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The speed of light (c) in a vacuum is independent of the choice of frames to
describe the propagation, according to the theory of relativity. We consider how
light is characterised in a material, where the speed of light is different from that in
a vacuum due to the finite dielectric constant. The phase velocity in a material is
smaller than c, such that the speed of amoving frame can be larger than the phase
velocity, such that the frame can move faster than the speed of light in a material.
Consequently, an unusual Doppler effect is expected, and the wavelength in the
moving frame changes from the red-shift to the blue-shift upon increasing the
speed of the frame. The corresponding energy of the light also changes sign from
positive to negative, whilemomentum is always positive, leading to the changes of
signs for the phase velocity and the helicity. In a graded index fibre, where the
exact solution is available, even more complicated phenomena are expected, due
to the finite effective mass of photons. Upon the increase of the energy gap,
generated by optical confinements and optical orbital angular momentum, the
effective mass of photons increases. If the gap is large enough, momentum starts
to change the sign upon increasing the frame velocity, while the energy of
photons is always positive. In this case, the phase velocity diverges if
momentum is in agreement with the fame velocity. Contrary to the unusual
behaviours of the phase velocity, the group velocity is always below c. This
thought experiment might be useful for considering insight into the
polarisation state of light.
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1 Introduction

Einstein created a legacy with the establishment of the theory of relativity [1, 2], which
continues to attract a wide range of researchers and engineers more than a century later. The
story goes that Einstein considered how light would be seen by an observer travelling as fast
as the speed of the light [3], leading to the discovery of the law that the speed of light (c) and
the propagation of light in a vacuum is independent of the frame of reference of any observer,
as inferred byMaxwell equations [4, 5]. The universal relationship of space and time through
the Lorentz transformation led to various non-trivial results, such as Doppler effects of light,
time dilation, length contraction, and the energy-momentum relationship of
E2 � (cp)2 + (m0c2)2, where E is energy, p is momentum, m0 is the rest mass of an
object [1, 2, 4, 6–9]. In order to satisfy causality, it is strictly forbidden to allow motion
faster than c [1, 2, 4].

Nevertheless, inside a material, a speed of a moving frame can exceed the speed of light
due to a larger refractive index (n) than one of a vacuum, as experimentally proved by
Cherenkov radiation [10–12]. A charged particle with a speed exceeding the phase velocity of
light in a material produces a coherent shock wave, similar to the sonic waves made by a
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supersonic aircraft. Cherenkov radiation is usually observed in water
as a bluish conical ray, emitted from a charged elementary particle,
which enabled physicists to observe neutrino oscillations [13]. Here,
we would like to revisit the original proposition of Einstein: how light
is seen in a material by an observer, when travelling at a speed
exceeding the phase velocity of light?

Our motivation is to understand the internal quantum
structure of a photon, particularly to gain insights to clarify
the correlation between spin and polarisation [14–17]. One might
think that it is firmly well-established that the spin of photons
describes the polarisation of light [4, 5, 18–23], such that the
correlation is obvious. However, this is highly non-trivial, as
implied by Einstein, confessing that he could not understand
what light quanta are at all after 50 years of continuous
consideration [3], regardless of the fact that he established a
theory for a photoelectric effect as evidence of the particle nature
of the photon.

We have a hypothesis that the polarisation of light is a
macroscopic manifestation of the spin of a photon as a
quantum-mechanical feature. We have shown that a
wavefunction of a photon is described by a Helmholtz
equation [4, 5, 14], which does not necessarily give a plane-
wave form and the solution depends on a profile of the refractive
index and a symmetry of system. A ray of photons, emitted from a
laser source, is described by a many-body coherent state [14–17,
24–29] with fixed phases, which describe an SU(2) state for the
spin state of macroscopically condensed photons. By calculating
the quantum-mechanical average of spin operators, we have
shown that the expectation values of spin of photons are
actually Stokes parameters in Poincaré sphere [14, 30, 31].
The magnitude of spin becomes S0 � ZN , where S0 is the
Stokes parameter for the magnitude of polarisation, Z is the
Dirac constant, andN is the number of photons in a system, for a
coherent ray of photons, which implies that the effective Planck
constant becomes a macroscopic value, leading to a macroscopic
realisation of a quantum state as polarisation [14]. The photonic
orbital angular momentum is also a well-defined quantum-
mechanical observable [15, 16, 32], and we have shown that
we can split spin and orbital angular momentum from the total
optical angular momentum [4, 5, 16, 24, 32, 33, 33, 34, 34, 34, 35,
35–40] in a GRaded-INdex (GRIN) fibre [41], where the exact
solution is available based on a Laguerre-Gauss mode [16]. The
spin of a photon is derived by a two-dimensional (2D) space-time
Dirac equation from the principle of rotational symmetry for the
quantum-mechanical state of a photon [17]. Based on these
considerations [14–17], we believe that the coherent spin state
of photons from a laser source is characterised by a broken
symmetry state due to the Bose-Einstein condensation of
photons, enabled by pumping above the lasing threshold [17].
Consequently, the macroscopically coherent ray of photons from
a laser source is described by a single SU(2) wavefunction such as
a Jones vector [5], a chiral Bloch state [18, 19], and a diagonal
state [14]. Thus, a simple quantum-mechanical calculation of a
spin state is applicable to a coherent photonic ray using a single
particle wave function, and its manipulation is also
straightforward by employing a phase-shifter and a rotator to
change the phases of the wave function [14].

The aim of this paper is to understand the photonic state in a
material seen by an observer travelling at a speed comparable to or
even greater than the speed of light. In a photonic crystal [42] or an
optical fibre [5], the dispersion relationship of a photon is precisely
engineered to adjust the speed of light and other photonic
properties. We consider a uniform material and a GRIN fibre as
examples because we can treat the dispersion exactly, in an
analytic way.

2 Principle

2.1 Lorentz transformation

We are not challenging the established Lorentz transformation
at all [1, 2, 4, 43–47]. The energy scale we are considering is of the
order of 1 eV such as for fibre optics, such that the space-time
relationship of the vacuum must be robust in the presence of a
material. We assume the rest frame of (t, x, y, z), where fibre optic
materials are located, and consider how the light will be observed by
the moving from of (t′, x′, y′, z′) at the speed of vz along the positive
+z direction. The Lorentz transformation, L, whose determinant is
unity, det(L) = 1, is defined by.

ct′
z′( ) � L

ct
z

( ) (1)

� a −b
−b a

( ) ct
z

( ) (2)

� act − bz
−bct + az

( ), (3)

where a2 − b2 = 1, and parameters a and b are determined by the
principle of relativity, guaranteeing that the speed of light in a
vacuum is independent of the measurement frame. In order to
impose the principle, we start from the Helmholtz equations in a
vacuum.

∂2z −
1
c2
∂2t( )Ψ t, x, y, z( ) � 0 (4)

∂2z′ −
1
c2
∂2t′( )Ψ′ t′, x′, y′, z′( ) � 0, (5)

where Ψ(t, x, y, z) and Ψ′(t′, x′, y′, z′) are wavefunctions of a photon
for the frames (t, x, y, z) and (t′, x′, y′, z′), respectively. The wave
equations can be obtained from the Maxwell equation [4, 5]. We
define the 2D d’Alembertian operators as

□2 � ∂2z −
1
c2
∂2t (6)

□2′ � ∂2z′ −
1
c2
∂2t′, (7)

such that the wave equations are simply shown as.

□2Ψ t, x, y, z( ) � 0 (8)
□2′Ψ′ t′, x′, y′, z′( ) � 0. (9)

Einstein’s postulate of the universal speed of light in a vacuum
corresponds to impose [4, 5]

□2 � □2′. (10)
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By inserting the identity

∂t
∂z

( ) �
∂t′
∂t

∂

∂t′ +
∂z′
∂t

∂

∂z′
∂t′
∂z

∂

∂t′ +
∂z′
∂z

∂

∂z′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
a∂t′ − bc∂z′

−b
c
∂t′ + a∂z′

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (11)

into d’Alembertian, we obtain

dz′
dt′ �

−bc + a dz
dt

a − b
c
dz
dt

, (12)

where dz′/dt′ = −vz at dz/dt = 0. Then, we obtain a and b, and L
becomes a standard form [1, 2, 4, 43] of

L � 1�����
1 − β2

√ 1 −β
−β 1

( ) (13)

� γ
1 −β
−β 1

( ), (14)

where γ � 1/
�����
1 − β2

√
and the normalised velocity of the moving

frame is given by β = vz/c. By using the Lorentz transformation, the
d’Alembertian is always invariant in a vacuum, such that the velocity
of light is constant and independent of the choice of the frame. We
can also consider the inverse Lorentz transformation as.

ct
z

( ) � L−1 ct′
z′( ) (15)

� γ
1 β
β 1

( ) ct′
z′( ), (16)

which is equivalent to exchange.

β ↔ − β (17)
t ↔ t′ (18)
z ↔ z′ (19)

in the original Lorentz transformation, reflecting the principle of
relativity. The Lorentz transformation is valid in our argument.

2.2 Schödinger equation for a photon

In a material, the dispersion relationship for a photon is highly
non-trivial. In order to provide a specific example, we chose a GRIN
fibre, where the exact solution is available [5, 14–17, 41]. The
refractive index of a GRIN fibre (nind) is given by
n2ind � n20(1 − (gr)2), where n0 is the refractive index of the core,
g is the graded index parameter, and r is the radius in a cylindrical
coordinate of (r, ϕ, z). Then, the Helmholtz equation for a GRIN
fibre in the rest frame becomes

∂2x + ∂2y + ∂2z( )Ψ t, x, y, z( ) � n2ind
c2

∂2tΨ t, x, y, z( ). (20)

A solution in the cylindrical coordinate is given by Ψ(t, x, y, z) =
ψ(r, ϕ)ψz, where the radial and angular dependences of thewavefunction,
ψ(r, ϕ), for a photon in a GRIN fibre can be decoupled by using the
Laguerre-Gauss mode [5, 14–17, 32] as

ψ r, ϕ( ) � �
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕ, (21)

, which is equivalent to integrating these degrees of freedom in a
Feynman path integral formalism [14–17, 27–29]. After eliminating
(r, ϕ), we confirm the dispersion relationship with the opening up of
the energy gap

Δ � Zδw0 n +m + 1( ) � m*v20, (22)
where the overall shift of the energy is Zδw0 = v0g, n is the radial
quantum number, m is the magnetic orbital angular momentum
along the principal axis of z, and m* is the effective mass of the
photon in a GRIN fibre [14–17, 27–29]. Please note the similarity of
the original Einstein theory of relativity to assign the rest mas ofm to
its energy as E = mc2 [1, 2]. The emergence of the effective mass is
attributed to the broken SU(2) symmetry of photons due to lasing
[17]. It is interesting to note that the obtained dispersion
relationship is quite similar to the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity [48–54]. The remaining degree
of freedom is the propagation of light along z in a GRIN fibre, which
is described by the Schrödinger-like equation

iZ∂tψz � − Z2

2m*
□2ψz, (23)

where ψz is the wavefunction of a photon, Z = h/(2π) is the Dirac
constant, and we have re-defined the d’Alembertian.

□2 � 1
v20
∂2t − ∂2z, (24)

to account for the reduced speed of light in a material. The
wavefunction along z becomes a simple plane wave,

ψz � eikz−iωt, (25)
while the dispersion for the guided mode [17] becomes

E � Δ +
����������
Δ2 + v0p( )2√

. (26)

In deriving this energy-momentum dispersion relationship, we
assumed de-Broglie relationship.

E � Zω (27)
p � Zk, (28)

where ω is the angular frequency and k = 2π/λ is the wavenumber for
the photon with the wavelength of λ.

2.3 Lorentz transformation in a uniform
material

First, we examine the weak coupling limit of g → 0. In this
case, the energy gap vanishes, Δ → 0, and the wave equation
becomes

∂2z −
1
v20
∂2t[ ]ψz t( ) � 0. (29)

Thus, a photon is massless with the reduced velocity of v0 in a
uniform material of the refractive index of n0. The dispersion
relationship is linear,

ω � vpk � c

n0
k, (30)
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and the phase velocity vp is given by vp = v0 = c/n0.
By applying the Lorentz transformation to the wave equation,

we obtain the corresponding wave equation in the moving
frame as

∂2z −
1
v20
∂2t[ ]ψz t( ) � 1 − n20β

2

1 − β2
∂2z′ −

1

c2
n20 − β2

1 − n20β
2∂

2
t′( )[

−2 β
c

1 − n20
1 − β2

∂t′∂z′]ψz′ t′( ) � 0. (31)

Inserting the trial function of the form,

ψz′ t′( ) � eik′z′−iω′t′, (32)
we obtain the dispersion relationship in the moving frame,

ω′ � 1 − βn0

1 − β
n0

v0k′. (33)

The phase velocity in the frame is given by

vp′ � ω′
k′ �

1 − βn0
n0 − β

c. (34)

We can obtain the same dispersion relationship, by simply
inserting the Lorentz transformation into the original
wavefunction as

ψz′ t′( ) � eikγ 1− β
n0

( )z′−iωγ 1−βn0( )t′ (35)
� eik′z′−iω′t′, (36)

which leads

k′ � γ 1 − β

n0
( )k � γ

n0 − β

n0
( )k (37)

ω′ � γ 1 − βn0( )ω. (38)

2.3.1 Vacuum limit
We check the obtained dispersion in the known limit of the

vacuum, such that we take the limit of n0 → 1. In this case, we
reproduce a standard theory of relativity [1, 2, 4]. We obtain.

ω′ → γ 1 − β( )ω �
�����
1 − β

1 + β

√
ω (39)

k′ → γ 1 − β( )k �
�����
1 − β

1 + β

√
k, (40)

from which we obtain the Doppler effect for the light by setting k′ =
2π/λ′, we obtain

λ′ �
�����
1 − β

1 + β

√
λ. (41)

We expect red-shift for vz > 0, since the light source is relatively
moving away, such that the wavelength is elongated for the observer
moving away from the light source. On the other, the blue-shift is
expected for vz < 0, since the light source is approaching the
observer. We can also confirm the principle of relativity by
exchanging λ ↔ λ′ and β ↔ − β at the same time, the
relationship between λ and λ′ are not altered.

2.3.2 Uniform material
We assumed the material is at rest in the frame of (t, x, y, z) and

the moving frame of (t′, x′, y′, z′) is not equivalent to the original
frame anymore. In this case, the wavenumber of k′ is always positive,
while the angular frequency of ω′ can change its sign upon
increasing the frame velocity of β. Consequently, the phase
velocity of vp′ can also change sign, such that the light is seen to
be propagating the backward if the frame is moving faster than the
speed of light in a material, which is indeed possible as is known for
the case of the Cherenkov radiation [10–12]. We can see the
consequence of the Lorentz transformation by examining several
typical limits of the obtained phase velocity of vp′ (Table 1). The
details of the calculated parameters are discussed in the next section
(Figure 1).

2.4 Lorentz transformation in a GRIN fibre

In a GRIN fibre, the dispersion relationship is different from a
uniform material, due to the band-gap opening, as we have outlined
above [5, 14–17, 32]. We can obtain the corresponding dispersion
relationship observed in a moving frame. The main assumption is
the plane waveform of the solution along z and t and the validity of
the space-time relationship by the Lorentz transformation.
Consequently, we obtain

ψz′ t′( ) � eikγ βct′+z′( )−iωγ t′+β
cz′( ) ≡ eik′z′−iω′t′, (42)

which gives

ω′ � γ ω − βck( ) (43)
k′ � γ k − β

ω

c
( ). (44)

The relationship is simply summarised as the Lorentz
transformation of

ω′
ck′( ) � L

ω
ck

( ). (45)

This is equivalent to imposing the de-Bloglie relationship in the
moving frame as

E′ � Zω′ (46)
p′ � Zk′, (47)

TABLE 1 The phase velocity of light observed from amoving frame in a uniform
material.

Limit Phase velocity Comment

n0 → 1 vp′ Vacuum limit

β → 0 vp′ → vp Rest limit

0 < vz < vp 0< vp′ < vp Frame moving slower than light

vz → vp vp′ → 0 Stopping light

vp < vz vp′ < 0 Frame moving faster than light

β → 1 vp′ → − c Maximum velocity
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which gives the Lorentz transformation of the energy-momentum
relationship as

E′
p′( ) � L

E
p

( ), (48)

which must be valid for an arbitrary dispersion E = E(p) beyond the
dispersion for a GRIN fibre. The relative symmetry against a frame
exchange does not exist anymore with a material, because the rest
frame with a material is different from the moving frame.
Consequently, we obtain non-trivial Doppler effects, as shown in
the next section.

3 Results

3.1 Doppler effects in a uniform material

First, we show numerical results in a uniform material
(Figure 1). We assumed n0 = 1.5 and Δ = 0, and the wavelength
of λ = 1.5 μm, considering typical parameters of a glass fibre [5].
Upon increasing the frame velocity of β, the phase velocity of vp′
decreases and changes sign at vz = vp and vp′ approaches −c in the
maximum limit of β → 1 (Figure 1A).

We expect a red-shift for vz < vp, since the observer in the
moving frame is going away from the light source in the rest frame,
such that the wavelength is elongated, while blue-shift is expected for
vp < vz (Figure 1B). By assuming k′ = 2π/λ′, we obtain the wavelength
in the moving frame

λ′ �
�����
1 − β2

√
n0 − β

λ. (49)

We confirm the appropriate limit of λ′→ λ for β→ 0, while the
limit of λ′→ 0 for β→ 1 might be non-trivial. We expect the peak of
the wavelength at

∂λ′
∂β

� 1 − βn0

n0 − β( )2 �����
1 − β2

√ � 0, (50)

which indeed gives vz = vp. We are considering the continuous wave,
emitted from the light source in the rest frame, rather than a pulsed
operation. If the frame is moving above the speed of light in the rest
frame, the frame is approaching the light, which was emitted earlier,
such that the wavelength of the light is observed shorter than that in
the rest frame. The wavenumber is always positive (Figure 1C), since
the refractive index of a material is always larger than unity (n0 > 1)
and the frame cannot move larger than c (β < 1).

FIGURE 1
Doppler effects in a uniformmaterial are observed from amoving frame. (A) Phase velocity changes sign at vz = vp. (B)Wavelength is red-shifted for
vz < vp, while it starts to exhibit blue-shift for vp < vz. (C) Wavenumber is always positive, while (D) frequency changes sign.
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On the other hand, the angular frequency of ω′ changes signs at
vz = vp, such that the polarisation state starts to rotate in the opposite
way as if the time is going backward (Figure 1D). This could be
considered by defining a chiral operator defined by

χ̂z � sgn v̂p( ) � sgn
ω̂

k̂
( ) (51)

� −sgn ∂t
∂z

( ). (52)

In the moving frame, we consider

χ′ � sgn vp′( ) � sgn
ω′
k′( ), (53)

which changes sign at vz = vp. Therefore, the helicity is reversed upon
increasing β.

In this work, we have a priori assumed that the clocks in the rest
frame and the moving frame are completely synchronised, which is
far from trivial [45–47, 55, 56]. In fact, the one-way speed of light
cannot be measured without properly defining how to synchronize
the clocks among frames [45–47, 55–57]. Therefore, it is better to
measure the speed of light in round-trip (two-way) measurements.
Theoretical challenges to go beyond the Lorentz invariance were also
reported [46, 58]. It is beyond the scope of this work to invent the
actual measurement set-up to observe the Doppler effects found in

Figure 1. We have naively applied the standard special theory of
relativity for the lights propagating in a material, but, the results
could be interpreted in conjunction with the definition of clocks and
the measurement set-up [45–47, 55–58].

3.2 Doppler effects in a GRIN fibre

Next, we consider the Doppler effects in a GRIN fibre. We
assume the same core of n0 for the wavelength of λ = 1.5 μm, while
the energy gap of Δ is chosen as a parameter.

The numerical results at Δ = 0.2Zω are shown in Figure 2. The
qualitative features are not changed in the case of a uniformmaterial
(Figure 1). The critical frame velocity, required to change the sign of
the phase velocity, is increased due to the opening of the band gap
(Figure 2A). We expect more significant red- and blue-shifts upon
increasing β (Figure 2B), but k′ is always positive and ω′ changes
sign, as before.

On the other hand, for the larger Δ at 0.4Zω, Doppler effects are
even more anomalous. In this case, k′ changes sign, while ω′ is
always positive. This is attributed to the larger contributions to the
total energy of Zω from orbital degrees of freedoms through the
radial oscillations and/or photonic orbital angular momentum,
characterised by n and m [5, 14–17, 32]. As a result, the
contribution of the kinetic energy for the propagation along z is

FIGURE 2
Doppler effects in a GRIN fibre at Δ = 0.2Zω. (A) Phase velocity, (B) wavelength, (C), wavenumber, and (D) frequency.
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limited, such that the frame is easier to go beyond the speed of the
light, which allows k′ to change the sign (Figure 3A). For k′ < 0, we
have assumed k′ = −2π/λ′ to extract the wavelength of λ′ in the
moving frame (Figures 3B–D).

The maximum energy gap is Δ = 0.5Zω, where we cannot expect
any propagation along z, and the optical mode is trapped solely in
the direction perpendicular to the fibre. Close to this limit, we
assumed Δ = 0.49Zω, and the results are shown in Figure 4. vp′
changes its sign even at the smaller β, as expected for the limited
kinetic energy.

Regardless of the anomalous phase velocity of |vp′ |, exceeding c
(Figures 3A, 4A), this does not mean the violation of the relativity at
all, because the optical communication is determined by the group
velocity, defined by

vg � dk

dω
(54)

vg′ � dk′
dω′. (55)

As shown in Figure 5, |vg′| is always smaller than c, such that
optical communication beyond c is strictly prohibited. The critical
velocity of β to change the sign of vg′ does not necessarily coincide
with the velocity of β to change the sign of vp′ .

3.3 Impacts on polarisation states

Finally, we discuss the implications of our considerations for
understanding the polarisation states of photons. Before discussing
the application of the general theory of relativity to the GRIN fibre,
we need to clarify the definition of the polarisation states, because
the direction of the apparent propagation changes in the frame
moving faster than the phase velocity of the light in the rest frame.

3.3.1 Lights propagating in opposite directions
We clarify the definition of the polarisation states [14], in

particular, the direction of the rotation in (Figure 6). There are a
lot of different choices of conventions [4, 5, 14, 20, 21], and any
notation is acceptable as far as it is used consistently. We prefer to
define the polarisation state, seen from the detector side because it is
straightforward to describe the motion of the phase front in a
standard right-handed (x, y, z) coordinate (Figure 6). We assume
that the plane wave of the form eikz−iωt is propagating along the +z
direction (Figure 7A), and the principal axis (S3) of the polarisation
state is locked along the direction of the propagation [14]. In our
definition, the left-circular-polarised state (|L〉) is located at S3 = +1
in the normalised Poincaré sphere, while the right-circular-polarised
state (|R〉) is located at S3 = −1 (Figure 7E). These states are mirror

FIGURE 3
Doppler effects in a GRIN fibre at Δ = 0.4Zω. (A) Phase velocity diverges and it could be larger than c. (B)Wavelength also diverges. (C)Wavenumber
changes sign, while (D) frequency is always positive.

Frontiers in Physics frontiersin.org07

Saito 10.3389/fphy.2023.1225387

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225387


images of each other, and in fact, a mirror can change the circular
polarised states to the opposite ones [5, 14, 20, 21].

We consider how we should describe the polarisation states for
the light propagating to the opposite direction (Figure 7), since we
encountered in the previous section the situation that the moving
frame can go faster than the speed of the light in a material, for
which the light is seen to go backward. The situation is similar to
considering the reflection from a mirror (Figure 6), since a mirror
changes the direction of propagation as well as the polarisation state.
For example, we consider the left-circular-polarised light
propagating along +z direction (Figure 7A), which is
characterised by S3 = +1 (Figure 7E). We consider this light to
be reflected backward without changing the rotation of the phase
front (Figure 7B), while the direction of the propagation is opposite
(−z). If we remain observing the phase front, seen from the +z
direction, the circulation is unaffected as the anti-clockwise rotation.
However, we defined that the polarisation state must be identified
from the detector side, which is the −z direction (Figure 7B). Thus,
we define a new frame of (x′′, y′′, z′′), assuming z′′ = −z to clarify the
polarisation state. The reflected light propagating along z′′ = −z is
now circulating to the clock-wise direction, seen from the +z′′
direction, thus it should be described by the right-circular-
polarised state with S′′3 � −1 (Figure 7F). Considering the

FIGURE 4
Doppler effects in a GRIN fibre at Δ = 0.49Zω. (A) Phase velocity, (B)wavelength, (C)wavenumber, and (D) frequency. The contributions from orbital
degrees of freedom are dominated by the kinetic energy along the fibre.

FIGURE 5
The group velocity of light in a GRIN fibre for Δ = 0 (uniform
material without confinement), Δ = 0.4Zω, and Δ = 0.49Zω (strong
confinement in the core). In all cases, the group velocity is less than the
speed of light in a vacuum, satisfying the causality.
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opposite direction of the propagation, it is natural to assign
S′′3 � −S3, if we would like to keep using the original axes for
Stokes parameters. Here, we still have the freedom to choose the
relative phase of axes (Figures 7B–D) to the original one (Figure 7A).
These choices correspond to how to rotate the original Poincaré
sphere at the angle of π (Figure 7F–H). The rotation of the
polarisation state is described by a rotation operator in SU(2) Lie
algebra [4, 5, 18–21, 59, 60]. If we use the chiral LR-basis, the
rotation operator becomes.

DLR n,Δδ( ) � exp −iσ · nΔδ
2

( ) (56)

� 1 cos
Δδ
2

( ) − iσ · n sin Δδ
2

( ), (57)

where n is the unit vector for the rotational axis, σ = (σ1, σ2, σ3) are
Pauli matrices, and Δδ is the angle of the rotation. For example, the
rotation along S1 for π (Figure 7F) is given by

DLR S1, π( ) � −iσ1, (58)
while the opposite rotation for Figure 7G is described by

DLR S1,−π( ) � iσ1. (59)
Similarly, the rotation along S2 for π (Figure 7H) is given by

DLR S2, π( ) � −iσ2. (60)
These rotations are connected to each other. For example, the

coordinate of Figure 7D is realised by rotating Figure 7B for π/2,
which correspond to the π rotation along S3 [15],

DLR S3, π( ) � −iσ3. (61)
In fact, we confirm

−iσ3 −iσ1( ) � −σ3σ1 � −iσ2. (62)
Similarly, we can rotate the coordinate of Figure 7C for π/2,

which correspond to the −π rotation along S3, and we confirm

+iσ3 iσ1( ) � −σ3σ1 � −iσ2. (63)
The arbitrary degree of freedom to choose the (x′′, y′′) axes is

not restricted to the reflected beam. For example, if we have a linear
diagonally polarised state, which is described by S2 = 1, by changing
the definition of the x-axis by rotating 45°, it can also be regarded as
the horizontally polarised state of S1 = 1. Therefore, the difference of
the apparent polarisation states between S1 and S2 simply depends
on the choice of the frame.

Among various arbitrary choices of the frame for the reflected
light (Figures 7B–D7), however, one of the most sensible choices
would be that of Figure 7D. In this case, the impact of the frame

FIGURE 6
Impacts of a mirror. Polarisation states are defined by the motion of the phase front, seen from the top of the light at the detector side. The left-
circular-polarised state is characterised by anti-clockwise rotation, while the right-circular-polarised state exhibits clockwise rotation. A mirror
exchanges these circularly polarised states to the opposite of each other. Some researchers prefer to define by the motion of the phase front, seen from
the source side similar to the definitions of right and left screws. We will not take the latter notation, and follow themathematical notation to see the
right-handed (x, y, z) coordinate to see from the top of the +z-axis.
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FIGURE 7
Choices of frames and polarisation states. (A) The original frame of (x, y, z) for the light propagating along the +z direction, and (E) the corresponding
Poincaé sphere. (B–D) The frames of (x′′, y′′, z′′) for the light propagating along the z′′ = −z direction, and (F–H) the corresponding Poincaé spheres and
their relevance to the original Poincaré sphere. Here, all frames are at rest against others. (B) (x′′, y′′, z′′) was made by the rotation along y, which is
equivalent to rotate π along S1 (F). (C) (x′′, y′′, z′′) was made by the rotation along x, which is equivalent to rotate −π along S1 (G). (D) (x′′, y′′, z′′) was
made by the subsequent rotation π from (B), or equivalently by the rotation of −π from (C), which is equivalent to rotate π along S2 (H).
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exchange is similar to the unitary transformation by the mirror
operation of

MLR � −i 0 −i
i 0

( ) � −iσ2, (64)

whose impact on the spin operators would be

M†
LRσ1MLR � +iσ2( )σ1 −iσ2( ) � σ2σ1σ2 � −σ1 � −σ1* (65)

M†
LRσ2MLR � +iσ2( )σ2 −iσ2( ) � σ2σ2σ2 � +σ2 � −σ2* (66)

M†
LRσ3MLR � +iσ2( )σ3 −iσ2( ) � σ2σ3σ2 � −σ3 � −σ3*, (67)

where * is the complex conjugate and † is the Hermite conjugate,
which involves the transpose of the matrix in addition to the
complex conjugate. In this convention, we understand that the
polarisation state for the light propagating in the opposite
direction of −z is described by the complex conjugate
representation of the Lie algebra [61, 62] in the original frame as

�σ �
�σ1
�σ2
�σ3

⎛⎜⎝ ⎞⎟⎠ � −
σ1*
σ2*
σ3*

⎛⎜⎝ ⎞⎟⎠ �
−σ1
+σ2
−σ3

⎛⎜⎝ ⎞⎟⎠, (68)

which is consistent with Figure 7H. The complex conjugate
representation also satisfies the same commutation and anti-
commutation relationships with those of the original Pauli
matrices [61, 62], such that we confirmed the duality of
representations. Therefore, if we would like to keep working in
the original frame of (x, y, z) for the light propagating in the opposite
direction, we should use the complex conjugate of the spin
operators, defined by

�Sx � −Zψ†
LRσ1ψLR � −Sx, (69)

�Sy � +Zψ†
LRσ2ψLR � +Sy, (70)

�Sz � −Zψ†
LRσ3ψLR � −Sz, (71)

where the spinor representation of the creation and annihilation
field operators are.

ψ†
LR � a†L, a

†
R( ) (72)

ψLR � aL
aR

( ), (73)

using the creation and annihilation operators of a†σ and aσ for
photons in the polarisation states of left- (σ = L) and right- (σ =
R) polarised states, respectively.

3.3.2 Polarisation states observed from a moving
frame

Now, we are ready to discuss the polarisation state of light, seen
from an observer in the frame of (x′, y′, z′) moving as fast as the
phase velocity of light in the rest frame of (x, y, z), where the fibre
optic material is placed. We consider that the frame of (x′′ = y′, y′′ =
x′, z′′ = −z′) is at rest against the frame of (x′, y′, z′).

First, we consider the weak coupling limit of Δ → 0, which
corresponds to a uniform material with the refractive index of n0.
The wavenumber of k′ is always positive, such that the momentum
of p′ = Zk′ is always pointing towards the positive +z′ direction
(Figure 1C). On the other hand, ω′ changes its sign as β is increased
(Figure 1D), leading to the change of the sign in vp′ for vp < vz.
Suppose that the light at the left-circularly-polarised state (S3 = 1) in

the original frame is propagating along +z. As far as the velocity of
the frame is small, vz < vp, the polarisation state, seen from the frame
of (x′, y′, z′) is not affected, and we obtain S3′ � 1 and the light is seen
to be rotating in the anti-clockwise direction, seen from +z′. At vp <
vz, the light is seen to be propagating along −z′, such that the
polarisation state should be examined from the frame of (x′′, y′′, z′′),
where the light is propagating along the positive +z′′ direction. The
rotation of the phase front, seen from +z′′ direction, is anti-clock-
wise due to the negative ω′ < 0 and the observation from the
opposite side from the original frame of (x, y, z). Thus, we conclude
S′′3 � 1, such that the light is still in the left-circular-polarised state. If
we consider the complex conjugate relationship between the frames
of (x′, y′, z′) and (x′′, y′′, z′′), we obtain S3′ � −S′′3 � −1, such that the
apparent spin expectation value of S′ depends on the relative velocity
of the frame, as is similar to frame-dependent momentum (p′) and
energy (E′) governed by Lorentz transformation. For the linearly
polarised states, we do not have to be careful too much about the
direction of the oscillations, changed by the sign of ω′, because the
rotation of the phase front is not involved. However, the description
of the polarisation state depends on the choice of the frame (Figures
7B–D). Assume that we have chosen our preferential frame of
Figure 7D and we consider the linear-horizontally-polarised state
of S1 = 1 in the original frame of (x, y, z). For vz < vp, the polarisation
state is not affected, such that we expect S1′ � 1, while for vp < vz, we
should use the frame of (x′′, y′′, z′′) and the direction of oscillation is
considered to be y′′ = x′. Therefore, we conclude that the
polarisation state becomes S′′1 � −1, which is a vertically polarised
state. This is merely coming from the choice of the frame, and if we
convert it to the frame of (x′, y′, z′), we obtain S1′ � −S′′1 � 1, which
has not been changed upon increasing β. We can consider a more
complicated polarisation state, but the argument is straightforward.

Next, we consider the polarisation state in a GRIN fibre. As far as
the confinement is weak (Figure 2), the qualitative situation is the
same as that for a uniform material, discussed above. Therefore, we
focus on the strong coupling limit (Figure 3, 4), where k′ changes the
sign upon increasing β (Figures 3C, 4C), while ω′ is always positive
(Figures 3D, 4D). In these cases, the direction of the rotation of the
polarisation state will not be changed by ω′, while we must judge the
polarisation state seen from the direction of the propagation, which
is changed. Suppose we are considering the light of the left-
circularly-polarised state propagating +z direction in the frame of
(x, y, z), such that the original state is S3 = 1. In the frame of (x′, y′,
z′), the direction of the propagation could be changed for vp′ < 0, and
the polarisation state is examined from z′′. In this case, the phase
front is seen to be rotating along the clock-wise-direction, because it
is observed from the opposite side of the original frame of z and ω′ is
always positive. Thus, we conclude S′′3 � −1 and the light is in the
right-circularly-polarised state. This corresponds to S3′ � −S′′3 � 1,
and such that the magnetic spin angular momentum along the
principal axis seems to be preserved in spite of the large β, if the
mode confinement is very strong. The argument for the linearly
polarised state is not altered by the confinement, because it is mainly
affected by the choice of the frames, and the sign ofω′ cannot change
the direction of the polarisation, although it affects to the direction
of the propagation.

In the present work, we assumed that there is no interaction
between spin and orbital angular momentum in the GRIN fibre [16].
Therefore, the Doppler effects, discussed in this paper, were not
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coming from the impact of the spin-orbit interaction. It will be
interesting to explore how the Doppler effects are modified in the
presence of the spin-orbit interaction [63, 64].

3.3.3 Polarisation states at a rest frame
Finally, we would like to briefly discuss the polarisation state for a

photon at a rest frame. As we have discussed above, the moving frame
could move faster at the speed of the light in a material. In the GRIN
fibre, for example, vg′ could be 0 at sufficiently large β (Figure 5). At the
rest frame, the light is not seen to be propagating along any direction,
such that the transversality condition cannot be imposed. In this case,
the light can oscillate along all 3 spatial directions, and the SU(3)
symmetry of spin-1 character must be recovered [61, 62, 65, 66]. For
SU(3) states, we need 8 generators of rotations, such that we can
consider 8-dimensional Gell-Mann parameters to describe the
polarisation state, which should be calculated as expectation values
of the generator of rotations [66]. Therefore, the polarisation state
should be described on the 8-dimensional hypersphere, which we call
the Gell-Mann hypersphere [66], instead of the 3-dimensional Poincaré
sphere [14, 30, 31].

4 Conclusion

We considered how the light will be seen in a material if an
observer is moving as fast as the velocity of the light. As a specific
example, we considered a graded index fibre, where the photon
dispersion is massive due to the confinement of the orbital, which is
quantised both for radial and angular directions. We see that the
phase velocity could change the sign, which means that the moving
frame can go faster than the speed of light in a material, as evidenced
by the Cherenkov radiation [10, 11].We found a crossover from red-
shift to blue-shift as the observer increases the speed beyond the
phase velocity. If the optical confinement in the fibre is strong, we
found anomalous Doppler effects, with the divergent phase velocity,
exceed the speed of light in a vacuum, while the group velocity is
always less than c, confirming the causality and the validity of
relativity. We have also discussed how the polarisation state is
considered in the moving frame, for which the light could be
observed to be propagating in the opposite direction from the
original frame. We established that the spin operators for the
light propagating in the opposite direction are described by the
complex conjugate of the original spin operators, which shows the
duality of the representations in SU(2) Lie algebra [61, 62]. We are

not proposing to confirm this thought experiment in reality, even
though it might be possible. Instead, we think our consideration
might be useful as a thought-experimental platform for challenging
the long-term mystery of what is a photon, imposed by
Einstein [1–3].
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