspective.

We also note that Ê(z, t) is not observable, since all physical
observables must be real. In order to observe the electric field, which
is observable, we must define the real electric field operator given by

Ê � 1
2

Ê + Ê†( ). (10)

If we take the quantum-mechanical average over the coherent
state, we obtain.

E z, t( ) � 〈Ê〉 (11)
� 〈αH, αV|Ê|αH, αV〉 (12)
� E0 cos α cos βx̂ + sin α cos β + δ( )ŷ( ) (13)
� R E z, t( )( ), (14)

which is indeed real. Please also note that the application of Ê to |αH,
αV〉 changes the original state, because the coherent state is not the
eigenstate of the creation operator [16,41,42]. Therefore, it is
essential to treat the electric field by using a complex value
rather than real value, so that the use of a complex value is not a
mere mathematical convention. The wavefunction is intrinsically

described by a complex value for a photon, just like the other
quantum-mechanical systems [6–9].

We can also obtain the quantum-mechanical average of the
energy for the photons.

�UQM � V

2
〈Ê · D̂ + B̂ · Ĥ〉 � ϵV〈Ê · Ê〉 (15)

� ϵV
4
〈Ê · Ê† + Ê† · Ê + Ê · Ê + Ê† · Ê†〉 (16)

� ϵV
4
〈Ê · Ê† + Ê† · Ê〉 (17)

� ϵV
4

2Zω
ϵV 〈â†HâH + âHâ

†
H + â†VâV + âVâ

†
V〉 (18)

� Zω〈â†HâH + 1
2
+ â†VâV + 1

2
〉 (19)

� Zω NH + 1
2
+NV + 1

2
( ) (20)

� Zω N + 1( ), (21)
where the bar stands for the t average, and 1/2 is coming from the
zero-point oscillations.

2.2 Electro-magnetic field operators
for lasers

We will obtain various electro-magnetic field operators to
describe a coherent ray of photons emitted from a laser. We use
a Coulomb gauge, which satisfy

 · Â � 0, (22)
where Â is the vector potential operator. The magnetic induction
operator, B̂, and Ê are obtained from Â, as.

B̂ � ∇ × Â � k × Ê
ω

(23)
Ê � −∂tÂ, (24)

respectively. Alternatively, we have already obtained Ê as,

Ê �
����
Zω

2ϵV

√
âHe

iβ + â†He
−iβ( )x̂ + âVe

iβ + â†Ve
−iβ( )ŷ( ), (25)

we can obtain Â, instead, as

Â � −i
ω

����
Zω

2ϵV

√
âHe

iβ − â†He
−iβ( )x̂ + âVe

iβ − â†Ve
−iβ( )ŷ( ). (26)

Consequently, we obtain

B̂ � 1
v

����
Zω

2ϵV

√
âHe

iβ + â†He
−iβ( )ŷ − âVe

iβ + â†Ve
−iβ( )x̂( ). (27)

Here, we assumed that the ray is described by a single mode, which
is remarkably different from a standard description of the Ê and B̂ in a
Quantum Electro-Dynamics (QED) theory [6,9,16,41,42], for which the
sum over all possible modes with different wavelengths are included.
For the application of a coherent ray from lasers, the single mode are
dominated over other modes [5]. We can easily extend the theory to
include a few modes for describing propagation of multiple modes just
by summing up these contributions based on a superposition principle.
But, the main point here is the Bose-Einstein condensation character of
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the coherent ray, and we do not have to consider infinite number of
electromagnetic fields in a vacuum. In that sense, our system,
considering here for a standard optical laser lab, is remarkably
different from situations in high energy physics, where the Lorentz
invariance is inevitable [11,14,18]. In a waveguide, the spatial symmetry
is broken a priori, such that the orbital is not uniform, reflecting the
shape and the profile of the material compositions [43].

The momentum operator of the electro-magnetic field, p̂field, is
given from the Poynting vector operator, Ŝ � Ê × Ĥ, with the
magnetic field operator of Ĥ, as

p̂field � ϵ Ê × B̂( ) � ϵμ0 Ê × Ĥ( ) � 1
v2
Ŝ, (28)

where μ0 is the permeability of a material, which is usually almost the
same as that in a vacuum [5] for most of the optical materials, except
for optical isolators. By integrating over V, we obtain

P̂field � Zkẑ â†HâH + 1
2

( ) + â†VâV + 1
2

( )( ), (29)
for which we have used����

Zω

2ϵV

√
1
v

����
Zω

2ϵV

√
1

v2μ0
V � 1

v

Zω

2
1

v2ϵμ0
� Zk

2
(30)

for the factor, x̂ × x̂ � ŷ × ŷ � 0, x̂ × ŷ � −ŷ × x̂ � ẑ, and for the
boundary condition

∫ dz

L
e±2iβ � 0, (31)

for the length of L along z. The contribution of 1/2 for each
polarisation states are coming from the zero-point fluctuations,
which will cancel among contributions between modes
propagating opposite directions (Zk and −Zk).

Then, it is natural to expect that the total angular momentum
operator for the ray should be given by [4,5,11–18,44].

Ĵz � ∫ d3r r × p̂field � ϵ∫ d3r r × Ê × B̂( ). (32)

By using the identities.

r × Ê × ∇ × Â( )( ) � Ê r · ∇ × Â( )( ) − r · Ê( ) ∇ × Â( ) (33)
r · ∇ × Â( ) � riϵijk∂jÂk � ϵijkri∂jÂk � r × ∇( ) · Â, (34)

Ĵz � L̂z + Ŝz is split into its orbital angular momentum part,

L̂z � ϵ∫ d3r Ê r × ∇( ) · Â( ), (35)

and the spin angular momentum part,

Ŝz � −ϵ∫ d3r r · Ê( ) ∇ × Â( ). (36)

Furthermore, using the identity [4,5],

r · Ê( ) ∇ × Â( )
i
� rjÊj( )ϵilm∂lÂm � ϵilm rjÊj( ) ∂lÂm( ), (37)

we obtain for the ith component,

Ŝi � −ϵ∫d3r r · Ê( ) ∇ × Â( )
i

(38)

� −ϵ∫ d3r ϵilm rjÊj( ) ∂lÂm( ) (39)

� −ϵ rjÊj( )Âm[ ]∞−∞ + ϵ∫ d3r ϵilmÂm∂l rjÊj( ), (40)

whose first term vanishes [11] for the finite mode size in a waveguide.
After the integration only i = z component survive, and we obtain.

Ŝz � ϵ∫ d3r Ê × Â( ) (41)
� −i( )Zẑ â†HâV − â†VâH( ), (42)

for which we have used

ϵ
����
Zω

2ϵV

√ −i
ω

����
Zω

2ϵV

√
V � −i Z

2
. (43)

If we change the basis states for describing the polarisation states
from horizontal/vertical linear polarised states to left/right circular
polarised states by the transformations [5,21,22].

â†L �
1�
2

√ â†H + iâ†V( ) (44)

â†R � 1�
2

√ â†H − iâ†V( ), (45)

and their conjugate.

âL � 1�
2

√ âH − iâV( ) (46)

âR � 1�
2

√ âH + iâV( ), (47)

Ŝz � Ŝzẑ is further simplified to be

Ŝz � Z â†LâL − â†RâR( ). (48)

We are aware that there are significant criticisms [4,5,11–19] on
this derivation such as the intentional choice of the Coulomb gauge,
the artificial choice of the boundary condition, the apparent gauge
dependent expression in the form of Ê × Â, the disappearance of the
x and y components, and so on. We are not happy, either, and we
will address some of these issues in a separate paper [20].
Nevertheless, we think the last expression is quite intuitive, and
we could diagonalise the spin component in the chiral bases, which
implies the spin is deeply linked to the polarisation. Moreover, this
expression is not gauge dependent, since the number of photons
should not depend on the choice of the gauge. Here, we accept this
form as an expected expression derived from the correspondence
from classical expectation, although we do not know why only z
component appeared for spin operator [20]. In the next section, we
will apply standard quantum-mechanical technique to consider the
spin operators and their expectation values. We naturally obtained
Stokes operators simply from the SU(2) consideration of the spin
states, and established the expectation values of spin operators are
Stokes parameters. Therefore, we show that the Poincaré sphere is
essential the same as the Bloch sphere.

3 Results and discussions

3.1 Chiral representation

Here, we describe the polarisation state of photons by a chiral
representation using left and right circular-polarised states,
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|L〉 � |M 〉 � 1
0

( ) (49)

|R〉 � |N 〉 � 0
1

( ). (50)

We will call this basis as the LR-basis. According to the result of
the previous section, the spin operator along z direction can be
written as.

Ŝz � Z â†L, â†R( ) 1 0
0 −1( ) âL

âR
( ) (51)

� Zψ̂†
LRσ3ψ̂LR , (52)

where ψ̂†
LR � (â†L, â†R) and ψ̂LR are the chiral representation of the

creation and the annihilation operator, respectively, and the Pauli
matrices are defined as

σ1 � 0 1
1 0

( ), σ2 � 0 −i
i 0

( ), σ3 � 1 0
0 −1( ). (53)

Now, it is clear that the photon in the left-circular-polarised state
has a spin of Z along the direction of propagation (σ = 1), and right-
circular-polarised state has a spin of −Z along the same direction
(σ = −1). Spin states pointing the other directions such as x and y

would be realised by the superposition states of âL and âR in the
chiral representation, because the 2 level systems are described by an
SU(2) theory [6–9,20,45–47]. It is thus straightforward to expect the
spin operators for x and y components as

Ŝx � Z â†L, â†R( ) 0 1
1 0

( ) âL
âR

( ) (54)

� Zψ̂†
LRσ1ψ̂LR, (55)

Ŝy � Z â†L, â†R( ) 0 −i
i 0

( ) âL
âR

( ) (56)

� Zψ̂†
LRσ2ψ̂LR, (57)

respectively
The general spin state, pointing to the (θ, ϕ) direction, is

obtained by the Bloch state [6–9].

|Bloch〉 � |θ, ϕ〉 (58)

�
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (59)

where θ is the polar angle and ϕ is the azimuthal angle (Figure 1).
Thus, the corresponding coherent state with the spin state (θ, ϕ)

is obtained as |αLαR〉 = |αL〉|αR〉, where.

|αL〉 � e−
|αL |2
2 eαL â

†
L |0〉 (60)

|αR〉 � e−
|αR |2
2 eαR â

†
R |0〉, (61)

for which we assign αL �
��
N

√
e−i

ϕ
2 cos(θ2), αR � ��

N
√

e+i
ϕ
2 sin(θ2). The

complex electric field operator in the chiral representation is
given by

Ê z, t( ) �
����
2Zω
ϵV

√
eiβ âL̂l + âR r̂( ), (62)

where l̂ � (x̂ + iŷ)/ �
2

√
and r̂ � (x̂ − iŷ)/ �

2
√

are complex unit vectors
to describe directions of left and right polarisation states with phases.
By applying this to the coherent state, we obtain the complex
wavefunction in the chiral representation as

E z, t( ) � EL

ER
( ) (63)

� E0e
iβ

e−i
ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (64)

� E0Ψ z, t( )|Bloch〉. (65)

By calculating the expectation values of spin components by the
coherent state, we obtain

〈Ŝ〉 �
〈Ŝx〉
〈Ŝy〉
〈Ŝz〉

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ (66)

� ZN
sin θ cos ϕ
sin θ sin ϕ
cos θ

⎛⎜⎝ ⎞⎟⎠. (67)

FIGURE 1
Bloch sphere for the polarisation states, described left and right
circularly polarised states. The left (right) circularly polarised state is
shown on the north (south) pole by the red (blue) colour at S3 =1
(S3= −1). The polarisation state is shown by the vector of spin
angular momentum (blue arrow) at the position, described by the
polar angle of θ and the azimuthal angle of ϕ. The dotted green line
shows the projection of the spin angular momentum to the S1-
S2 plane.
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By realising the correspondences between angles,

θ � π

2
− 2χ (68)

ϕ � 2Ψ . (69)

We realised

〈Ŝ〉 � ZN
cos 2χ( )cos 2Ψ( )
cos 2χ( )sin 2Ψ( )

sin 2χ( )⎛⎜⎜⎝ ⎞⎟⎟⎠ (70)

� ZN
S1
S2
S3

⎛⎜⎝ ⎞⎟⎠, (71)

showing that the expectation values of the spin operators are
essentially equivalent to the Stokes parameters. Thus, the
Poincaré sphere is equivalent to the Bloch sphere.

It is also useful to define the spin operator to represent the
magnitude of the spin,

Ŝ0 � Z â†LâL + â†RâR( ), (72)
such that its expectation value is

〈Ŝ0〉 � ZN. (73)

This actually shows the order parameter of the coherent states.
The onset of lasing is similar to the second order phase transition,
which show the continuous increase of the macroscopic order
parameter upon changing the control parameter such as
temperature [48–55]. In the case for lasing, the control parameter
is the pumping power, provided by injecting electrons and holes for
a laser diode, or by optical populating of electrons to higher energy
levels to realise a population inversion state. Above the lasing
threshold, the macroscopic number of photons are degenerate to
occupy the single mode, such that 〈Ŝ0〉 can posses a non-zero value,
and 〈Ŝ0〉 increases gradually upon the increase of the
pumping power.

The theory of the order parameter description of the phase
transition was first developed for the theory of superconductivity, as
the Ginzburg–Landau theory [48–55], for which the order
parameter was the energy gap, |Δ|, and the U (1) gauge
symmetry of the phase (eiϕ) was broken. Therefore, the order
parameter is described by a scalar.

In the case of lasing, two phases of the wave, such as (θ, ϕ) in
chiral representation and (α, δ) in Jones representation, are fixed,
and the order parameters are described by a vector, not by a scalar.
This is why 3D vectorial representation using the Poincaré sphere is
so useful [5,21,22].

The 3D description of the order parameter similar to the
Poincaré sphere is not restricted to the photonic systems, and
actually they are ubiquitously available for describing various
order parameters. For example, magnetic Heisenberg model was
used to describe the superfluid-solid phase transition for a liquid He
[56]. Another example is the SO(5) (special orthogonal) theory,
which was developed for describing antiferromagnetic-
superconducting phase transition for high-critical-temperature
superconducting cuprates [55,57].

These spin operators are previously known as Stokes operators
[29–33,38,58,59], and their commutation relationships are

Ŝx, Ŝy[ ] � 2iZŜz, Ŝy, Ŝz[ ] � 2iZŜx, Ŝz, Ŝx[ ] � 2iZŜy, (74)

which are directly obtained by the commutation relationships of â†σ
and âσ . The factor of 2 is unusual, because we have just 2 degrees of
freedom, regardless of the spin 1 nature of a photon, which normally
allow 3 states (1, 0, −1) along the principle quantisation axis [6–9].
This restriction is coming from the transverse nature of the ray
of photons.

We also obtain

Ŝ0, Ŝx[ ] � Ŝ0, Ŝy[ ] � Ŝ0, Ŝz[ ] � 0, (75)

which are commutable, such that the magnitude can be a
simultaneous eigenstate with the spin vector, Ŝ � (Ŝx, Ŝy, Ŝz).

It is also intuitive to evaluate the quantum fluctuations [31–33]
of the spin of photons, by calculating

Ŝ · Ŝ/Z2 � n̂L + n̂R( ) n̂L + n̂R + 2( ) (76)
� n̂ n̂ + 2( ), (77)

where n̂ � n̂L + n̂R is the total number operator, and then we obtain
the expectation value of the quantum-mechanical fluctuation
as [31–33].

δS �
������������
〈Ŝ · Ŝ〉 − 〈Ŝ0〉2

〈Ŝ0〉2

√
(78)

�
��
2
N

√
, (79)

Which means that the quantum-mechanical fluctuation decreases
significantly upon increasing the order parameter. This is quite
typical among other macroscopically quantum ordered
systems [48,52–54].

3.2 Jones vector representation

Here, we will develop a similar description of spin of a photon,
using Jones vector representation (Supplementary Material). Our
starting point is

Ŝz � −i( )Z â†HâV − â†VâH( ), (80)

� Z â†H, â†V( ) 0 −i
i 0

( ) âH
âV

( ) (81)

� Zψ̂†
HVσ2ψ̂HV, (82)

where ψ̂†
HV � (â†H, â†V) and ψ̂HV are the creation and annihilation

operators in Jones vector representation. We also call this basis as
the HV-basis. In the HV-basis, it is expected that the spin state is
diagonalised along the horizontal and vertical directions, such that
we can expect the spin operator along x as

Ŝx � Zψ̂†
HVσ3ψ̂HV, (83)

and consequently,

Ŝy � Zψ̂†
HVσ1ψ̂HV, (84)

for the y component, describing diagonal/anti-diagonal linear
polarisation.
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By taking the quantum-mechanical average over the coherent
state, |αH, αV〉, we obtain

〈Ŝ〉 � ZN
cos 2α( )

sin 2α( )cos δ
sin 2α( )sin δ

⎛⎜⎝ ⎞⎟⎠, (85)

which is shown on a Poincaré sphere of Figure 2.
The expectation value must be independent on the choice of the

fundamental basis. By comparing 〈Ŝ〉, obtained for both LR- and
HV-bases, we obtain the identities,

tan 2Ψ( ) � tan 2α( )cos δ (86)
sin 2χ( ) � sin 2α( )sin δ, (87)

for the transformations of angles. These are exactly the same ones as
those obtained classically, by rotating the horizontal axis to the
principal axis of the polarisation ellipse (Supplementary Material).
Therefore, the rotation of the axes in the real space to change from
(α, δ) to (χ, Ψ) is equivalent to transforming from Jones vector
representation to chiral representation. The comparison between
chiral and Jones representations are summarised in Table 1 for
Poincaré sphere.

The reason why the factor of 2 appeared in front of angles such
as 2Ψ, 2χ, and 2α, is the quantum-mechanical average. By taking the

complex conjugate and applying it to the original phase factor, we
obtain this factor of 2, compared with the actual angle in the real
space for E. This difference could be very important similar to
geometrical Pancharatnam-Berry’s phase [61, 62], since the
adiabatic rotation in Bloch/Poincaré sphere would not change the
expectation value, but nevertheless, it can change the sign of the
electric field, which leads the non-trivial interference [60].

FIGURE 2
Poincaré sphere for the polarisation states, described by
horizontally and vertically polarised states. For these basis states, the
horizontal (vertical) linearly polarised state is shown on the north
(south) pole by the red (blue) colour at S1 = 1 (S1 = −1). The
polarisation state is shown by the vector of spin angular momentum
(blue arrow) at the position, described by the polar angle of 2α and the
azimuthal angle of δ. δ is known as the phase difference between
horizontal and vertical modes and α is the auxiliary angle to split
horizontal and vertical components. The dotted green line shows the
projection of the spin angular momentum to the S2-S3 plane.

TABLE 1 Comparison between chiral and Jones representation for
polarisation states.

Representation Chiral Jones

Basis |L〉, |R〉 |H〉, |V〉

States Bloch vector Jones vector

Sphere Bloch Poincaré

Angles for E χ: Ellipticity α: Auxiliary

Ψ: Inclination δ: Phase

Angles for 〈Ŝ〉 θ = π/2 − 2χ: Polar γ = 2α: Polar

ϕ = 2Ψ: Azimuthal δ: Azimuthal

S � 〈Ŝ〉 Z〈(σ0 , σ1 , σ2 , σ3)〉LR Z〈(σ0 , σ3 , σ1 , σ2)〉HV

E

E0eiβ
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E0eiβ
e−iδ/2 cos α
e+iδ/2 sin α

( )

FIGURE 3
Poincaré sphere for the polarisation states, described by
diagonally and anti-diagonally polarised states. The diagonal (anti-
diagonal) linearly polarised state is shown on the north (south) pole by
the red (blue) colour at S2 = 1 (S2 = −1). The polarisation state is
shown by the vector of spin angular momentum (blue arrow) at the
position, described by the polar angle of θ′ and the azimuthal angle of
ϕ′. The dotted green line shows the projection of the spin angular
momentum to the S3-S1 plane.
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3.3 Diagonal representation

We can also consider another representation, using diagonal |D〉
and anti-diagonal |A〉 basis states. In this basis, we will diagonalise
the spin operator along y, and we obtain

Ŝx � Zψ̂†
DAσ2ψ̂DA (88)

Ŝy � Zψ̂†
DAσ3ψ̂DA (89)

Ŝz � Zψ̂†
DAσ1ψ̂DA, (90)

where ψ̂†
DA � (â†D, â†A) and ψ̂DA are the creation and the annihilation

operator in the diagonal representation. For this DA-representation,
the coherent state and the average of the spin operators are best
described by the polar angle θ′ measured from the S2 axis and the
azimuthal angle ϕ′ measured from the S3 axis (Figure 3). The
expectation value is given by

〈Ŝ〉 � ZN

1
sin θ′ sin ϕ′

cos θ′
sin θ′ cos ϕ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (91)

As far as we are aware, this representation is barely used.

3.4 Unitary transformation from HV- to
LR-bases

Now, we realise the Jones vector treatments of the polarisation
states are fully consistent with the quantum-mechanical treatment
in SU(2). Here, we will double check this equivalence by
transforming the Jones vector state to the corresponding
representation in chiral state, which is made by the unitary
transformation

|H 〉
|V 〉( ) � eiγ�

2
√ 1 1

−i i
( ) |L 〉

|R 〉( ), (92)

where γ is the uncertainty of the global U (1) phase.
The original Jones vector is prepared as.

|α, δ〉 � eiβ
cos α
sin α eiδ

( ) (93)

� eiβ cos α|H 〉 + eiβ sin α eiδ|V 〉, (94)
and after the unitary transformation, we obtain in the form of

|α, δ〉 � CL|L 〉 + CR|R 〉 � |θ, ϕ〉. (95)
Therefore, we need to determine CL and CR, which are.

CL � ei β+γ( )cos α − i eiδ sin α�
2

√ (96)

CR � ei β+γ( )cos α + i eiδ sin α�
2

√ . (97)

We still need to express these as a function of (θ, ϕ).
To this aid, we assume the expectation values of 〈Ŝ〉 are

independent on the choice of the basis states.
The ratio of the coefficient becomes

CR

CL
� tan

θ

2
( )eiϕ. (98)

In addition, we can confirm that the wavefunction is normalised

|CL|2 + |CR|2 � 1. (99)
These equations for 2 complex values of CL and CR correspond

to 3 equations for real values. Therefore, we cannot determine the
global phase degree of freedom, eiγ.

Assuming CL � l ∈ R, we obtain CR � l tan(θ/2)eiϕ. Inserting
this into the normalisation condition, we obtain l � ± cos(θ/2).
Thus, we obtain 2 states,

CL

CR
( ) � ±

cos
θ

2
( )

eiϕ sin
θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (100)

which yield the same expectation value but the overall sign is
opposite each other. This phase is different from the global phase,
and this is coming from the two-fold coverage of SU(2) as SU(2)/
SO(3) ≈ Z2 = {−1, 1}, according to the mathematical theory for
isomorphism [64, 65, 66? ]. We know that the wavefunction of
the polarisation state is the spinor representation of the complex
electric field. Therefore, the factor of −1 means that the change
between (Ex, Ey) and (−Ex,−Ey), which cannot change the
polarisation state, but the phase is observable in the
interference experiments [60–62]. We can express these states
together, by shifting the global phase, while keeping the relative
phase, as

CL

CR
( ) �

e−iϕ/2 cos
θ

2
( )

e+iϕ/2 sin
θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (101)

which is indeed the Bloch vector. Here, we should consider the range
of ϕ should be (0, 4π) to account for the change of the sign. Thus, the
Jones vector is equivalent to the Bloch vector.

It is less obvious of this sign change in the above-defined Jones
vector, if we describe the phase dependence as eiδ. This could be
improved by shifting the global phase with the amount of eiδ/2, and
then Jones vector can be rewritten as

|Jones〉 � eiβ
e−iδ/2 cos γ/2( )
eiδ/2 sin γ/2( )( ), (102)

where γ = 2α is the azimuthal angle measured from S1 on the
Poincaré sphere (Figure 2). In this spinor representation, it is clear
that the state will change the sign after 1 rotation on the Poincaré
sphere, irrespective to whether the adiabatic rotation is the
azimuthal rotation along the equator or the polar rotation along
the meridian. This is exactly the same form of the Bloch state in
chiral state, such that the change of basis from LR to HV simply
corresponds to change from (θ, ϕ) to (γ, δ) in polar coordinates. This
corresponds to the cyclic exchange of Pauli matrices from (σ1, σ2, σ3)
to (σ3, σ1, σ2) (Table 2).
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3.5 Spin rotation by an SU(2) group theory

Now, we understand the spin state of a photon is described by an
SU(2) group theory [6–9]. By using a standard Lie algebra, using
Pauli matrices, we can obtain the many-body spin operators for the
coherent monochromatic ray for photons, in a more elegant way.
The general rotation operator [6–9] along the direction n̂ with the
amount of δϕ is defined as

D̂ n̂, δϕ( ) � exp −iσ · n̂ δϕ

2
( )( ), (103)

where |̂̂n| � 1 and σ = (σ1, σ2, σ3). We have chosen the direction of
rotation in a standard mathematical way. Specifically, the positive
rotation along z is equivalent to the left-hand rotation (anti-clock-
wise) rotation in xy-plane, seen from the top of the z-axis, which is
equivalent to see from the observer in the detector side. By
expanding the exponential and using the formulas,
σ i, σj{ } � 2δij1, and [σ i, σj] � 2iϵijkσk, we obtain [6–9].

D̂ n̂, δϕ( ) � 1 cos
δϕ

2
( ) − iσ · n̂ sin δϕ

2
( ). (104)

In particular, we describe the rotation around x, y, and z, axes as
D̂1(δϕ) � D̂x(δϕ) � D̂(x̂, δϕ), D̂2(δϕ) � D̂y(δϕ) � D̂(ŷ, δϕ), and
D̂3(δϕ) � D̂z(δϕ) � D̂(ẑ, δϕ), for simplicity.

Previously, as outlined above, the spin operator along the
direction of propagation (Ŝz) was obtained by using the Poynting
vector and considerations of angular momentum [4,5,11–18]. Then,
we can obtain the spin operator along x, Ŝx, by rotating Ŝz with the
amount of π/2 along y, and therefore,

Ŝx � D̂y
π

2
( )ŜzD̂†

y

π

2
( ) (105)

� D̂y
π

2
( )ψ†

LRZσ3ψLRD̂
†

y

π

2
( ) (106)

� ψ†
LRD̂y

π

2
( )Zσ3D̂†

y

π

2
( )ψLR (107)

� Zψ†
LRσ1ψLR. (108)

Similarly, we obtain Ŝy from Ŝz by rotating along x with the
amount of −π/2 as

Ŝy � D̂x −π
2

( )ŜzD̂†

x −π
2

( ) (109)

� D̂x −π
2

( )ψ†
LRZσ3ψLRD̂

†

x −π
2

( ) (110)

� ψ†
LRD̂x −π

2
( )Zσ3D̂†

x −π
2

( )ψLR (111)
� Zψ†

LRσ2ψLR. (112)

Alternatively, we can also rotate 2π/3 along (1, 1, 1)/ �
3

√
direction, for cyclic permutation of axes. The rotation
operator becomes

D̂ 1, 1, 1( )�
3

√ ,
2π
3

( ) � 1
2
− i

2
σ1 + σ2 + σ3( ), (113)

which yields

D̂ 1, 1, 1( )�
3

√ ,
2π
3

( )σ3D̂ 1, 1, 1( )�
3

√ ,
2π
3

( )†

� σ1. (114)

Therefore, we successfully obtain Ŝx, and the opposite rotation
yield Ŝy.

For the expressions using the HV-basis, we can use a unitary
transformation

â†H
â†V

( ) � 1�
2

√ 1 1
−i i

( ) â†L
â†R

( ), (115)

and its conjugate

âH
âV

( ) � 1�
2

√ 1 1
i −i( ) âL

âR
( ). (116)

We can, of course, come back to LR-basis from HV-basis by the
inverse unitary transformation. The transfer to the DA-basis is also
straightforward by using the unitary transformation

â†D
â†A

( ) � 1�
2

√ 1 1
1 −1( ) â†H

â†V
( ), (117)

and its conjugate

âD
âA

( ) � 1�
2

√ 1 1
1 −1( ) âH

âV
( ). (118)

The summary of the assignments of Pauli matrices to spin
operator components for each representation is given by Table 2.

3.6 Rotation in real space

Here, we consider the rotation in real space rather than Hilbert
space for spin. We define the rotation operators for the amount of
the rotation of δϕ along x, y, and z-axes as Rx(δϕ), Ry(δϕ),
Rz(δϕ), respectively. These are rotations in a SO(3) (Special
Orthogonal) group theory. By applying 2 successive rotations
along y and x,

Rx
π

2
( )Ry

π

2
( )x̂ � ŷ (119)

Rx
π

2
( )Ry

π

2
( )ŷ � ẑ (120)

Rx
π

2
( )Ry

π

2
( )ẑ � x̂. (121)

We can perform cyclic exchange of axes from (x, y, z) to (y, z, x) as

Rx
π

2
( )Ry

π

2
( ) �

0 0 1
1 0 0
0 1 0

⎛⎜⎝ ⎞⎟⎠. (122)

If we apply this rotations to Ê, we obtain the corresponding
electric field operator after 2 successive rotations as

TABLE 2 Summary of spin operators for each representation.

Representation Chiral Jones Diagonal

Basis |L〉, |R〉 |H〉, |V〉 |D〉, |A〉

Ŝ1 � Ŝx σ1 σ3 σ2

Ŝ2 � Ŝy σ2 σ1 σ3

Ŝ3 � Ŝz σ3 σ2 σ1
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Ê
′′ � E0

2
âHe

iβ′′ + â†He
−iβ′′( )ŷ

+E0

2
âVe

iβ′′ + â†Ve
−iβ′′( )ẑ, (123)

where β′′ = kx − ωt + δx.
Then, by applying the same argument using the Poynting vector,

we obtain the momentum operator and the total angular
momentum after the rotations as

P̂
′′ � Zkn0 n̂H + n̂V + 1( )x̂, (124)
Ĵ
′′
z � Ŝ

′′
z � Ŝzx̂, (125)

where

Ŝz � Z n̂L − n̂R( ). (126)

This means that the spatial rotations simply change the direction
of propagation, but the polarisation state is not changed. We could
also confirm that the polarisation state has not been changed by the
opposite rotation for the left cyclic exchange from (x, y, z) to (z, y, x)
by using the SO(3) rotation

Rx −π
2

( )Ry −π
2

( ) �
0 1 0
0 0 1
1 0 0

⎛⎜⎝ ⎞⎟⎠. (127)

Of course, the polarisation should not depend on the choice of
the spatial coordinate, since the polarisation is a measure to evaluate
the relative phase between orthogonal polarisation states, which
cannot be changed by the rotation for the direction of propagation,
which is responsible to the overall phase of both polarisation
states, equally.

Ŝz and thus S3 � 〈Ŝz〉 are inherently linked to the direction of
the propagation. Therefore, it is natural to regard Ŝz as the helicity
operator [63],

ĥz � Z n̂L − n̂R( ). (128)

The helicity is usually defined as the projection of the spin onto
the direction of the propagation, and in fact ĥz � Ŝ · ẑ, for the light
propagating along z. We have defined the polarisation states from
the electro-magnetic field oscillations seen from the detector side,
such that the helicity operator becomes

ĥ � Z n̂L − n̂R( ), (129)
independent on the direction of propagation.

We could also define our spin operators as.

Ŝ1 � Zψ̂†
LRσ1ψ̂LR (130)

Ŝ2 � Zψ̂†
LRσ2ψ̂LR (131)

Ŝ3 � Zψ̂†
LRσ3ψ̂LR , (132)

to emphasise the direct relevance to the Stokes parameters as
〈Ŝi〉 � Si for ∀i = 0, 1, 2, 3. Even in this notation, we still need to
clarify the direction of the propagation, otherwise the spin state and
the polarisation state cannot be properly specified. The way to define
the rotation, whether the phase front is rotating to the left (anti-
clock-wise) or to the right (clock-wise), depends crucially on the
definition of the direction of the propagation. The definition of the
rotation is also important and we have assumed the polarisation is

seen from the observer (detector) in this paper. We have discussed,
by assuming the direction of the propagation is mostly along z, and
defined spin operators, accordingly. Here, we have shown that the
polarisation state, thus defined, should not depend on the direction
of the propagation, such that the spin operators and associated
expectation values as Stokes parameters should not depend on the
choice of the coordinate. The direction of the propagation of
photons naturally set the quantisation axis for their inherent spin
states, as confirmed by the spatial integration of the outer product
between r and the Poynting vector. We confirmed Ŝz � Ŝ3 � ĥz � ĥ
is always aligned to the direction of propagation.

One might attempt to align the direction of spin operators to a
specific axis in an arbitrary chosen coordinate. However, in this case,
the artificially fixed spin operator is not always aligned to the
direction of the propagation, such that Ŝz may not be aligned to
the direction of the propagation. In such a coordinate, it is very
difficult to discuss the polarisation state, even if it is possible.

The choice of the coordinate should be arbitrary, according to
Einstein’s theory of relativity. The quantisation axis of the spin
operator for describing the amount of the circular polarised state is
naturally aligned to the direction of the propagation. We do not
know why the spin quantisation axis is locked to the direction of the
propagation, but if we accept this as a principle, we could construct
spin operators for other components, just by following a standard
quantum-mechanical prescription and an SU(2) group theory.

4 Applications

As applications of our formalism, we consider several typical
optical components to control the polarisation states
[1,2,5,20–22,28,45–47,64–72]. Practically, this is nothing new
compared with well-established Jones matrix formulation, but the
purpose of this consideration is to establish a fundamental basis to
justify the calculation of polarisation states using Jones matrices
based on a many-body quantum physics and an SU(2) group theory.

4.1 Phase-shifter

4.1.1 Phase-shifter in the HV-basis
A phase-shifter is an optical component, which control the

phase of δ by injecting a coherent laser beam with a specific
polarisation state into it and changing the polarisation state of
the output beam [5,21,22]. It is also called as a retarder, but we
prefer to call it as a phase-shifter, because we can allow both
retardation and advancement of the phase, just by changing the
angle of the optical component. It is also called as a wave-plate. It is
best-described by the HV-basis, so that we will discuss in the HV-
basis, first and then, transform the formulas to those in the LR-basis.

The working principle of the phase-shifter is quite simple. It is
based on a birefringence of a transparent single crystal such as
quartz, LiNbO3, and other transparent single crystals [5,21,22]. In
these birefringent materials, the values of the refractive index
depend on the direction of the propagation against their crystal
axis. The axis for the large refractive index (ns) is called as a slow axis,
and the axis for the small refractive index (nf) is called as a fast axis,
because the phase velocity of the slow axis (vs) is slower than the
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phase velocity of the fast axis (vf). We abbreviate slow axis as SA and
fast axis as FA. This induces the polarisation dependent phase-shift,
through the factor of eikx.

Specifically, first, we consider the retarder configuration,
(Figures 4A, B), which means that the SA is aligned horizontally,
and we expect the phase delay given by δfs = k0 (nf − ns)d < 0, where
k0 = 2π/λ is the wavenumber in the vacuum, λ is the wavelength in
the vacuum, and d is the thickness of the wave plate. The
wavenumbers for SA and FA are given by ks = k0ns and kf =
k0nf, respectively. We also define the average wavenumber as �k �
(ks + kf )/2.

The many-body operator to describe this change is given by the
following phase-shifter operator

Δ̂HV δfs( ) � eiksd
eiβ��
N

√ âHx̂ + eikfd
eiβ��
N

√ âVŷ. (133)

By applying this to the coherent state, we obtain

Δ̂HV δfs( )|αH, αV〉
� eiβei

�kd e−i
δfs
2 0

0 e+i
δfs
2

⎛⎝ ⎞⎠ e−i
δ
2 cos α

e+i
δ
2 sin α

⎛⎝ ⎞⎠|αH, αV〉 (134)

which means that Δ̂HV does not change the number of photons
and just affect the polarisation state. If we multiply the ket vector of
the coherent state, 〈αH, αV|, from the left, we obtain the expectation
value of the phase-shifter operator in the retarder configuration as.

〈αH, αV|Δ̂HV δfs( )|αH, αV〉
� eiβei

�kd e−i
δfs
2 0

0 e+i
δfs
2

⎛⎝ ⎞⎠ e−i
δ
2 cos α

e+i
δ
2 sin α

⎛⎝ ⎞⎠ (135)

� ΔHV δfs( )|Jones〉, (136)

FIGURE 4
Phase-shifter and its impact on the polarisation state. (A) Retarder configuration. Slow axis (SA) is aligned horizontally. (B) Clock-wise rotation of the
polarisation state by a retarder. The polarisation state shown by the vector (blue arrow) is the spin angular momentum, which is rotated along the clock-
wise direction (blue curves) by the retarder. (C) Phase-shifter (phase-advancement) configuration. Fast axis (FA) is aligned horizontally. (D) Anti-clock-
wise rotation of the polarisation state by a phase-shifter. The polarisation state shown by the vector (blue arrow) is the spin angular momentum,
which is rotated along the anti-clock-wise direction (red curves) by the phase-shifter. This rotation is described by ΔHV(δsf) or ΔLR (δsf).
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where we have defined the Jones matrix for the phase-shifter as

ΔHV δfs( ) � eiβei
�kd e−i

δfs
2 0

0 e+i
δfs
2

⎛⎝ ⎞⎠, (137)

Therefore, we can calculate the polarisation state of the ray after
the propagation of the retarder by using the Jones matrix
[1,2,5,21,22,28]. In the Poincaré sphere, this corresponds to
rotate S along S1 with the amount of δfs (Figure 4B). This
corresponds to the clock-wise rotation, since δfs < 0.

Next, we consider the phase-shifter configuration, which
corresponds to increase the phase by aligning FA horizontally
(Figures 4C, D). In this case, the phase-shifter operator is given by

Δ̂HV δsf( ) � eikfd
eiβ��
N

√ âHx̂ + eiksd
eiβ��
N

√ âVŷ, (138)

which just corresponds to exchanging SA and FA, so that the above
formulas are valid just by replacing δfs to δsf = k0 (ns − nf)d > 0.
Therefore, we obtain the Jones matrix

ΔHV δsf( ) � eiβei
�kd e−i

δsf
2 0

0 e+i
δsf
2

⎛⎝ ⎞⎠. (139)

In this case, the operation of the phase-shifter is simply the
phase-shift of δ→ δ + δsf. Alternatively, we can regard the retarder as
a special case of the phase-shifter with opposite rotation. The phase-
shifter configuration (horizontal FA) is our preferable configuration
to think about the rotation on the Poincaré sphere, since we can
consider positive rotation, but of course, we can use both
configurations depending on the applications.

It is now clear that the phase-shifter operator will change the
polarisation state of the coherent state as an out put beam.

|output〉 � Δ̂HV δsf( )|input〉
� eiβei

�kd e−i
δ+δsf
2 cos α

e+i
δ+δsf
2 sin α

⎛⎝ ⎞⎠|input〉, (140)

where the input beam is |input〉 = |αH, αV〉. Therefore, the
phase-shifter changes the relative phase to describe the spin states,
while the coherency of the monochromatic ray of photons, described
by coherent states is preserved. This aspect can be more clearly
confirmed by calculating the average quantum-mechanical
expectation value of the spin of photons, using the output state,

〈output|Ŝ|output〉 � ZN
cos γ( )

sin γ( )cos δ + δsf( )
sin γ( )sin δ + δsf( )

⎛⎜⎜⎝ ⎞⎟⎟⎠. (141)

Thus, the spin is rotated along S1 with the amount of δsf by the
phase-shifter (Figure 4D).

4.1.2 Phase-shifter as a rotator in SU(2)
hilbert space

Aside from the overall phase factor, the phase shifter can be
described by a rotation in SU(2) Hilbert space for spin of a photon.
The phase-shifter corresponds to the rotation along S1, such that the
phase-shifter matrix in the HV-basis is described as.

DHV
1 δsf( ) � exp −iσ3δsf

2
( ) (142)

� 1 cos
δsf
2

( ) − iσ3 sin
δsf
2

( ) (143)

�
exp −i δsf

2
( ) 0

0 exp +i δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (144)

Combined with the overall phase factor, coming from the
average global phase of the orbital wavefunction, we obtain.

ΔHV δsf( ) � eiβei
�kdDHV

1 δsf( ) (145)

� eiβei
�kd e−i

δsf
2 0

0 e+i
δsf
2

⎛⎝ ⎞⎠, (146)

which is exactly the same as that obtained previously. Therefore, the
SU(2) group theory is a powerful method to consider the impact of
the phase-shifter on the Poincaré sphere.

The retarder configuration (horizontal SA) is obviously
corresponds to the opposite rotation (Figures 4B, D), whose
operator form is obtained by the change of sign, due to δfs = −δsf.

4.1.3 Phase-shifter in the LR-basis
Here, we obtain the phase-shifter operator in chiral LR-basis. In

the LR-basis, the rotation along S1 is described by σ1 (Table 2).
Therefore, the Jones matrix for the phase-shifter in the LR-basis is

ΔLR δsf( ) � eiβei
�kdDLR

1 δsf( ) (147)

� eiβei
�kd exp −iσ1δsf

2
( ) (148)

� eiβei
�kd 1 cos

δsf
2

( ) − iσ1 sin
δsf
2

( )( )
� eiβei

�kd

cos
δsf
2

( ) −i sin δsf
2

( )
−i sin δsf

2
( ) cos

δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (149)

4.1.4 Unitary operation
LR-basis can be transferred to the HV-basis by a unitary

transformation,

UHV � 1�
2

√ 1 1
i −i( ), (150)

and vice versa by the inverse

U†
HV � 1�

2
√ 1 −i

1 i
( ). (151)

Therefore, any operator in the HV-basis, OHV, can be
transferred to that in the LR-basis, OHV, by the unitary
transformation

OLR � U−1
HVOHVUHV, (152)
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which means that the state in the LR-basis is first transformed to the
HV-basis by UHV, operated in the HV-space by OHV, and finally
brought back to the LR-basis byU−1

HV. We confirm this operation for
the above obtained phase-shifter. In order to confirm, we directly
calculated.

ΔLR δsf( ) � U−1
HVΔHVUHV (153)

� 1�
2

√ 1 −i
1 i

( )eiβei�kd e−i
δsf
2 0

0 e+i
δsf
2

⎛⎝ ⎞⎠ 1�
2

√ 1 1
i −i( )

� eiβei
�kd

cos
δsf
2

( ) −i sin δsf
2

( )
−i sin δsf

2
( ) cos

δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (154)

which is indeed successfully transferred. Therefore, the unitary
transformation is useful to change the basis states.

4.2 Rotator

4.2.1 Rotator in the LR-basis
The idea of the phase-shifter is to utilise the orbital degree of the

wavefunction to tune the relative phase between two orthogonal
polarisation states by using a polarisation dependent material for
changing the polarisation state. The directional dependence of the
refractive indexes was the key ingredient for enabling the
phase-shift.

Here, we show very similar formulation is applicable to a rotator.
In a rotator, the chiral dependence of the refractive indexes are used
to control the relative phase between left and right circular polarised
states. Consequently, it is straightforward to construct an operator in
the chiral LR-basis.

The key ingredient for enabling the chirality control is the
refractive index dependence on chirality in materials like quartz
and liquid crystal [24,73]. One of the most important application of
the control of chirality of photons is the use for a Liquid-Crystal-
Display (LCD). By applying voltage to the transparent capacitor,
organic molecule sandwiched between two parallel electrodes of
capacitors can align towards the electric field, which changes the
refractive index to switch the pixel on and off. Left-handed quartz
and right-handed quartz are also known to be optically active
materials due to their chiral atomic arrangements of the network
of silicon-oxide bonds [24]. A material with a chiral dependence
should have such atomic or molecular structures, which are optically
active dependent on the polarisation state of the chiral
S3 component.

We assume a rotator made of an optically active material with
the thickness of d and the refractive indexes for left and right
circular-polarised states are nL and nR, whose wavenumbers are
kL = k0nL and kR = k0nR, respectively. Then, the many-body rotator
operator is given by

R̂LR Δϕ( ) � eikLd
eiβ��
N

√ âL̂l + eikRd
eiβ��
N

√ âR r̂, (155)

where Δϕ is the amount of the rotation, which we shall obtain next.
By applying this to the coherent state, we obtain the output state

|output〉 � R̂LR Δϕ( )|αL, αR〉
� eiβei

�kd e−i
Δϕ
2 0

0 e+i
Δϕ
2

⎛⎝ ⎞⎠ e−i
ϕ
2 cos θ/2( )

e+i
ϕ
2 sin θ/2( )⎛⎜⎜⎝ ⎞⎟⎟⎠|αL, αR〉, (156)

where Δϕ = 2ρd is the rotation angle of the azimuthal direction
on the Poincaré sphere, ΔΨ = ρd is the rotation angle of the
inclination angle for the electric field of the principal axis in the
polarisation ellipse, and ρ = (kR − kL)d/2 = π(nR − nL)/λ. By applying
〈αL, αR| from the left, we obtain.

〈αL, αR|R̂LR Δϕ( )|αL, αR〉
� eiβei

�kd e−i
Δϕ
2 0

0 e+i
Δϕ
2

⎛⎝ ⎞⎠ e−i
ϕ
2 cos θ/2( )

e+i
ϕ
2 sin θ/2( )⎛⎜⎜⎝ ⎞⎟⎟⎠ (157)

� RLR Δϕ( )|Bloch〉, (158)

where we have obtained the Jones matrix for a rotator as

RLR Δϕ( ) � eiβei
�kd e−i

Δϕ
2 0

0 e+i
Δϕ
2

⎛⎝ ⎞⎠. (159)

After the propagation in the rotator, the output beam
state becomes.

|output〉 � R̂LR Δϕ( )|input〉 (160)

� eiβei
�kd

e−i
ϕ+Δϕ
2 cos θ/2( )

e+i
ϕ+Δϕ
2 sin θ/2( )⎛⎜⎜⎝ ⎞⎟⎟⎠|input〉. (161)

By taking the quantum-mechanical expectation values of the
output state, we obtain

FIGURE 5
Rotator and its impact on the polarisation state. The polarisation
state shown by the vector (blue arrow) is the spin angular momentum,
which is rotated along the clock-wise direction (blue curve) by the
rotator for the amount of Δϕ.
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〈output|Ŝ|output〉 � ZN
sin θ cos ϕ + Δϕ( )
sin θ sin ϕ + Δϕ( )

cos θ

⎛⎜⎝ ⎞⎟⎠, (162)

which means that the rotator successfully rotate the polarisation
state as the expectation value of the spin vector on the Poincaré
sphere with the amount of Δϕ along the S3 axis (Figure 5).

4.2.2 Rotator as a rotator in SU(2) hilbert space
We understand the chiral phase-control corresponds to the

rotation around S3 on the Poincaré sphere. Ŝ3 corresponds to σ3
in the chiral LR-basis (Table 2). Then, we can construct a rotator
based on an SU(2) group theory by

DLR
3 Δϕ( ) � exp −iσ3Δϕ

2
( ) (163)

� 1 cos
Δϕ
2

( ) − iσ3 sin
Δϕ
2

( ) (164)

�
exp −iΔϕ

2
( ) 0

0 exp + i
Δϕ
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (165)

With the inclusion of the overall phase for the global orbital
contribution, the Jones matrix becomes

RLR Δϕ( ) � eiβei
�kdDLR

3 Δϕ( ), (166)
which is in agreement with the previous many-body operator based
calculation.

4.2.3 Rotator in the HV-basis
It is also straightforward to obtain the rotator in the HV-basis by

an SU(2) group theory. Ŝ3 corresponds to σ2 in the HV-basis
(Table 2), such that, we can construct a rotator by the operator

DHV
3 Δϕ( ) � exp −iσ2Δϕ

2
( ) (167)

� 1 cos
Δϕ
2

( ) − iσ2 sin
Δϕ
2

( ) (168)

� 1 0
0 1

( )cos Δϕ
2

( ) + 0 −1
1 0

( )sin Δϕ
2

( ) (169)

�
cos

Δϕ
2

( ) −sin Δϕ
2

( )
sin

Δϕ
2

( ) cos
Δϕ
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (170)

� cos ΔΨ( ) −sin ΔΨ( )
sin ΔΨ( ) cos ΔΨ( )( ). (171)

With the phase factor, Jones matrix for a rotator in the HV-
basis becomes

RHV Δϕ( ) � eiβei
�kdDHV

3 Δϕ( ). (172)

We realise that this corresponds to a standard SO(3) rotation

Rz ΔΨ( ) � cos ΔΨ( ) −sin ΔΨ( )
sin ΔΨ( ) cos ΔΨ( )( ) (173)

of E along z. In fact, the complex electric field is simply rotated upon
the operation of the rotator as

Ex′
Ey′( ) � eiβei

�kdRz ΔΨ( ) Ex

Ey
( ), (174)

including the global phase factor, where E′ � (Ex′ , Ey′ ) is the
complex output electric field. Therefore, the impact of a
rotator as an passive optical component is equivalent to a
physical anti-clockwise rotation of the electric field, which is
also identical to the rotation of (x, y)-axes along z in the opposite
direction (clock-wise). During this rotation, the angle of χ is
preserved, such that the shape of the polarisation ellipse is not
affected. The rotation of the principal axis in the real space of ΔΨ
corresponds to the rotation of 〈Ŝ〉 with the amount of Δϕ = 2ΔΨ.
The factor of 2 is again coming from the quantum-mechanical
expectation value. It is very useful to remember that the rotation
in real space affects twice the rotation of 〈Ŝ〉 on the Poincaré
sphere. We should always be aware of this difference between real
space and Poincaré sphere.

It is also interesting to note that the physical rotation of a rotator
cannot change the operation. This can be checked simply by
calculating

D†
3 Δϕ′( )D3 Δϕ( )D3 Δϕ′( ) � D3 Δϕ( ), (175)

which is valid for both LR- and HV-bases. Therefore, the physical
rotation of a rotator will not change the polarisation state of the
output beam.

4.2.4 Unitary transformation
We have obtained Jones matrix for a rotator both in LR- and

HV-bases. As is expected for other quantum systems, these
descriptions must be identical and transferable to one from the
other by unitary transformation. In order to transfer fromRHV(Δϕ)
to RLR(Δϕ), we use UHV and we confirmed

RLR Δϕ( ) � U−1
HVRHV Δϕ( )UHV (176)

� eiβei�kd

2
1 −i
1 i

( ) cos
Δϕ
2

( ) −sin Δϕ
2

( )
sin

Δϕ
2

( ) cos
Δϕ
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1 1

i −i( )
� eiβei

�kd

exp −iΔϕ
2

( ) 0

0 exp +iΔϕ
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (177)

which is in agreement with our result.
For the opposite transformation, from RLR(Δϕ) to RHV(Δϕ),

we use ULR � U−1
HV and we confirmed

RHV Δϕ( ) � U−1
LRRLRULR (178)

� eiβei�kd

2
1 1
i −i( ) e−i

Δϕ
2 0

0 e+i
Δϕ
2

⎛⎝ ⎞⎠ 1 −i
1 i

( )
� eiβei

�kd

cos
Δϕ
2

( ) −sin Δϕ
2

( )
sin

Δϕ
2

( ) cos
Δϕ
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (179)

Therefore, a standard unitary transformation and its inverse are
applicable to the polarisation operators.
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4.3 Rotated phase-shifter

4.3.1 Rotated phase-shifter in the HV-basis
As an application of the phase-shifter and the rotator, discussed

above, we consider a rotated phase-shifter with the amount of ΔΨ,
whose FA was originally aligned horizontally (Figure 6).

It is straightforward to obtain the Jones matrix of the rotated
phase-shifter, by following the several steps. First, we consider the
rotation of the coordinate from (x, y) to (x′, y′)-axes, which is
described by a standard rotation around z-axis as

x′
y′( ) � Rz ΔΨ( ) x

y
( ). (180)

The rotation of the coordinate is equivalent to the rotation of the
physical vector (in this case, complex electric field) in the
opposite direction

Ex′
Ey′( ) � Rz −ΔΨ( ) Ex

Ey
( ). (181)

Next, we will apply the phase-shifter operation in the rotated
frame as

E′′x
E′′y

⎛⎝ ⎞⎠ � ΔHV δsf( )Rz −ΔΨ( ) Ex

Ey
( ). (182)

Finally, we will bring back to the original frame as

Ex‴
Ey‴( ) � Rz ΔΨ( )ΔHV δsf( )Rz −ΔΨ( ) Ex

Ey
( ). (183)

Then, we obtain the Jones matrix for the rotated phase-shifter as

ΔHV Δϕ, δsf( )
� eiβei

�kd cos
δsf
2

( )1 − i sin
δsf
2

( ) cos Δϕ( ) sin Δϕ( )
sin Δϕ( ) −cos Δϕ( )( )( ),

(184)

where Δϕ = 2ΔΨ as usual.
It is especially important at Δϕ = π/2 (ΔΨ = π/4), which

corresponds to the case of 45° rotated phase-shifter, given by

FIGURE 6
Rotated phase-shifter. (A) Phase-shifter arrangement before rotation. The fast axis (FA) is horizontally aligned, while the slow axis (SA) is vertical. (B)
After rotation of ΔΨ in the anti-clock-wise direction (left rotation), seen from the top of the z-axis. The x-y axes are rotated to be x′-y′ axes upon the
rotation (green dotted lines).

FIGURE 7
45° rotated phase-shifter. The operation corresponds to the
rotation of polarisation state along S2, which is described by ΔHV(Δϕ =
π/2, δsf). The polarisation state shown by the vector (blue arrow) is the
spin angular momentum, which is rotated along the anti-clock-
wise direction (red curves) by the phase-shifter. If the initial
polarisation states are left (red point on the north pole) and right (blue
point on the south pole) circularly polarised states, they are rotated
along the longitude (green curve).
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ΔHV Δϕ � π/2, δsf( ) � eiβei
�kd cos

δsf
2

( )1 − i sin
δsf
2

( )σ1( ),
� eiβei

�kd exp −iσ1δsf
2

( ) (185)

� eiβei
�kdDHV

2 δsf( ). (186)
because the rotation along S2 corresponds to σ1 in the HV-basis
(Table 2). This is useful to use, when we want to convert from LR-
states to HV-states and vice versa (Figure 7).

If we use this 45°-rotated phase-shifter to the coherent state,
described by diagonal basis (Figure 3), the spin expectation value of
the output state,

|output〉 � ΔHV Δϕ � π/2, δsf( )|input〉, (187)
is rotated δsf along S2, and therefore, we obtain

〈output|Ŝ|output〉 � ZN
sin θ′ sin ϕ′ + δsf( )

cos θ′
sin θ′ cos ϕ′ + δsf( )⎛⎜⎜⎝ ⎞⎟⎟⎠. (188)

4.3.2 Rotated phase-shifter in the LR-basis
Similarly, it is straightforward to obtain the general rotated

phase-shifter in the LR-basis as.

ΔLR Δϕ, δsf( ) � RLR Δϕ( )ΔLR δsf( )RLR −Δϕ( )
� eiβei

�kd

cos
δsf
2

( ) −ie−iΔϕ sin δsf
2

( )
−ie+iΔϕ sin δsf

2
( ) cos

δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (189)

which Δϕ = π/2

ΔLR Δϕ � π/2, δsf( ) � eiβei
�kd

cos
δsf
2

( ) −sin δsf
2

( )
sin

δsf
2

( ) cos
δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� eiβei
�kd exp −iσ2δsf

2
( ) (190)

� eiβei
�kdDLR

2 δsf( ), (191)
because the rotation along S2 corresponds to σ2 in the LR-
basis (Table 2).

4.3.3 Rotated phase-shifter in SU(2) hilbert space
We can easily obtain above formulas in consideration of a

quantum-mechanical SU(2) theory. The phase-shifter is
described by a rotator of an SU(2) group with the rotation
axis in the S1-S2 plane. If we rotate the phase-shifter with the
amount of ΔΨ in the real space (Figure 6B), the rotation axis on
the Poincaré sphere corresponds to the direction n = (cos (Δϕ),
sin (Δϕ), 0), where Δϕ = 2ΔΨ. Therefore, the rotated phase-
shifter corresponds to the rotator of spin states in SU(2) Hilbert
space along n with the amount of Δϕ. Away from the global phase
factor, this rotation is described by the operator, for the HV-
basis, as

DHV
xy δsf( ) � 1 cos

δsf
2

( ) − iσ3 cos Δϕ( )sin δsf
2

( )
− iσ1 sin Δϕ( )sin δsf

2
( )

� cos
δsf
2

( )1 − i sin
δsf
2

( ) cos Δϕ( ) sin Δϕ( )
sin Δϕ( ) −cos Δϕ( )( ). (192)

By including the global phase, we obtain

ΔHV Δϕ, δsf( ) � eiβei
�kdDHV

xy δsf( ), (193)

which agreed with the previous result.
For the LR-basis, we define a similar operator

Dxy δsf( )
� 1 cos

δsf
2

( ) − iσ1 cos Δϕ( )sin δsf
2

( )
− iσ2 sin Δϕ( )sin δsf

2
( )

� cos
δsf
2

( )1 − i sin
δsf
2

( ) 0 exp −iΔϕ( )
exp +iΔϕ( ) 0

( ), (194)

which yields

ΔLR Δϕ, δsf( ) � eiβei
�kdDLR

xy δsf( ), (195)

which also agreed with the previous result.
Therefore, an SU(2) group theory is a powerful tool to describe

the polarisation control by a phase-shifter, a rotator, and a
combination of these operations.

4.4 Half- and quarter-wavelenth phase-
shifters and rotators

4.4.1 Rotated half-wavelength phase-shifters
One of the most frequently used phase-shifters is the half-

wavelength phase-shifter, which δsf = 2π(ns − nf)d/λ = π. This
corresponds to the difference of the half-wavelength (λ/2) for the
effective optical path distances in the phase-shifter for the SA (nsd)
and the FA (nfd). In the arrangement of the FA aligned horizontally,
the phase of SA is advanced due to the phase factor, coming from the
orbital eik0(ns−nf )d � eiπ . This means that the half-wavelength phase-
shifter rotate 〈Ŝ〉 along S1 with the amount of π. Therefore, |L〉 is
transformed to |R〉, |D〉 is transformed to |A〉, and vice
versa (Figure 8).

The operators of the rotated half-wavelength phase-shifter at
major angles are summarised in Table 3. Away from the global phase
factor of eiβei

�kd, the operations are very simple. For example, without
the rotation, the operation in the HV-basis becomes,

DHV
1 δsf � π( ) � −iσ3, (196)

which represents the π rotation on the Poincaré sphere around S1.
The 45° rotated half-wavelength phase-shifter becomes,

DHV
2 δsf � π( ) � −iσ1. (197)

Similarly, the half-wavelength rotator is given by

DHV
3 Δϕ � π( ) � −iσ2, (198)
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which is independent on the physical rotation, as we confirmed.
These are corresponding to the original Pauli matrices, responsible
for these rotations (Table 2).

Another important quantum-mechanical aspect of these
rotations are coming from the difference between SU(2) and
SO(3) [61,62]. If we consider 2π rotations by successive
application of these operators, we confirm the phase change of
−1 as

DHV
1 δsf � π( )DHV

1 δsf � π( ) � −σ3σ3 � −1 (199)
DHV

2 δsf � π( )DHV
2 δsf � π( ) � −σ1σ1 � −1 (200)

DHV
3 δsf � π( )DHV

3 Δϕ � π( ) � −σ2σ2 � −1. (201)

This means that the polarisation control is not classical at all, but
fully quantum mechanical. The non-trivial phase change is
successfully incorporated in the spin rotation operator of an
SU(2) group theory.

We have obtained the same relationship in the LR-basis for the
half-wavelength phase-shift, its rotated one, and the half-wavelength
rotator, as

DLR
1 δsf � π( ) � −iσ1, (202)

DLR
2 δsf � π( ) � −iσ2, (203)

DLR
3 Δϕ � π( ) � −iσ3, (204)

respectively, which are consistent with Table 2. It is also obvious that
the phase change is properly included for 2π rotations, since σ2i � 1
for ∀i = 1, 2, 3.

It is also interesting to note that a phase-shifter, which aligns its
optical axis (SA or FA) horizontally, is not affected by a flip-flop
exchange (Figure 8). This must be true, because the crystal has a
mirror symmetry against both SA and FA. Therefore, there is no
difference between the front side and the back side with regard to the
amount of the polarisation rotation, achieved by the phase-shifter.
Nevertheless, the alignment of the SA or FA to the designated
direction is important, such that if the phase-shifter is rotated, to
align its FA to the diagonal direction, the flip-flop by the mirror
symmetric exchange against y-axis will make the FA align to the
anti-diagonal direction. This corresponds to rotate in the opposite

FIGURE 8
Impact of a flip-flop exchange. (A) An example of the half-wavelength phase-shifter, whose slow axis (SA) is aligned horizontally. (B) The flip-flop
exchanged configuration. (C)Operation of the phase-shifter before the exchange on the Poincaré sphere. The left circularly polarised state becomes the
right circularly polarised state upon passing through the phase-shifter, shown by the clock-wise rotation (blue curves). (D) Operation of the flip-flop
exchanged phase-shifter. The left circularly polarised state becomes the right circularly polarised state upon passing through the phase-shifter,
shown by the anti-clock-wise rotation (red curves).

TABLE 3 Summary of the rotated half-wavelength phase-shifter. ΔΨ and Δϕ
correspond to rotations in real space and on the Poincaré sphere,
respectively. The operators away from the phase factor of eiβei

�kd are listed.

ΔΨ Δϕ ΔHV/(eiβei�kd) ΔΨ Δϕ ΔLR/(eiβei�kd)
0 0 −iσ3 0 0 −iσ1

π/4 π/2 −iσ1 π/4 π/2 −iσ2

π/2 π +iσ3 π/2 π +iσ1

−π/4 −π/2 +iσ3 −π/4 −π/2 +iσ2

π 2π −iσ3 π 2π −iσ1
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direction. Still, there is no difference for the half-wavelength phase-
shifter, but it does make a difference for a quarter-wavelength
phase-shifter.

As an example of the application of the rotated half-wavelength
phase-shifter, we consider the input state of |H〉. In this case, the
expectation value of spin by the output state, becomes.

〈output|Ŝ|output〉 � ZN
cos 2Δϕ( )
sin 2Δϕ( )

0

⎛⎜⎝ ⎞⎟⎠
� ZN

cos 4ΔΨ( )
sin 4ΔΨ( )

0

⎛⎜⎝ ⎞⎟⎠, (205)

which means that the average spin vector (Stokes vector) will rotate
4-times on the Poincaré sphere, while rotating the phase-shifter 1-
time in real space (ΔΨ changing from 0 to 2π). The trajectory of the
Stokes vector is shown in Figure 9. In this case, the Stokes vector is
always located in the S1 − S2 plane, and the output state will rotate
anti-clock-wise, seen from the top of S3 upon the rotation of the
phase-shifter towards the anti-clock-wise, seen from the
detector side.

4.4.2 Rotated quarter-wavelength phase-shifters
Another frequently used phase-shifters is a quarter-wavelength

phase-shifter at δsf = 2π(ns − nf)d/λ = π/2, which corresponds to the
deference in path lengths of the quarter wavelength between SA and
FA. Operators of the quarter-wavelength phase-shifters at major
angles are summarised in Table 4.

An example of the operation using the quarter wavelength phase-
shifter is shown in Figure 10. It is crucial to align SA or FA properly for
the desired operation, because it determines the direction of rotation
whether right (clock-wise) or left (anti-clock-wise) rotations.

We can recognise that 2 successive applications of the quarter-
wavelength phase-shifters correspond to 1 application of the half-
wavelength phase-shifter, except for the global phase.

ΔHV δsf � π/2( )
eiβei�kd

( )2

� 1�
2

√ 1 − iσ3( )( )2

(206)

� −iσ3 (207)
� ΔHV δsf � π( )

eiβei�kd
, (208)

because of the additive nature of the rotation,
DHV

1 (π/2)DHV
1 (π/2) � DHV

1 (π), which simply means that
2 quarters-rotations are equivalent to 1 half-rotation.
Mathematically, this means that the rotational operations form a
group. Consequently, 4 quarters-rotations are equivalent to 1-whole-
rotation on the Poincaré sphere, which yields (DHV

1 (π/2))4 � −1.
In Figure 11, we show the trajectories of the output polarisation

state, 〈output|Ŝ|output〉, when the linearly polarised input states are
rotated by the rotated quarter-wavelength phase-shifters. Upon
physically-rotating the phase-shifter, the linearly polarised state
changes its ellipticity, arriving to the poles, which correspond to
left- and right-circularly polarised states, and coming back to the
original state. For example, if the input is the horizontally polarised
state, the output spin becomes

〈output|Ŝ|output〉 � ZN
cos2 Δϕ( )

sin Δϕ( )cos Δϕ( )
−sin Δϕ( )⎛⎜⎜⎝ ⎞⎟⎟⎠. (209)

while physically-rotating the quarter-wavelength phase-shifter
1-time in real space, the Stokes vector will rotate 2-times, because
Δϕ = 2ΔΨ. The horizontally polarised state can never arrive to be the
vertically polarised state by the quarter-wavelength phase-shifter,
because the horizontally polarised state does not contain any
contribution of the orthogonal vertically polarised state and the
π/4 change of the phase-shift is not large enough.

4.5 Polariser

So far, we have discussed phase-shifters and rotators, which are
described energy-conserving unitary operators. The advantages of Jones

FIGURE 9
The trajectory (red curve along the equator) of the output Stokes
vector (red arrow) by the rotated phase-shifter with the input of the
horizontally polarised state (blue arrow).

TABLE 4 Summary of the rotated quarter-wavelength phase-shifter. ΔΨ and
Δϕ correspond to rotations in real space and on the Poincaré sphere,
respectively. The operators away from the phase factor of eiβei

�kd are listed.

ΔΨ Δϕ ΔHV/(eiβei�kd) ΔΨ Δϕ ΔLR/(eiβei�kd)
0 0 1�

2
√ (1 − iσ3) 0 0 1�

2
√ (1 − iσ1)

π/4 π/2 1�
2

√ (1 − iσ1) π/4 π/2 1�
2

√ (1 − iσ2)

π/2 π 1�
2

√ (1 + iσ3) π/2 π 1�
2

√ (1 + iσ1)

−π/4 −π/2 1�
2

√ (1 + iσ1) −π/4 −π/2 1�
2

√ (1 + iσ2)

π 2π 1�
2

√ (1 − iσ3) π 2π 1�
2

√ (1 − iσ1)
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vector treatments are the capabilities to extend the operator analysis to
the situations with energy-dissipations. One of the most important
polarisation optical components in that aspect is a polariser [5,21,22,28].
Polarisers are made, for example, by patterning thin metallic layer into
arrays of metallic wires with sub-wavelength widths [74]. This allows to
reflect and absorb the most of the polarisation component along the
direction of the long axis of the wires, while the polarisation component
perpendicular to the wires can transmit the polariser. There are many
other types of polarisers by using polymers with polarisation-dependent
absorption coefficients or reflectors using birefringent prisms or
reflections at Brewster’s angle.

4.5.1 Polariser in the HV-basis
It is straightforward to consider a polariser operator in the

HV-basis,

P̂HV

x � eik0nxd−αxd
eiβ��
N

√ âHx̂ + eik0nyd−αyd
eiβ��
N

√ âVŷ, (210)

where nx and ny are refractive indices, and αx and αy are absorption
coefficients per unit propagation length for polarisation components
along x and y, respectively, and d is the thickness of the polariser. For
the ideal horizontal polariser, we take the limits of αxd → 1 and
αyd → ∞, and we obtain

P̂HV

x � ei
�kd eiβ��

N
√ âHx̂, (211)

where �k � k0nx. By considering the spinor representation of the
output state, we obtain

|output〉 � P̂HV

x |αH, αV〉

� eiβei
�kd 1 0

0 0
( ) e−i

δ
2 cos α

e+i
δ
2 sin α

⎛⎝ ⎞⎠|input〉. (212)

Therefore, we obtain

〈αH, αV|P̂HV

x |αH, αV〉
� eiβei

�kd 1 0
0 0

( ) e−i
δ
2 cos α

e+i
δ
2 sin α

⎛⎝ ⎞⎠ (213)

� PHV
x |Jones〉, (214)

where we have defined the Jones matrix for the horizontal
polariser as

PHV
x � eiβei

�kd 1 0
0 0

( ) (215)

� eiβei�kd

2
1 + σz( ). (216)

Similarly, we obtain the Jones matrix for vertical polariser as.

PHV
y � eiβei

�kd 0 0
0 1

( ) (217)

� eiβei�kd

2
1 − σz( ). (218)

It is important to recognise that polarisers are projectors to
remove one of the orthogonal components, and the intensity of the
ray will be reduced, accordingly. Consequently, it is dissipative

FIGURE 10
The difference of the alignment of the optical axis for the quarter-wavelength phase-shifter. (A) Slow axis (SA) aligned horizontally. (B) Fast axis (FA)
aligned horizontally. (C) Rotation of polarisation state (clock-wise rotation, shown by blue curves) on the Poincaré sphere, when SA is aligned horizontally.
(D) Rotation of polarisation state (anti-clock-wise rotation, shown by red curves)on the Poincaré sphere, when FA is aligned horizontally.
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irreversible operation, and thus the inverse of the polariser matrix
does not exist. It is also interesting to note that the transmitted
output state is not altered except for the global phase of eiβei

�kd.

4.5.2 Polariser in the LR-basis
After obtaining the polariser operators in the HV-basis, it is

straightforward to obtain the corresponding operators in the LR-
basis simply by unitary transformations. We obtain

PLR
x � U−1

HVPHV
x UHV (219)

� ei�kd

2
1 −i
1 i

( ) 1 0
0 0

( ) 1 1
i −i( ) (220)

� ei�kd

2
1 1
1 1

( ) (221)

� ei�kd

2
1 + σx( ), (222)

and

PLR
y � U−1

HVPHV
y UHV (223)

� ei�kd

2
1 −i
1 i

( ) 0 0
0 1

( ) 1 1
i −i( ) (224)

� ei
�kd 1 −1

−1 1
( ) (225)

� ei�kd

2
1 − σx( ). (226)

4.5.3 Rotated polarisers
It is also straightforward to obtain the rotated polarisers with the

angle of ΔΨ = Δϕ/2. In the HV-basis, it becomes

PHV
x Δϕ( ) � RHV ΔΨ( )PHV

x RHV −ΔΨ( ) (227)

� ei�kd

2
1 + cos Δϕ( ) sin Δϕ( )
sin Δϕ( ) 1 − cos Δϕ( )( ). (228)

In the LR-basis, it becomes

FIGURE 11
Trajectories of output polarisation states by the rotated quarter-wavelength phase-shifters. The input is linearly polarised state. (A) The input is a
horizontally polarised state, |H〉. The trajectory is shown by the blue curve. (B) The input is a vertically polarised state, |V〉. The trajectory is shown by the
red curve. (C) The input is a diagonally polarised state, |D〉. The trajectory is shown by the red curve. (D) The input is an anti-diagonally polarised state, |A〉.
The trajectory is shown by the blue curve.
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PLR
x Δϕ( ) � RLR ΔΨ( )PLR

x RLR −ΔΨ( ) (229)

� ei�kd

2
1 e−iΔϕ

eiΔϕ 1
( ). (230)

The rotated polarisers at typical angles are summarised
in Table 5.

4.6 Difference between SU(2) and SO(3)

We think it is worth for summarising our simple picture on the
difference between SU(2) and SO(3) [61,62] for polarisation states [60].
We consider a situation, where the Stokes vector rotate 1-time on the
Poincaré sphere (Figure 12). Suppose this could be achieved by phase-
shifters, e.g., by 2 successive operations of the half-wavelength phase-
shifters. The spin expectation value, 〈output|Ŝ|output〉, would not be
changed upon this rotation, such that the polarisation state is equivalent
in terms of the expectation value. However, the electric field has
changed its sign, such that the destructive interference can be
observable upon the coupling to the original wave before the
rotation. We could successfully include this phase change in our

SU(2) description of the spin state of photons, because
DHV

1 (δsf � 2π) � −1.
The acquisition of this phase upon the 1-time rotation does not

depend on how we rotate the polarisation state nor the bases which
we are going to use. Let us consider to use the chiral LR-basis and
rotate the polarisation state (θ, ϕ) 1-time upon rotating θ to θ − 2π
(Figure 13A). This corresponds to use the rotation axis, which is
rotated to the clock-wise with the amount of Δϕ′ = π/2 − ϕ from S1.
Therefore, the rotation axis is pointing to n = (cos (−Δϕ′), sin
(−Δϕ′), 0), which corresponds to rotate the phase-shifter with the
amount of ΔΨ′ = π/4 − ϕ/2 in the clock-wise direction (Figure 13B).
Upon this 2π rotation on the Poincaré sphere, the spin expectation
value will not be changed, since the spin is coming back to point to
the original direction. However, the electric field in the polarisation
ellipse changes its sign in the polarisation ellipse (Figure 13D),
because the rotation corresponds to rotate χ with the amount of π.
This difference of the factor of 2 among θ in the Poincaré sphere and
χ in the polarisation ellipse is responsible for the emergence of the
geometrical phase. In an SU(2) theory, this simply corresponds to
DLR(n, δsf � 2π) � −1.

We can also confirm the impact of the polarisation rotation by a
rotator, which is equivalent to the adiabatic change of the coordinate
(Figure 13C). The rotation corresponds to change ϕ to be ϕ + 2π
around S3. This corresponds to rotate the inclination angle Ψ with
the amount of π, because ϕ = 2Ψ (Figure 13E). In an SU(2) theory, it
is guaranteed by DLR

3 (δsf � 2π) � −1.
Away from the globalU (1) phase factor of eiβei

�kd, the sign of the
rotator operation depends on the direction of rotation, because
DLR

3 (π) � −iσ3 and DLR
3 (−π) � +iσ3. This is equivalent to the

difference of the 2π for the rotation. The difference of the sign of
the operators are indispensable to guarantee the identity,
DLR

3 (π)DLR
3 (−π) � DLR

3 (0) � σ23 � 1. We can also confirm this in
HR-basis asDHR

3 (π) � −iσ2 andDHR
3 (−π) � +iσ2, and consequently

DHR
3 (π)DHR

3 (−π) � DHR
3 (0) � σ22 � 1.

TABLE 5 Summary of the rotated polarisers. ΔΨ and Δϕ correspond to
rotations in real space and on the Poincaré sphere, respectively. The
operators away from the phase factor of eiβei

�kd are listed.

ΔΨ Δϕ PHV
x /(eiβei�kd) ΔΨ Δϕ PLR

x /(eiβei�kd)
0 0 1

2 (1 + σ3) 0 0 1
2 (1 + σ1)

π/4 π/2 1
2 (1 + σ1) π/4 π/2 1

2 (1 + σ2)

π/2 π 1
2 (1 − σ3) π/2 π 1

2 (1 − σ1)

−π/4 −π/2 1
2 (1 − σ1) −π/4 −π/2 1

2 (1 − σ2)

π 2π 1
2 (1 + σ3) π 2π 1

2 (1 + σ1)

FIGURE 12
The impact of phase change upon the rotation. (A) 1-time rotation of the Stokes vector in Poincareé sphere. The polarisation state, seen from the
average of the expectation value, is not changed at all upon the rotation (red curve). (B) The corresponding polarisation ellipse, in the real space. The
electric field before rotation (blue arrow) is pointing to the opposite direction after rotation (red curve). The sign of the electric field changes both for x and
y directions. This change of the phase is different from the global phase coming from the orbital, and thus, the phase change can be observed by the
interference with the original wave before the rotation.
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Another quantum-mechanical aspect of the spin of photons is
found by successive application of rotation operations on the
Poincaré sphere (Figure 14). We have confirmed that the half-
wavelength phase-shifters and the rotator are equivalent to
Pauli matrices,

iDLR
i π( ) � σ i, (231)

where i = 1, 2, 3, which obey commutation and anti-
commutation relationships. The commutation relationship is
a fundamental basis of quantum-mechanics and thus it is also
essential for spin of photons. For polarisation, we can easily
manipulate spin of photons by phase-shifter and rotators, but it
is important to aware the order is important, because the sign
can be changed as

This shows that 2 successive rotations by phase-shifters, one
aligned its FA to the diagonal direction and the other aligned its FA
to the horizontal direction, are equivalent to 1 rotation by a rotator.
We can change the order of operations, without changing the final
polarisation state as an expectation value of the spin operators.
However, the phase is different depending on the order of
applications of the phase-shifters. This difference of the sign
should also be observable in the interference experiments.
Essentially, this is equivalent to the difference of 1-time rotation
by a rotator, because iσ3 and −iσ3 correspond to the rotation of π and
−π, respectively, such that the difference is 2π-rotation, as we have
explained above.

4.7 Jones vector and bloch vector in SU(2)
hilbert space

As we have seen above, an SU(2) group theory is a powerful tool
to understand various rotations of 〈Ŝ〉 on the Poincaré sphere. Here,
we apply an SU(2) group theory to confirm some of concepts for
polarisation states.

First, we obtain the unitary transformation from the HV-basis to
the LR-basis by rotators in the SU(2) Hilbert space. The choice of the
bases is based on our preference of the quantisation axis. The HV-
basis is based on the alignment of the quantisation axis σ3 to the S1
axis (Table 2), while the LR-basis is based on the alignment of σ3 to
the S3 axis (Figures 15A, B). The expectation values should not
depend on the choice of the basis, such that we should be able to
transfer from the HV-basis to the LR-basis by a unitary
transformation, which is described by the following 2 steps of
rotations. First, we start from the HV-basis and apply the
rotation along S2 for the amount of −π/2 as

DHV
2 −π

2
( ) � 1�

2
√ 1 + iσx( ) � 1�

2
√ 1 i

i 1
( ). (232)

Next, we rotate along the S3 for the amount of −π/2 as

DHV
3 −π

2
( ) � 1�

2
√ 1 + iσy( ) � 1�

2
√ 1 1

−1 1
( ). (233)

FIGURE 13
The phase change, seen from the chiral bases. (A) 1-time rotation of the Stokes vector by the phase-shifter in Poincareé sphere (red curve). The
polarisation state is not changed upon the rotation. (B) Corresponding phase-shifter arrangement, showing the x′-y′ axes are rotated (dotted green). (C)
1-time rotation of the Stokes vector by a rotator in Poincareé sphere (red curve). (D) Corresponding polarisation ellipse after the rotation by the phase-
shifter of (A) and (B). (E) Corresponding polarisation ellipse after the rotation by the rotator of (C). In all cases, 1-time rotation will induce the sign
change for the complex electric fields, which is proportional to the SU(2) wavefunction.
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These 2 successive rotations in SU(2) space give the unitary

UHV � DHV
3 −π

2
( )DHV

2 −π
2

( ) (234)

� 1
2

1 1
−1 1

( ) 1 i
i 1

( ) (235)

� eiπ/4�
2

√ 1 1
i −i( ), (236)

which is in agreement with the previous result away from the
irrelevant overall U (1) phase factor of eiπ/4.

Similarly, we also confirmed the inverse transformation (Figures
15C, D) as

ULR � DLR
2

π

2
( )DLR

3

π

2
( ) (237)

� 1
2

1 −1
1 1

( ) e−iπ/4 0
0 eiπ/4

( ) (238)

� e−iπ/4�
2

√ 1 −i
1 i

( ). (239)

Finally, we obtain the Jones vector and the Bloch vector by the
rotations in an SU(2) Hilbert space. For Jones vector, we use the
linear HV-basis, and start from |H〉. Then, we will rotate along S3
with the amount of γ, and then subsequently rotate along S1 with the
amount of δ. Consequently, we obtain

|γ, δ〉 � DHV
1 δ( )DHV

3 γ( )|H〉 (240)

� e−i
δ
2 0

0 e+i
δ
2

⎛⎝ ⎞⎠ cos
γ

2
( ) −sin γ

2
( )

sin
γ

2
( ) cos

γ

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

0
( )

�
e−i

δ
2 cos

γ

2
( )

e+i
δ
2 sin

γ

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (241)

� |Jones〉, (242)
Which is indeed the Jones vector.

For Bloch state, we start from the chiral LR-basis, and start from
|L〉. Then, we rotate the state along S2 with the amount of θ and
rotate it along S3 with the amount of ϕ. Thus, we obtain

|θ,ϕ〉 � DLR
3 ϕ( )DLR

2 θ( )|L〉 (243)

� e−i
ϕ
2 0

0 e+i
ϕ
2

⎛⎝ ⎞⎠ cos
θ

2
( ) −sin θ

2
( )

sin
θ

2
( ) cos

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

0
( )

�
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (244)

� |Bloch〉, (245)
which is the Bloch state. Therefore, polarisation states are described
by spin states and operators based on an SU(2) group theory.

4.8 Spin textures and classical entanglement

So far we have discussed coherent photons of a single mode to
discuss about the origin of polarisation in a frame work of a
quantum field theory with an SU(2) symmetry
[1–9,20–24,45–47,64–72]. It is beyond the scope of this work to
include multiple modes with orbital angular momentum for
discussing about the higher-order Poincaré sphere [12,75–85].
However, many important progresses are being made in the area
of spin textures [86–90] and classical entanglement [39,91–97], such
that we would like to outline how our theory will be extended to
discuss these effects for the future [71,98,99].

FIGURE 14
Equivalence of 2 half-wavelength phase-shifter operators (red arrows) and 1 half-wavelength rotator operation (blue arrow). We considered the
phase-shifter rotation along S2 and the successive rotation along S1 in chiral LR-basis (red arrows). This is equivalent to the 1-rotation along S3 by a rotator
(blue arrow). It is important to consider the overall phase by this operation, since this corresponds to σ1σ2 = −σ2σ1 = iσ3, which depends on the order of
operations. In HR-basis, this corresponds to σ3σ1 = −σ1σ3 = iσ2.
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In order to allow the higher order modes in addition to the lowest
order Gaussian mode [5,21–24], we must realise these modes are
orthogonal to each other. One might think this is trivial
requirement for quantum mechanics [7–9] or multi-mode analyses
[5,21–24], however, it is less trivial for orbital angular momentum of
photons [11,13–15,18–20], since a lot of researchers are thinking that
the splitting is impossible. In order to identify the condition for allowing
the splitting, we have considered propagation in a graded-index fibre,
where exact solutions are available [20]. Then, we found that the
splitting of spin and orbital angular momentum is possible in the
waveguide, and the splitting is justified as far as the ray is sufficiently
collimated to justify the finite mode profile, which induces a small
longitudinal component to allow the splitting [20]. If the condition is
satisfied, we can treat orbital angular momentum as an independent
degree of freedom from spin to form structured lights
[12,40,46,47,75–85,94,95,100,101].

In order to discuss structured lights in our theoretical
framework of a quantum field theory, we need to extend the
SU(2) symmetry to have the SU(N ) symmetry with degree
N > 2 [6,9,69,71,72,98,99,102–110]. We are developing both
theoretical [71] and experimental [72,98,99] platforms to
discuss coherent photons with the higher order SU(N ) symmetry.

5 Conclusion

We have discussed what is spin of a photon?Our hypothesis is
that spin of a photon is an intrinsic quantum-mechanical degree

of freedom inherent to a photon, which was suggested by the
classical description of the angular momentum expression
together with the Poynting vector. We obtained the chiral spin
component by this analogy. We have accepted as a principle, that
the chiral spin operator of a photon is aligned to the direction of
propagation, and applied a standard quantum-mechanical
prescription and an SU(2) group theory, assuming the spin
state of a photon is described by a two-level quantum-
mechanical system. Then, by a rotation in the SU(2) Hilbert
space, we obtained all three spatial components of the spin
operator, and established that the quantum-mechanical
expectation values of the spin of photons are Stokes
parameters on the Poincaré sphere. Based on this analogy and
the comparison with coherent state of a monochromatic ray of
photons from a laser, we identified that the zero-th component of
Stokes parameter, S0, is the order parameter of the coherent ray,
which becomes zero after the time average below the lasing
threshold, while it becomes finite after the on-set of lasing.
The reason why the laser beam is described by a single mode
is deeply rooted to the Bose-Einstein condensation nature of
photons, which allow macroscopic number of photons occupy
the same level with the phase coherence including polarisation
states. Based on this identification, the description of Stokes
parameters in Poincaré shpere corresponds to the visualisation
of the spin expectation values for three spatial components of the
vectorial order parameters. There is no obvious contradiction or
a difficulty, as far as we accept the spin operators of photons exist
as quantum-mechanical many-body operators, and evaluate their

FIGURE 15
Unitary transformation between linear horizontal/vertical (HV)-basis and chiral left/right (LR)-basis. (A) Original HV-basis. In order to convert HV-
basis to LR-basis, we consider 2 operations: the first step is to rotate −90° along the S2 axis and the second step is to rotate −90° along the S3. (B) Rotated
LR-basis. (C)Original LR-basis. In order to bring LR-basis back to HV-basis, we consider 2 operations: the first step is to rotate +90° along the S3 axis and
the second step is to rotate 90° along the S2. (D) Rotated HV-basis.
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expectation values by a coherent state. This does not necessarily
mean that the principle to define the spin operators is true,
however, with the definition of the spin operators and a standard
quantum many-body theory, we can practically deal and
understand polarisation states as standard quantum-
mechanical states in a two-level system.

We admit that the most of our equations presented in this
paper were already appeared in research papers and textbooks
on photonics. Nevertheless, it was not completely clear for us to
explain the nature of spin of a photon. The situation might have
some similarity with the development of the special theory
of relativity by Einstein [111], for which the Lorentz
transformation [112] was known at that time, while its actual
implication on the principle of relativity was not established, yet.
Therefore, the equations were not enough to understand the
principle behind them. The theory of relativity established the
principle that the speed of light, thus, the momentum of a
photon in a vacuum is invariant under the Lorentz
transformation. The principle behind our SU(2) theory of a
photon is the rotational symmetry of the angular momentum
of a photon in a vacuum. In other words, there is no particular
preferential polarisation state for a photon to be realised in a
vacuum, no matter which direction the photon is propagating
along with. The rotational symmetry is broken for the coherent
light from a laser source, considered in this paper, in the sense
that some fixed polarisation state is chosen when the Bose-
Einstein condensation of photons occurred upon exceeding the
threshold of pumping for lasing. In a material with a broken
directional symmetry (phase-shifter) or a broken rotational
symmetry (rotator), the polarisation state can be rotated,
because of the difference of the phases acquired during the
transmission of the material between the orthogonal
components of the polarisation state. A remarkable difference
from the time of Einstein was that we have almost everything we
need to consider the spin of a photon, such as quantum many-
body theories, coherent state descriptions, spinor
representation, Jones vectors, and so on. We have just
applied the existing framework of the quantum field theory to
a coherent state of photons to understand the spin state of the
photons in a straightforward way.

Now, we have a clear view in confidence that the spin of a
photon is well-defined quantum-mechanical observable and the
Jones vector is equivalent to the Bloch vector to describe the
quantum-mechanical state of polarisation. Thus, the Poincaré
sphere is essentially equivalent to the Bloch sphere. The only
possible difference between the Poincaré sphere and the Bloch
sphere is the statistics of the particles, which we are dealing with;
Stokes parameters are used for photons, which are Bose particles,
while the Bloch sphere is usually used for the spin state of an
electron, which is a Fermi particle. Because of the Bose-Einstein
nature of a coherent ray of photons, we obtained the magnitude
of the order parameter as S0 = ZN, which is macroscopically large
compared with Z/2 for an electron. What is intriguing is that the
quantum-mechanical feature of a spin state of photons is
controllable by conventional optical components such as
phase-shifters and rotators. It is surprising that the

macroscopic coherent state of a laser beam is so easily
controlled, and the standard quantum-mechanical operations
for a two-level system work successfully for the ray. We hope
that we have justified the treatment of Stokes parameters, based
on a standard many-body quantum theory and an SU(2) group
theory. The commutation relationship of these spin operators are
obtained, with the additional factor of two due to the peculiar
situation, that a photon has the spin of 1 but only two orthogonal
states are allowed due to the transverse condition of the ray.
Linear and chiral bases are mutually transferred by unitary
transformations, and Jones vector is obtained by the rotation
of states in SU(2) Hilbert space.

We have also found that the phase change upon the rotation
is essential to consider the commutation relationship of spin
state of a photon beyond the expectation value. The 2π rotation
in the Poincaré sphere resulted in the π rotation of the electric
field in the real space, such that the phase can destructively
interfere with the original wave before the rotation, regardless of
the same expectation values of the spin. It is required to rotate 4π
in the Poincaré sphere to come back to the original polarisation
state with the same phase, which is indeed coming from the
quantum-mechanical character governed by the commutation
relationship. We can also regard that the phase change upon the
rotation guarantees non-Abelian relationship of the spin
operators for photons.

It is remarkable that Stokes and Poincaré could arrive to
the correct formulas, before the establishments of quantum-
mechanics, a quantum many-body theory, Maxwell equations, a
Ginzburg–Landau theory, Jones vector calculus, and so on.
They have captured all important aspects of polarisation
states, and certainly, acquired quantum-mechanical nature of
polarisation states. In the modern perspective, the
remaining challenge for us is to justify the splitting of spin
and orbital angular momentum [11,13–15,18,19] at least for
photons in a coherent monochromatic state from a laser source.
This is not a trivial task at all, and we will revisit this issue,
separately.

In conclusion, we believe that spin of a photon is an intrinsic
quantum mechanical degree of freedom for polarisation. We
accepted the principle that the chiral spin state of a photon is
aligned to the direction of the propagation, and applied a many-
body quantum field theory to obtain the other spin operators. We
cannot derive the spin commutation relationship from a
correspondence from classical mechanics. Instead, we accepted
the validity of the quantum commutation relationship as a
principle for a polarisation state of a photon. It is important
to recognise that photons can take any polarisation state,
described by a superposition state of the arbitrary chosen two
orthogonal polarisation states (e.g., left/right circularly polarised
states or horizontal/vertical linearly polarised states), depending
on how the coherent ray of photons from a laser source is
prepared. We confirmed that the expectation values of the
spin components are equivalent to the Stokes parameters,
〈Ŝ〉 � S. Therefore, the Stokes parameters are vectorial order
parameters on the Poincaré sphere to describe the coherent
nature of photons. It is also important to recognise that we
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obtained the proportionality constant of the Stokes parameter as
ZN for the spin expectation value. This means that Z becomes
effectively macroscopic to ZN for coherent monochromatic
photons from a laser source due to the Bose-Einstein
condensation. Therefore, we conclude that the polarisation is a
macroscopic manifestation of a quantum-mechanical feature
of photons.
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