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Twisted photons with finite orbital angular momentum have a distinct mode
profile with topological charge at the center of themodewhile propagating in a
certain direction. Each mode with different topological charges of m is
orthogonal, in the sense that the overlap integral vanishes among modes
with different values of m. Here, we theoretically consider a superposition
state among three different modes with left and right vortices and a Gaussian
mode without a vortex. These three states are considered to be assigned to
different quantum states; thus, we employed the su(3) Lie algebra and the
associated SU(3) Lie group to classify the photonic states. We calculated
expectation values of eight generators of the su(3) Lie algebra, which
should be observable, since the generators are Hermite matrices. We
proposed to call these parameters Gell-Mann parameters, named after the
theoretical physicist Murray Gell-Mann, who established quantum
chromodynamics (QCD) for quarks. The Gell-Mann parameters are
represented on the eight-dimensional hypersphere with its radius fixed due
to the conservation law of the Casimir operator. Thus, we discussed a
possibility of exploring photonic QCD in experiments and classified SU(3)
states to embed the parameters in SO(6) and SO(5).
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1 Introduction

The Lie algebra and Lie group [1–6] were developed mathematically much earlier
than the discoveries of quantum mechanics [5, 7–10]. The theory formulates general
principles on how to classify various matrices with complex numbers (C) and provides
deep insights into the topological structure underlying matrix calculations. The theory
covers quite wide areas and thus applicable to many fields in quantum physics, including
various two-level systems, described by the special unitary group of two dimensions,
SU(2), to understand polarization [8, 9, 11–27]. Historically, however, the powerful
mathematical features are not widely recognized for SU(2) states since it is not so much
complicated to deal with, even if we do not employ the knowledge of Lie algebra. The
situation completely changed once Murray Gell-Mann identified the underlying
symmetries for composite elementary particles of baryons and mesons, establishing
the quantum chromodynamics (QCD) [4, 5, 10, 28–31]. The Lie algebra is now an
indispensable tool in physics on elementary particles. Here, we propose to introduce the
framework of the Lie algebra and Lie group to photonics, especially for exploring the
photonic analog of QCD by utilizing photonic orbital angular momentum
(Figures 1A–D).
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Photons are elementary particles of light [32, 33], which have
both spin [11, 13, 14] angular momentum and orbital angular
momentum [23, 34–51] as internal degrees of freedom. The
nature of spin is known as polarization [11, 13, 14, 52], which
is widely used in sunglasses, liquid-crystal displays, and digital
coherent communications [53–56], while orbital angular
momentum is used in optical tweezers, laser-patterning, and
quantum optics [57–65]. Previously, spin angular momentum
and orbital angular momentum of photons were considered to be
impossible for splitting into two independent degrees of freedom
[66] in a free space [41, 42, 67, 68]. However, it was recently
reported that these degrees of freedom could be successfully
separated in a proper gauge invariant way by plane wave
expansions [69]. We also confirmed that both spin angular
momentum and orbital angular momentum are well-defined
quantum observables for photons in a waveguide and a free
space as far as the propagation mode is sufficiently confined
in the core [26]. Therefore, we can measure quantum mechanical
averages of the angular momentum, which could be macroscopic
values for coherent photons.

2 Summary of the Lie algebra

First, we summarize theoretically minimum knowledge on
fundamental properties of the su(3) Lie algebra in order to make
our discussions self-contained and clarify our notations. This
study would help photonic researchers, who are not familiar with
the su(3) Lie algebra, understand the idea to treat three
orthogonal quantum states in an equal fashion. It is far from a
comprehensive summary, such that interested readers should
refer to excellent textbooks [1–5, 7]. Those who are familiar with
the su(3) algebra may skip this section.

The Lie algebra and Lie group were mathematically developed
as early as the 1870s, without specific applications in physics
[1–4, 6]. The first serious applications in physics was found in
elementary physics, leading to the discoveries of quarks [5].
Obviously, the su(3) Lie algebra and more general
representation theories are robust, and they will be applicable
to various cases. On the other hand, here, we focus on
applications in photonics, and we use this example to review
fundamental characteristics of the su(3) Lie algebra. Thus, we

FIGURE 1
Concept of photonic QCD. Trajectories of a constant phase for photons with (A) left vortex, (B) no vortex, and (C) right vortex are schematically
shown. These three states have different topological charges, characterized by orbital angular momentum, and thus, they are orthogonal to each other.
We assign three different colors for different charges, red, green, and blue, for these states, as SU(3) states. We consider (D) an arbitrary superposition state
among states with different topological charges for variable amplitudes and phases.
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lose the generality in our construction of the logic, but it is easier
to understand the concept, and applications in higher dimensions
will be straightforward.

2.1 Generators of the su(3) algebra
We consider three orthogonal quantum states, namely, left-

and right-twisted states and the no-vortex state, which are
described in the Hilbert space with three complex numbers,
C3. We allow arbitrary mixing of these three states, realized
by the superposition principle, and the wavefunction could be
considered to be normalized to 1 or to the fixed number of
photons, N, such that the radius of the complex sphere is fixed.
Consequently, the number of freedom is 2 × 3–1 = 5, and the
Hilbert space is equivalent to the sphere of five dimensions, S5. In
order to describe arbitrary rotational operations of the
wavefunction in the Hilbert space, we need complex matrices
of 3 × 3 for the SU(3) Lie group, which is realized by the
exponential mapping form of the su(3) Lie algebra. The
SU(3) forms a group, whose determinant must be unity, which
corresponds to the traceless condition for the Lie algebra.
Therefore, we need 3 × 3–1 = 8 bases, defined by Gell-Mann
[4, 5, 10, 28–31] as

λ̂1 �
0 1 0
1 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, (1)

λ̂2 �
0 −i 0
i 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, (2)

λ̂3 �
1 0 0
0 −1 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, (3)

λ̂4 �
0 0 1
0 0 0
1 0 0

⎛⎜⎝ ⎞⎟⎠, (4)

λ̂5 �
0 0 −i
0 0 0
i 0 0

⎛⎜⎝ ⎞⎟⎠, (5)

λ̂6 �
0 0 0
0 0 1
0 1 0

⎛⎜⎝ ⎞⎟⎠, (6)

λ̂7 �
0 0 0
0 0 −i
0 i 0

⎛⎜⎝ ⎞⎟⎠, (7)

λ̂8 � 1�
3

√
1 0 0
0 1 0
0 0 −2

⎛⎜⎝ ⎞⎟⎠, (8)

which are all Hermite matrices, λ̂
†

i � λ̂i (i = 1, . . ., 8), implying that
their expectation values must be real and observable.We can also use
the bases, êi � λ̂i/2, reflecting the underlying su(2) symmetry
between two orthogonal states. The bases satisfy the
normalization relationship for the trace, Tr(λ̂i · λ̂j) � 2δij, where
δij is the Kronecker delta function.

2.2 Commutation relationship

The commutation relationship is obtained by the
straightforward calculation of basis matrices, which is derived as:

λ̂i, λ̂j[ ] � 2i∑
k

Cijkλ̂k, (9)

where the structure constants, Cijk, are listed in Table 1. Cijk is an
asymmetric tensor, such that odd permutation of indices changes its
sign. Most commutation relationships involve only one term in the
summation on the right-hand side of the equation, similar to the
su(2) commutation relationship for spin. On the other hand, we
must account for two terms involved in equations

λ̂4, λ̂5[ ] � 2i
1
2
λ̂3 +

�
3

√
2
λ̂8( ), (10)

λ̂6, λ̂7[ ] � 2i −1
2
λ̂3 +

�
3

√
2
λ̂8( ). (11)

We also confirm that there are two mutually commutable
operators,

λ̂1, λ̂8[ ] � λ̂2, λ̂8[ ] � λ̂3, λ̂8[ ] � 0 (12)
while we see

λ̂1, λ̂2[ ] ≠ 0, λ̂1, λ̂3[ ] ≠ 0, λ̂2, λ̂3[ ] ≠ 0. (13)

Therefore, the rank-2 character of the su(3) Lie algebra is
confirmed. It is also evident that λ̂3 and λ̂8 are already
diagonalized in our representation for the basis.

2.3 Basis operators for the su(2) algebra
within the su(3) algebra

We consider three orthogonal states for the su(3) Lie algebra,
and we select two states among three available states. There are three
ways to choose two states, and each of the pairs of states will form the
su(2) Lie algebra.

TABLE 1 Structure constant of the commutation relationship,
[λ̂i , λ̂j] � 2i∑kCijk λ̂k , in the su(3) Lie algebra.

i j k Cijk

1 2 3 1

1 4 7 1/2

1 5 6 −1/2

2 4 6 1/2

2 5 7 1/2

3 4 5 1/2

3 6 7 −1/2

4 5 8
�
3

√
/2

6 7 8
�
3

√
/2
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For example, if we choose the first and second states, corresponding
to the left- and right-twisted states, respectively, we use bases

ê t( )
1 � 1

2
λ̂1, (14)

ê t( )
2 � 1

2
λ̂2, (15)

ê t( )
3 � 1

2
λ̂3, (16)

for describing the SU(2) states since they are equivalent to Pauli
matrices,

σ̂1 � 0 1
1 0

( ), (17)

σ̂2 � 0 −i
i 0

( ), (18)

σ̂3 � 1 0
0 −1( ), (19)

if we neglect the third quantum state for the no-vortex state. These
operators, ê(t)i , were originally used for describing isospin for quarks
[5]. For our applications, they will be useful to describe the rotation
between the left- and right-twisted states. The rotation corresponds
to mixing the left- and right-twisted states, which are described in
the Poincaré sphere for vortices.

The introduction of the coupling between the left- and right-
twisted states corresponds to allowing the direct SU(2) coupling
between states with ℓ = −1 and ℓ = +1, as shown in Figure 2B. In
standard quantum mechanics for orbital angular momentum [5, 8,
31], this coupling is not considered since it changes to the

topological charge of ± 2, such that the ladder operations of
SU(2) cannot directly transfer states to each other. On the other
hand, we allow this coupling for photons simply by mixing states
with certain amplitudes and phases [23, 25, 35, 47, 48, 50, 51, 70],
which allows us to extend photonic states to obtain an SU(3)
symmetry.

Another pair of states is made of the right-twisted state and the
no-vortex state, whose bases are

ê u( )
1 � 1

2
λ̂6, (20)

ê u( )
2 � 1

2
λ̂7, (21)

ê u( )
3 � 1

2
−1
2
λ̂3 +

�
3

√
2
λ̂8( ), (22)

� 1
2

0 0 0
0 1 0
0 0 −1

⎛⎜⎝ ⎞⎟⎠. (23)

Here, it is noteworthy that we can define a new vector operator
of ê(u)3 , for example, from λ̂3 and λ̂8, since they are basis vector
operators in the su(3) Lie algebra, which forms a vector space. We
cannot simply add components in the SU(3) Lie group since the
SU(3) Lie group is not a vector space. We observe that ê(u)3 is
normalized to be similar to ê(t)3 , such that it is useful to consider
SU(2) rotations by ê(u)1 , ê(u)2 , and ê(u)3 .

Similarly, we consider the pair of states consisting of left-vortex
state and the no-vortex state, whose bases are

ê v( )
1 � 1

2
λ̂4, (24)

FIGURE 2
SU(3) states with photonic orbital angular momentum. (A) Fundamental multiplet of the su(3) Lie algebra. Fundamental basis states of |ψ1〉, |ψ2〉, and
|ψ3〉 are shown on the (t3, t8) plane, characterized by their quantum numbers. t3 is known as isospin for quarks. The states are shown by points, given by the
eigenvalues, which are separated by the same distance and form an equilateral triangle as their topology, implying the states are treated in an equal
footing in the su(3) Lie algebra. We can use u3, v3, or hypercharge of y= 2 (u3 + v3)/3 instead of t8, but only two vectors are required to span the t3–t8
plane due to the rank-2 character of the su(3) Lie algebra. (B) Bending of the quantization axis of SU(2) to form SU(3) states. The quantum number (ℓ3) of
orbital angular momentum along the quantization axis is usually characterized by SU(2) states, as shown in the upper diagram. By allowing SU(2) rotation
between left- and right-twisted states, we effectively bend the ℓ3 to realize the superposition state. By combining superposition states with the no-vortex
state, we mix the three orthogonal states to realize SU(3) states.

Frontiers in Physics frontiersin.org04

Saito 10.3389/fphy.2023.1225488

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225488


ê v( )
2 � 1

2
λ̂5, (25)

ê v( )
3 � 1

2
1
2
λ̂3 +

�
3

√
2
λ̂8( ), (26)

� 1
2

1 0 0
0 0 0
0 0 −1

⎛⎜⎝ ⎞⎟⎠. (27)

These su(2) commutation relationships are summarized as

ê x( )
1 , ê x( )

2[ ] � iê x( )
3 , (28)

where x = t, u, or v. We used lower-case letters (x = t, u, or v) for
operators describing a single quanta such as a quark or a photon, and
we used upper-case letters for coherent states of photons (X = T, U,
or V) under Bose–Einstein condensation, where a macroscopic
number, N, of photons are occupying the same state, as discussed
further in this paper.

The su(3) algebra does not contain a non-trivial invariant
group. For example, we see that

ê t( )
1 , ê4[ ] � −1

4
λ̂1, λ̂4[ ] � −1

4
iλ̂7 � −1

2
ê7, (29)

such that the internal SU(2) groups are connected by commutation
relationships, and the su(2) Lie algebra is not closed.

2.4 Ladder operators

We utilize the Cartan–Dynkin formulation [5] for describing the
SU(3) states. In the formalism, we consider to fix the quantization
axis, rather than isotropic to all directions in the su(2) Lie algebra,
and consider ladder operators for increasing and decreasing the
quantum number along the quantization axis [5, 9]. More
specifically, we define

t̂± � 1
2

λ̂1 ± iλ̂2( ), (30)

t̂3 � 1
2
λ̂3, (31)

where t̂3 stands for the operator of the z component of the
rotationally symmetric su(2) operator t̂ � (t̂1, t̂2, t̂3) and t̂+ and
t̂− represent the rising and the lowering operators, respectively, to
increase and decrease the quantum number for t̂3. We use t̂3 and t̂±
instead of ê(t)i (i = 1, 2, 3), and their commutation relationships
become

t̂3, t̂±[ ] � ± t̂±, (32)
t̂+, t̂−[ ] � 2t̂3. (33)

For applications in isospin, t̂3 provides the fixed isospin value
(t3) for each elementary particle, such as a proton (t3 = 1/2) and a
neutron (t3 = −1/2), a deuterium (D, t3 = 0), and a tritium (T, t3 = 1/
2). In elementary particle physics, a superposition state between a
proton and a neutron, for example, is not realized due to the
superselection rule [5] since the superposition state between
different charged states is prohibited. On the other hand, for
applications in vortices, we can safely consider the superposition
state between the left- and right-twisted states [35, 63], such that we

can consider arbitrary mixing of left- and right-twisted states with an
arbitrary phase between them. The ladder operators t̂± correspond
to changing the topological charge at the center of the vortices for
changing its orbital angular momentum from the left to the right
circulation or vice versa.

Similarly, we consider the rising and lowering ladder operators,
û+ and û−, respectively, for the superposition state between the
right-twisted and no-vortex states, and the z component of the
rotationally symmetric su(2) operator û � (û1, û2, û3):

û± � 1
2

λ̂6 ± iλ̂7( ), (34)

û3 � 1
4

−λ̂3 +
�
3

√
λ̂8( ), (35)

whose commutation relationships become

û3, û±[ ] � ± û±, (36)
û+, û−[ ] � 2û3. (37)

For the mixing of the left-twisted and no-vortex states, the
corresponding ladder operators, v̂+ and v̂−, and the z component of
the rotationally symmetric su(2) operator v̂ � (v̂1, v̂2, v̂3) become

v̂± � 1
2

λ̂4 ± iλ̂5( ), (38)

v̂3 � 1
4

λ̂3 +
�
3

√
λ̂8( ), (39)

whose commutation relationships become

v̂3, v̂±[ ] � ± v̂±, (40)
v̂+, v̂−[ ] � 2v̂3. (41)

Here, we defined nine operators for ladders and the quantization
components of the three sets of su(2) operators (̂t, û, v̂), while only
eight bases are required for the su(3) algebra due to the traceless
requirement. Consequently, we obtained one identity,

v̂3 � û3 + t̂3, (42)
which must be met for all states. This means that only two quantum
numbers are independently chosen, regardless of apparent three sets
of SU(2) states, which is, in fact, consistent with the rank-2 nature of
the su(3) Lie algebra.

2.5 Hypercharge and topological charge

As discussed previously, we select two quantum operators from
three operators, t̂3, û3, and v̂3, for describing the SU(3) quantum
states. If we choose t̂3, we can choose û3 or v̂3. Alternatively, we can
consider the superposition state, made of both û3 andv̂3, whose z
component becomes

λ̂8 � 2�
3

√ û3 + v̂3( ). (43)

Equivalently, we define the hypercharge operator [5] as

ŷ � 1�
3

√ λ̂8, (44)

� 2
3

û3 + v̂3( ) � 4
3
û3 + 2

3
t̂3 � 4

3
v̂3 − 2

3
t̂3, (45)
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which was indispensable to understand quarks, their 2-body (3-
body) compounds of meson, and the 3-body compounds of baryons.
They are commutative with the other three operators,

ŷ, t̂3[ ] � ŷ, û3[ ] � ŷ, v̂3[ ] � 0, (46)
meaning that hypercharge could be the simultaneous quantum
number with the other parameter. Therefore, we expect that the
eigenstate is labeled by the quantum numbers, t3, u3, and v3 with y =
(u3 + v3)/3, to satisfy

ŷ t3, u3, v3| 〉 � y t3, u3, v3| 〉 � y t3, y
∣∣∣∣ 〉. (47)

We also confirm the identity

ŷ, t̂±[ ] � 2
3

û3, t̂±[ ] + 2
3

v̂3, t̂±[ ] � 0, (48)
which ensures that

ŷ t̂± t3, y
∣∣∣∣ 〉( ) � y t̂± t3, y

∣∣∣∣ 〉( ), (49)

meaning that the application of ladder operations by t̂± preserves the
hypercharge, y.

On the other hand, we find that

ŷ, û±[ ] � 2
3

û3 + v̂3, û±[ ] � ± û±, (50)
which leads to

ŷ û± t3, y
∣∣∣∣ 〉( ) � y ± 1( ) û± t3, y

∣∣∣∣ 〉( ), (51)

which means û+ increments y and û− decrements y, respectively. We
also confirm the same rule for v̂± as

ŷ, v̂±[ ] � 2
3

û3 + v̂3, v̂±[ ] � ± v̂±, (52)
which corresponds to

ŷ v̂± t3, y
∣∣∣∣ 〉( ) � y ± 1( ) v̂± t3, y

∣∣∣∣ 〉( ). (53)

Finally, we obtain the fundamental multiplets (Figures 2A, B),
given by three states,

|ψ1〉 � t3 � 1
2
, t8 � 1

3

�
3

√
2

∣∣∣∣∣∣∣∣ 〉 �
1
0
0

⎛⎜⎝ ⎞⎟⎠, (54)

|ψ2〉 � t3 � −1
2
, t8 � 1

3

�
3

√
2

∣∣∣∣∣∣∣∣ 〉 �
0
1
0

⎛⎜⎝ ⎞⎟⎠, (55)

|ψ3〉 � t3 � 0, t8 � −2
3

�
3

√
2

∣∣∣∣∣∣∣∣ 〉 �
0
0
1

⎛⎜⎝ ⎞⎟⎠. (56)

An arbitrary quantum state can be generated by mixing these
three states using the superposition principle: multiplying complex
numbers to fundamental ket states and adding up. In a standard
matrix formulation of quantum mechanics, a general state is given
by a row of three complex numbers.

For quarks, there exists an identity relationship between
hypercharge and charge, q, as

q � t3 + 1
2
y. (57)

Therefore, one can use charge instead of hypercharge for an
alternative quantum number.

For our applications to photonic orbital angular momentum, we
consider superposition states between left- and right-twisted states
and no-vortex state. We use the orbital angular momentum along
the quantization axis, z, which is the direction of the propagation, as
the first quantum number, instead of the isospin of t3. For the second
quantum number, instead of hypercharge, we choose the topological
charge, defined by

qt � y + 2
3
, (58)

which becomes 0 for the no-vortex state and 1 for both left- and
right-twisted states. The topological charge corresponds to the
winding number of the mode at the core, propagating along a
certain z direction. It is also linked to the magnitude of photonic
orbital angular momentum. In this paper, we only consider vortices
with a winding number of 1 or 0, but it will be straightforward to
extend our discussions to higher-order states.

2.6 Casimir operators

There are other conservative properties in the su(3) Lie algebra.
We define a Casimir operator as

Ĉ1 � 1
4
∑n
i�1

λ̂
2

i � ∑n
i�1

ê2i . (59)

We calculate the commutation relationship as follows:

Ĉ1, λ̂j[ ] � 1
4
∑n
i�1

λ̂
2

i , λ̂j[ ], (60)

� 1
4
∑n
i�1

λ̂
2

i λ̂j − λ̂jλ̂
2

i( ), (61)

� 1
4
∑n
i�1

λ̂i λ̂iλ̂j( ) − λ̂j − λ̂i( )λ̂i( ), (62)

� 1
4
∑n
i�1

λ̂i λ̂i, λ̂j[ ] − λ̂j, λ̂i[ ]λ̂i( ), (63)

� 2i
4
∑
ik

Cijkλ̂iλ̂k − Cjikλ̂kλ̂i( ), (64)

� 0, (65)
where we changed the dummy indices in the last line as∑ikCjikλ̂kλ̂i � ∑kiCjkiλ̂iλ̂k � ∑ikCijkλ̂iλ̂k. Therefore, the Casimir
operator, Ĉ1, obtains the simultaneous eigenstate with the rank-2
states for λ̂i. In fact, we observe, from direct calculations, that

Ĉ1 �

1 + 1
3

0 0

0 1 + 1
3

0

0 0 1 + 1
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 4

3
, (66)

which means that Ĉ1 is constant for SU(3) states. Here, it is obvious
that we abbreviated the unit matrix of 3 × 3, 13, multiplied with
4
3 � 4

313, for simplicity.
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There is another Casimir operator, defined by

Ĉ2 � ∑
ijk
Dijkt̂i t̂jt̂k � 1

8
∑

ijk
Dijkλ̂iλ̂jλ̂k, (67)

where Dijk is a symmetric tensor as defined in the anti-commutation
relationship given as follows. We observe that Ĉ2 is also constant in
the su(3) Lie algebra, such that the commutation relationship

Ĉ2, λ̂i[ ] � 0, (68)

vanishes.

2.7 Anti-commutation relation

We also obtain the anti-commutation relationship as

λ̂i, λ̂j{ } � 4
3
δij + 2∑8

k�1
Dijkλ̂k, (69)

which is equivalent to

êi, êj{ } � 1
3
δij +∑8

k�1
Dijkêk, (70)

where 4
3δij should be considered as 4

3δij13, as before. The symmetric
tensor, Dijk, is shown in Table 2.

By multiplying λ̂k with the anti-commutation relationship, we
obtain

λ̂i, λ̂j{ }λ̂k � 4
3
δijλ̂k + 2Dijk′λ̂k′λ̂k. (71)

We take the trace of the equation, while using Tr(λ̂i) � 0 and
Tr(λ̂iλ̂j) � 2δij, and we obtain

Dijk � 1
4
Tr λ̂i, λ̂j{ }λ̂k( ). (72)

Similarly, we also obtain

Cijk � 1
4i
Tr λ̂i, λ̂j[ ]λ̂k( ) (73)

from the commutation relationship.
Finally, we show that

Ĉ2 � Ĉ1 2Ĉ1 − 11
6

( ) � 10
9
. (74)

To prove the identity, we use

λ̂i, λ̂j{ } � λ̂iλ̂j + λ̂jλ̂i (75)
and

λ̂i, λ̂j[ ] � λ̂iλ̂j − λ̂jλ̂i. (76)

By adding these equations, we obtain

λ̂i, λ̂j{ } + λ̂i, λ̂j[ ] � 2λ̂iλ̂j, (77)
which becomes

4
3
δij + 2Dijkλ̂k + 2iCijkλ̂k � 2λ̂iλ̂j (78)

from commutation and anti-commutation relationships. Then, we
multiply a factor of λ̂iλ̂j and sum up to obtain∑

ij

λ̂
2

i λ̂
2

j �
2
3
∑
i

λ̂
2

i +∑
ijk

Dijkλ̂iλ̂jλ̂k − i∑
ijk

Cijkλ̂iλ̂jλ̂k, (79)

where the last term becomes

∑
ijk

Cijkλ̂iλ̂jλ̂k � 1
2
∑
ijk

Cijkλ̂iλ̂jλ̂k + Cikjλ̂iλ̂kλ̂j( )
� 1
2
∑
ijk

Cijkλ̂iλ̂jλ̂k − Cijkλ̂iλ̂kλ̂j( )
� 1
2
∑
ijk

Cijkλ̂i λ̂jλ̂k − λ̂kλ̂j( ) � 1
2
∑
ijk

Cijkλ̂i λ̂j, λ̂k[ ]
� i∑

ijk

CijkCjklλ̂iλ̂l � i∑
ijk

CjkiCjklλ̂iλ̂l � 3i∑
i

λ̂
2

i , (80)

which leads to

∑
ij

λ̂
2

i λ̂
2

j � ∑
ijk

Dijkλ̂iλ̂jλ̂k + 2
3
+ 3( )∑

i

λ̂
2

i . (81)

Therefore, we obtain

Ĉ2 � Ĉ1 2Ĉ1 − 11
6

( ) � 10
9
, (82)

which is in fact constant under the su(3) Lie algebra.

TABLE 2 Structure constant of the anti-commutation relationship,
λ̂i , λ̂j{ } � 4δij/3 + 2∑kDijk λ̂k , in the su(3) Lie algebra.

i j k Dijk

1 1 8 1/
�
3

√

1 4 6 1/2

1 5 7 1/2

2 2 8 1/
�
3

√

2 4 7 −1/2

3 5 6 1/2

3 3 8 1/
�
3

√

3 4 4 1/2

3 5 5 1/2

3 6 6 −1/2

3 7 7 −1/2

4 4 8 -1/(2 �
3

√ )

5 5 8 -1/(2 �
3

√ )

6 6 8 -1/(2 �
3

√ )

7 7 8 -1/(2 �
3

√ )

8 8 8 -1/
�
3

√
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3 SU(3) state for twisted modes

3.1 Gell-Mann hypersphere

Now, we discuss how to classify the superposition state
between left- and right-twisted states and no-vortex state
using the su(3) Lie algebra and the SU(3) Lie group. We
assume Laguerre–Gauss modes with a topological charge of
qt = 1 for both left- and right-twisted states [23, 34, 35, 39,
40, 47–51, 63, 65, 71–73] for simplicity.

Here, our main idea is to assign the three states of twisted modes
and no-vortexmode to orthogonal states of the SU(3) states (Figures 1,
2). The most important part of the twisted modes for orbital angular
momentum is its azimuthal (ϕ) dependence [34]; i.e., the wavefunction
of the ray with orbital angular momentum of m is given by

〈ϕ|m〉 � eimϕ, (83)
which is orthogonal to each other for states with different charges of
m in a sense,

〈m′|m〉 � ∫2π

0

dϕ

2π
ei(m−m′ϕ � δm,m′. (84)

This means that the modes with different orbital angular
momentum could be treated as orthogonal quantum mechanical
states. For our consideration and notation [24–27, 63, 70, 74–76], we
assign left- and right-twisted states as |L〉 = |1〉 = |ψ1〉 and |R〉 = | −
1〉 = |ψ2〉, respectively, and the no-vortex Gaussian state as |O〉 = |
0〉 = |ψ3〉. These states are also considered to have different
topological charge, such as red, blue, and green (Figure 1).

We also assume that all modes have the same polarization state,
such that our SU(3) state is polarized. Then, we consider the
polarization degree of freedom, which comes from the SU(2)
spin of photons [8, 9, 11–21, 24–27], such that we explore the
photonic states with the SU(2) × SU(3) symmetry.

We consider a coherent ray of photons emitted from a laser
source [17–19, 24, 63, 70, 75], such that a macroscopic number of
photons per second, N, pass through the cross section of the ray. We
use upper-case letters to describe macroscopic observables and
expectation values, such as photonic orbital angular momentum
[23, 34, 35, 39, 40, 47–51, 63, 65, 71–73],

L̂i � ZNℓ̂i � ZNλ̂i, (85)
where Z = h/(2π) is the Dirac constant, defined by the Plank constant
(h), divided by 2π, while lower-case letters are used for a single-
quantum operator or a normalized parameter, such as a normalized
orbital angular momentum operator,

ℓ̂i � λ̂i, (86)
for i = 1, 2, and 3.

There is a difference of factor of 2 in the definition between the
orbital angular momentum operator ℓ̂i and the isospin operator of
t̂3, but it would be more appropriate to use ℓ̂i for photonic vortices
since the orbital angular momentum is quantized in the unit of Z
[24–26, 34, 35, 63].

First, let us review the SU(2) coupling between left- and right-
twisted states [35, 63]. For this, we consider the following state:

|θl,ϕl〉 �

e−i
ϕl
2 cos

θl
2

( )
e+i

ϕl
2 sin

θl
2

( )
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (87)

where the amplitudes of left- and right-vortex states are controlled
by the polar angle of θl and the phase is defined by ϕl. We can realize
this state using an exponential map from the su(3) Lie algebra to the
SU(3) Lie group:

D̂2 θl( ) � exp −iλ̂2θl
2

( ), (88)

�

cos
θl
2

( ) −sin θl
2

( ) 0

sin
θl
2

( ) cos
θl
2

( ) 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (89)

which is a phase-shifter with its fast axis rotated for π/4 from the
horizontal axis [24], together with another exponential map of

D̂3 ϕl( ) � exp −iλ̂3ϕl

2
( ), (90)

�
exp −i ϕl

2
( ) 0 0

0 exp i
ϕl

2
( ) 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (91)

which is a rotator. We apply these operators to a unit vector, |ψ1〉, to
confirm the SU(2) state,

|θl,ϕl〉 � D̂3 ϕl( )D̂2 θl( )|ψ1〉, (92)
made of left- and right-twisted states.

By calculating a standard quantum mechanical average from |θl,
ϕl〉, such that

ℓi � λi � 〈ℓ̂i〉 � 〈λ̂i〉 � 〈θl,ϕl|λ̂i|θl, ϕl〉 (93)
for i = 1, 2, and 3, respectively, we obtain

λ1 � sin θl( )cos ϕl( ), (94)
λ2 � sin θl( )sin ϕl( ), (95)
λ3 � cos θl( ). (96)

Thus, the SU(2) states between left- and right-twisted states
could be shown on the Poincaré sphere for orbital angular
momentum [35, 39, 40, 63, 72]. Usually, the rotational symmetry
and the corresponding orbital angular momentum are considered by
the SU(2) symmetry since the states between |L〉 = |1〉 and |R〉 =
| − 1〉 cannot be transferred by the change in Δm = ±1, and instead,
Δm = ±2 is required. This could be achieved by using a spiral phase
plate [37] with a topological charge of m = 2. Alternatively, it is
possible to create a superposition state between |L〉 = |1〉 and |R〉 =
| − 1〉, and SU(2) states could be realized by controlling the
amplitudes and phases [35, 63]. For our considerations in the
SU(3) states, this corresponds to bending the quantization axis,
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ℓ̂3, for allowing three states to couple among each other
(Figures 2A, B).

Next, we consider coupling between the no-vortex state and left-
or right-vortex states. This corresponds to changing the hypercharge
and topological charge. We call these SU(2) couplings hyperspin
since they exhibit spin-like SU(2) behaviors, yet they are different
from spin. For elementary particles, such as quarks, states with
different charged particles cannot be realized at all due to the
superselection rule, such that composite particles, such as a
neutron and a proton, cannot be in their superposition state [5].
However, for coherent photons, we consider a superposition state
among different topologically charged states, such that we can mix
the no-vortex state and twisted state at an arbitrary ratio in
amplitudes with a certain definite phase. Topologically, the
vortex is well known to be equivalent to a shape of a doughnut,
which cannot be continuously changed to a shape of a ball. Our
challenge could be considered to realize a superposition state
between a doughnut and a ball, which is impossible classically,
while we would have a chance since photons are elementary particles
with a wave character allowing a superposition state of orthogonal
states.

Here, we consider the hyperspin coupling, which means that we
explore mixing between twisted states and no-vortex state. In order
to achieve this, the easiest option is to follow the previous approach
of the SU(2) state between left and right vortices. We simply need to
change from λ̂2/2 � ê(t)2 and λ̂3/2 � ê(t)3 to λ̂5/2 � ê(v)2 and ê(v)3 ,
respectively, and we define

D̂ v( )
2 θy( ) � exp −iê v( )

2 θy( ), (97)

�
cos

θy
2

( ) 0 −sin θy
2

( )
0 0 0

sin
θy
2

( ) 0 cos
θy
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (98)

and

D̂ v( )
3 ϕy( ) � exp −iê v( )

3 ϕy( ), (99)

�
exp −i ϕy

2
( ) 0 0

0 0 0

0 0 exp i
ϕy

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (100)

We obtain a general SU(3) state,

|θl, ϕl; θy,ϕy〉 � D̂3 ϕl( )D̂2 θl( )D̂ v( )
3 ϕy( )D̂ v( )

2 θy( )|ψ1〉

�

e−i
ϕy
2 e−i

ϕl
2 cos

θl
2

( )cos θy
2

( )
e−i

ϕy
2 e+i

ϕl
2 sin

θl
2

( )cos θy
2

( )
e+i

ϕy
2 sin

θy
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(101)

Finally, we can calculate the expectation values for all generators
of the su(3) Lie algebra, which becomes a vector in an eight-
dimensional space, given by

�λ �

λ1
λ2
λ3
λ4
λ5
λ6
λ7
λ8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

sin θl( )cos ϕl( )cos2 θy
2

( )
sin θl( )sin ϕl( )cos2 θy

2
( )

cos θl( )cos2 θy
2

( )
cos ϕy +

ϕl

2
( )sin θy( )cos θl

2
( )

sin ϕy +
ϕl

2
( )sin θy( )cos θl

2
( )

cos ϕy −
ϕl

2
( )sin θy( )sin θl

2
( )

sin ϕy −
ϕl

2
( )sin θy( )sin θl

2
( )

−
�
3

√
6

+
�
3

√
2

cos θy( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (102)

An arbitrary state of SU(3) is characterized by this vector,
which is similar to the Stokes parameters [11] on the Poincaré
sphere [12]. The higher-dimensional vector of �λ satisfies the
norm conservation

∑8
i�1

λ2i �
4
3
, (103)

upon rotations in the eight-dimensional space, which is guaranteed
from the constant Casimir operator of Ĉ1 � 4/3, as shown
previously. Therefore, an SU(3) state is represented as a point on
the hypersphere with the radius of�����∑8

i�1
λ2i

√√
� 2�

3
√ . (104)

We propose this hypersphere as the Gell-Mann hypersphere,
named after Gell-Mann who found the SU(3) symmetry of baryons
and mesons, leading to the discovery of quarks [28–30]. In fact, we
have the eightfold way [28–30] to allow the SU(3) superposition state
by changing the amplitudes and the phases of the wavefunction. We
can attribute color charge of red, green, and blue to three
fundamental states of |ψ1〉, |ψ2〉, and |ψ3〉, respectively, similar to
QCD [4, 10, 28–30]. In QCD for quarks, only certain sets of
multiplets, such as baryons and mesons, are observed as stable
bound states of quarks, due to the spontaneous symmetry breaking
of the universe [77–81]. In our photonic QCD, on the other hand, we
can discuss an arbitrary superposition state by mixing three
orthogonal states of left- and right-vortices and no-twisted rays.
Therefore, we can discuss the SU(3) state before the symmetry is
broken; in other words, the symmetry can be recovered without
injecting additional energies to the system, similar to the
Nambu–Goldstone bosons [77–81]. This corresponds to the
rotation of the hyperspin of �λ in the eight-dimensional Gell-
Mann space by using eight generators of rotation λ̂i (i = 1, /, 8)
to change the amplitudes and phases. In experiments, this is
achieved by using rotators and phase-shifters of SU(2) [24–27,
63, 70, 74–76] since we can realize arbitrary rotations of the
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SU(3) state by using three sets of SU(2) rotations, as shown
previously.

Among the eight Gell-Mann parameters, λ̂i, two are especially
important since the su(3) Lie algebra is of rank-2 nature. One of
them is ℓ3 = λ3, which determines the average orbital angular
momentum along the direction of propagation, z. The other
important parameter is

y3 � 1�
3

√ λ8 � −1
6
+ 1
2
cos θy( ), (105)

which determines the average hypercharge. We confirm the
expected maximum and minimum hypercharge of max(y3) � 1/3
and min(y3) � −2/3, respectively. Hypercharge is simply converted
to the topological charge, qt = y3 + 2/3, and we confirm max(qt) � 1
and min(qt) � 0 as expected maximum and minimum hypercharge
for vortices and no-twisted state, respectively.

The Gell-Mann parameters are composed of eight real
parameters, and the vector, �λ, has a unit length, | �λ| � 1.
Therefore, the rotation of the vector �λ is achieved by the special
orthogonal group of eight dimensions, SO(8). The corresponding
generators of the so(8) Lie algebra are adjoint representations of the
su(3) generators (λ̂i, i = 1, . . ., 8), which become the structure
constants of Cijk (i, j, k = 1, . . ., 8).

3.2 Hyperspin with the left/right vortex

The Gell-Mann hypersphere contains all practical information
about the SU(3) states in terms of amplitudes and phases.
Unfortunately, it is impossible to recognize the eight-dimensional
hypersphere in the three-dimensional space and time. In the
previous sub-section, we showed that the coupling between left
and right vortices could be represented by the Poincaré sphere for
the twisted photons [35, 63], which corresponds to the coupling
controlled by the su(2) generators of ê(t)1 , ê(t)2 , and ê(t)3 . Here, we
consider other su(2) generators and discuss how hyperspin is
represented in a similar way to the Poincaré sphere.

First, we consider the coupling between the left-twisted state and
no-vortex state. This corresponds to the limit (θl, ϕl) → (0, 0), and
the Gell-Mann parameters become

�λ �

0

0
1
2

1 + cos θy( )( )
sin θy( )cos ϕy( )
sin θy( )sin ϕy( )

0

0

−
�
3

√
6

+
�
3

√
2

cos θy( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (106)

In this case, the parameter λ3 can take a value between 1 and
0 since the left vortex has a topological charge of 1 due to
λ̂3|L〉 � |L〉, while the no-vortex state, (|O〉), does not have a
topological charge, as λ̂3|O〉 � 0. The superposition state is
characterized to be the non-zero average of λ3, and if the amount

of the right-vortex component is less than that of the left-vortex
component, λ3 becomes positive. This corresponds to the net left
circulation of orbital angular momentum. The other Gell-Mann
parameters are given by θy and ϕy. In the limit of the zero right-
vortex component, it is convenient to consider the average of the
su(2)-generating vector,

v � v1, v2, v3( ) � 〈v̂〉, (107)
� λ4/2, λ5/2, v3( ), (108)

� 1
2

sin θy( )cos ϕy( )
sin θy( )sin ϕy( )

cos θy( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (109)

which corresponds to introducing v3 � (λ3 +
�
3

√
λ8)/4, instead of λ8

or tq, since only two parameters are independent among (t3, u3, v3)
due to the rank-2 character of the su(3) Lie algebra.

Similarly, we also check the coupling between the right-vortex
state and the no-vortex state, which corresponds to take the limit of
(θl, ϕl) → (π, 0), and we obtain the Gell-Mann parameters,

�λ �

0

0

−1
2

1 + cos θy( )( )
0

0

sin θy( )cos ϕy( )
sin θy( )sin ϕy( )

−
�
3

√
6

+
�
3

√
2

cos θy( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (110)

In this case, the sign of λ3 changed compared with the coupling
with the left vortex since we assigned a negative sign for λ̂3|R〉 �
−|R〉 to the right vortex, which is observed from the observer side
against the light coming to the detector [24, 63]. Therefore, λ3 can
take a value between −1 and 0, which corresponds to the average
right circulation of orbital angular momentum. For the right
circulation, it is useful to calculate the average of the
su(2)-generating vector, û as

u � u1, u2, u3( ) � 〈û〉, (111)
� λ6/2, λ7/2, u3( ), (112)

� 1
2

sin θy( )cos ϕy( )
sin θy( )sin ϕy( )

cos θy( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (113)

which becomes the same formula for v, when only one chirality
(i.e., left or right vortex) is involved. In fact, the parameters θy and ϕy
account for the relative phase and the amplitudes, respectively,
between the state with |m| = 1 and the state with m = 0 without
including the difference in chiralities. Here, u3 is introduced by
u3 � (−λ3 +

�
3

√
λ8)/4, and it satisfies the conservation law of v3 −

u3 = t3.
Consequently, we obtained three vectors, (t, u, v), where t = (ℓ1,

ℓ2, ℓ3)/2 is obtained from the average orbital angular momentum.
Each vector of t, u, or v is three-dimensional, such that they are
represented by the Poincaré spheres. However, care must be taken
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when dealing with the radiuses of the Poincaré spheres since they
depend on the relative amplitudes determined by θl and θy. This
comes from the mutual dependence among three sets of the su(2)
Lie algebra since the su(3) Lie algebra does not contain the non-
trivial invariant group, as confirmed previously. As a result, we
obtained three mutually dependent spheres, which have 3 × 3 = 9
parameters, with one identity of v3 = u3 + t3. For visualization
purposes, the three Poincaré spheres with variable radiuses might
be practically more useful for humans living in three spatial
dimensions, rather than an eight-dimensional Gell-Mann
hypersphere of the constant radius of 2/

�
3

√
, whose surface is

equivalent to a seven-dimensional spherical surface of S7, given
by real numbers, with a fixed radius in the eight-dimensional
space.

3.3 Hyperspin embedded in SO(6)

Gell-Mann parameters in SO(8) are useful for understanding
the coupling among |L〉, |R〉, and |O〉. However, we can easily
recognize that the generators of the su(3) Lie algebra cannot
span the whole hypersurface of SO(8). For example, parameters λi
(i = 1, . . ., 7), except for λ8, cannot take values above 1 or
below −1, while the radius of 2/

�
3

√
is larger than 1. This

clearly shows that a point like (2/ �
3

√
, 0, . . . , 0) cannot be

covered at all, such that SO(8) is much larger than the

parameter space required to represent the photonic states,
composed of three orthogonal states.

Then, let us consider the number of freedom required for mixing
|L〉, |R〉, and |O〉. In general, we should consider the variable density
of photons since the radius of the Poincaré sphere depends on the
output power of the ray [8, 9, 11–21, 24–27, 63, 70, 75]. Then,
photons in the coherent state are represented by one complex
number per orthogonal degree of freedom for the component of
the wavefunction. We consider this for a fixed polarization state
while we have three orthogonal states for vortices, and therefore, we
have six degrees of freedom (Table 3).

These six degrees of freedom are attributed to corresponding
physical parameters (Table 3). One degree of freedom is assigned
to the power density of the ray, and another is used for the global
U(1) phase, which will not play a role in the expectation values of
the Gell-Mann hypersphere. Two degrees of freedom are required
for describing the superposition state for orbital angular
momentum, which is shown in the Poincaré sphere with
variable radiuses (Figure 3A). Therefore, the remaining two
parameters should be assigned to hyperspin to account for the
mixing of |L〉 and/or |R〉 with |O〉. This picture is consistent with
the wavefunction of |θl, ϕl; θy, ϕy〉, where θy and ϕy account for
hyperspin. On the other hand, we used eight Gell-Mann
parameters for describing the superposition state from the
expectation values. All eight parameters are required to
understand the full rotational ways on the Gell-Mann
hypersphere; however, fewer parameters are required to scan
the full wavefunction over the expected Hilbert space of S5. Here,
we try to reduce the number of Gell-Mann parameters to embed
hyperspin in SO(6). The aim is to represent the hyperspin

y1 � 1
2
sin θy( )cos ϕy( ), (114)

y2 � 1
2
sin θy( )sin ϕy( ), (115)

y3 � −1
6
+ 1
2
cos θy( ), (116)

TABLE 3 Degrees of freedom for photons with three orthogonal states.

Variable Degree of freedom

Power density of the ray 1

Global phase 1

Orbital angular momentum 2

Hyperspin 2

FIGURE 3
Renormalization of Gell-Mann parameters. The eight-dimensional Gell-Mann hypersphere was reduced to two Poincaré spheres for (A) photonic
orbital angular momentum and (B) hyperspin. The radius of the Poincaré sphere for orbital angular momentum is cos2 (θy/2), while it is 1/2 for hyperspin.
Themaximum andminimum y3 correspond to a hypercharge of 1/3 and −2/3, respectively, which are equivalent to a topological charge of 1 (pure vortex
of |L〉 or |R〉) and 0 (no vortex, |O〉).
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as shown on the Poincaré sphere (Figure 3B), which should be
enough for representing θy and ϕy topologically.

A hint is found in Gell-Mann parameters, λ4, /, λ7, which has
the magnitude

λ4( )2 + λ5( )2 + λ6( )2 + λ7( )2 � sin2 θy( ) (117)

upon changing the other parameters θl, ϕl, and ϕy. Therefore, we can
eliminate λ6 and λ7 by renormalizing the operators for the su(3) Lie
algebra.

By inspecting λ4,/, λ7, we realize that the phases of ϕy and ϕl
are coupled in a mixed form. If we convert ϕy ± ϕl/2→ ϕy, the rest
of parameters are easily converted upon rotations. This could be
achieved if we remember the rotation matrices of

R θ( ) � cos θ −sin θ
sin θ cos θ

( ) (118)

from a group to satisfy the associative requirement

R ϕy +
ϕl

2
( ) � R ϕl

2
( )R ϕy( ). (119)

Then, we obtain

cos ϕy +
ϕl

2
( )

sin ϕy +
ϕl

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � R ϕl

2
( ) cos ϕy( )

sin ϕy( )⎛⎝ ⎞⎠, (120)

whose reverse relationship becomes

cos ϕy( )
sin ϕy( )⎛⎝ ⎞⎠ � R −ϕl

2
( ) cos ϕy +

ϕl

2
( )

sin ϕy +
ϕl

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (121)

Using these formulas, we define

λ4′
λ5′

( ) � R −ϕl

2
( ) λ4

λ5
( ), (122)

�
cos

ϕl

2
( ) sin

ϕl

2
( )

−sin ϕl

2
( ) cos

ϕl

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ λ4

λ5
( ), (123)

�
cos ϕy( )sin θy( )cos θl

2
( )

sin ϕy( )sin θy( )cos θl
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (124)

and

λ6′
λ7′

( ) � R ϕl

2
( ) λ6

λ7
( ), (125)

�
cos

ϕl

2
( ) −sin ϕl

2
( )

sin
ϕl

2
( ) cos

ϕl

2
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ λ6

λ7
( ), (126)

�
cos ϕy( )sin θy( )sin θl

2
( )

sin ϕy( )sin θy( )sin θl
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (127)

Then, we successfully converted ϕy ± ϕl/2 → ϕy, as intended.
Finally, we can rotate between λ4 and λ6 to eliminate λ6 by defining

λ′′4
λ′′6

( ) � R −θl
2

( ) λ4′
λ6′

( ), (128)

� cos ϕy( )sin θy( )
0

( ). (129)

Similarly, we define

λ′′5
λ′′7

( ) � R −θl
2

( ) λ5′
λ7′

( ), (130)

� sin ϕy( )sin θy( )
0

( ). (131)

In order to obtain these expectation values for Gell-Mann
parameters, we should renormalize the original basis operators of
the su(3) Lie algebra to define

λ̂
′′
4 � cos

θl
2

( )λ̂4′ + sin
θl
2

( )λ̂6′, (132)

� cos
θl
2

( ) cos
ϕl

2
( )λ̂4 + sin

ϕl

2
( )λ̂5( )

+ sin
θl
2

( ) cos
ϕl

2
( )λ̂6 − sin

ϕl

2
( )λ̂7,( ) (133)

�

0 0 e−i
ϕl
2 cos

θl
2

( )
0 0 ei

ϕl
2 sin

θl
2

( )
ei

ϕl
2 cos

θl
2

( ) e−i
ϕl
2 sin

θl
2

( ) 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (134)

and

λ̂
′′
5 � cos

θl
2

( )λ̂5′ + sin
θl
2

( )λ̂7′, (135)

� cos
θl
2

( ) −sin ϕl

2
( )λ̂4 + cos

ϕl

2
( )λ̂5( )

+ sin
θl
2

( ) sin
ϕl

2
( )λ̂6 + cos

ϕl

2
( )λ̂7( ), (136)

�

0 0 −ie−iϕl2 cos θl
2

( )
0 0 −ieiϕl2 sin θl

2
( )

iei
ϕl
2 cos

θl
2

( ) ie−i
ϕl
2 sin

θl
2

( ) 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (137)

If we use these operators, the Gell-Mann parameters become
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�λ
′′ �

sin θl( )cos ϕl( )cos2 θy
2

( )
sin θl( )sin ϕl( )cos2 θy

2
( )

cos θl( )cos2 θy
2

( )
cos ϕy( )sin θy( )
sin ϕy( )sin θy( )

0

0

−
�
3

√
6

+
�
3

√
2

cos θy( )
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such that we successfully removed λ6 and λ7. These parameters are
equivalent to using photonic orbital angular momentum
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which can be shown on two Poincaré spheres with the radiuses of
cos2 (θy/2) and 1/2, respectively, instead of the original three spheres.
This is consistent with the four degrees of freedom for orbital
angular momentum and hyperspin, as confirmed previously
(Table 3), and it is also expected from the rank-2 nature of the
su(3) Lie algebra, which requires only two sets of the su(3) Lie
algebra among three sets of (̂t, û, v̂). In practice, we do not know the
angles of θl and ϕl, a priori, such that the angles are obtained from
expectation values or experimental results.

Finally, we successfully embedded Gell-Mann parameters in
SO(6) to renormalize
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which satisfies the conservation law of the norm,
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Si( )2 � 4
3
, (142)

which was derived from the constant Casimir operator of Ĉ1.

3.4 Alternative coherent states

We used D̂(v)
2 (θy) and D̂(v)

3 (ϕy) to define an arbitrary state, but
we can define an alternative coherent state using original bases of the
su(3) Lie algebra by the expression
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and D̂5(θy) � D̂(v)
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Using this coherent state, we obtain the Gell-Mann parameters as
expectation values:
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We embedded Gell-Mann parameters into SO(6) for this
coherent state as shown previously. To achieve such a
conversion, we need to transfer

�
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�
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appeared in λ4, /, λ7, by confirming
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whose inverse becomes
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The rest of the calculations are exactly the same as those shown
in the previous subsection. We can use the same renormalized
operators of λ̂4

′′
λ̂5

′′
, while we remove λ̂6

′′ � 0 and λ̂7
′′ � 0. Then,

the renormalized Gell-Mann parameters become
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which keep �ℓ remain unchanged, while hyperspin becomes
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This equation just corresponds to the change in the azimuthal
angle, ϕy →

�
3

√
ϕy/2, in the Poincaré sphere shown in Figure 3B.

Consequently, we embedded Gell-Mann parameters in SO(6) as

�S �

S1
S2
S3
S4
S5
S6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

λ1
λ2
λ3
λ′′4
λ′′5
λ8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

sin θl( )cos ϕl( )cos2 θy
2

( )
sin θl( )sin ϕl( )cos2 θy

2
( )

cos θl( )cos2 θy
2

( )
sin θy( )cos �

3
√
2
ϕy( )

sin θy( )sin �
3

√
2
ϕy( )

−
�
3

√
6

+
�
3

√
2

cos θy( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (151)

which also keeps the norm

∑6
i�1

Si( )2 � 4
3
, (152)

upon arbitrary rotations in the six-dimensional space in SO(6). In
practical experiments, however, it is more complex, if we set up a
rotator for D̂8(ϕy), since three waves are involved rather than two
waves. In conventional optical experiments, various splitters and
combiners are prepared for two waves such that it is much easier to
rely on SU(2) rotations, including D̂(v)

3 (ϕy) and
D̂(u)

3 (ϕy) � exp(−iê(u)3 ϕy), such that we do not have to use the
original bases of λ̂i for SU(3) states.

4 Embedding in SO(5)

For the complete description of the eightfold way to rotate the
SU(3) states, Gell-Mann parameters in SO(8) are more useful for
understanding the differences in phases and amplitudes among |L〉, |
R〉, and |O〉. On the other hand, SO(8) is larger to show the nature of
the wavefunction, made of three complex numbers (C3) with its
norm conserved to cover S5 in the Hilbert space.

We could successfully reduce the dimension of Gell-Mann
parameters from SO(8) to SO(6) or SO(3) × SO(3) to represent
SU(3) states, in terms of orbital angular momentum and hyperspin,
as expectation values. On the other hand, we have only four
parameters (θl, ϕl, θy, and ϕy), such that we can reduce one more
dimension to represent S4 in SO(5).

Before proceeding further, we review the relationship between
SU(2) and SO(3) for describing spin states or polarization states for
photons [8, 9, 11–21, 24–27]. For polarization, we have two
orthogonal states, such that a ray of coherent photons are
described by SU(2) states, which require two complex numbers
(C2). The SU(2) wavefunction was normalized for a fixed power
density, such that one degree of freedom disappeared and the
wavefunction covered S3 in the Hilbert space. In fact, according
to the fundamental theorem of homomorphism [1–6],
SU(2)/SU(1) � SU(2)/U(1) � S3, which means that the SU(2)
wavefunction is equivalent to S3, except for the global phase
factor of U(1). On the other hand, it is also well known that
SU(2)/S0 � SU(2)/Z2 � SO(3), where S0 � {−1, 1} and
Z2 � {0, 1}. This means that if we neglect the impact of the
global phase factor, such as those expected from the geometrical
Pancharatnam–Berry phases [82, 83] in closed loops, the
expectation values of SU(2) states are indicated on the sphere,
represented by the SO(3) group. Consequently, the original
topology of the wavefunction on S3 is reduced to the Poincaré
sphere of S2 in expectation values.

Similarly, in SU(3), the fundamental theorem of
homomorphism [1–5] leads to SU(3)/SU(2) � S5. This means
that we obtain a degree of freedom of SU(2) symmetry within
SU(3) states, which maintains the states essentially equivalent to S5,
as confirmed from the identity of v3 = u3 + t3 to allow two arbitrary
choices of SU(2) states from three sets of SU(2) bases, (̂t, û, v̂).
Similar to the SU(2) states, one of the degrees of freedom in S5 would
be obtained from the global phase, such that we can represent the
expectation values on S4 in SO(5).
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However, we could not establish surjective mapping from SO(6)
to SO(5) purely upon rotations using our bases of the su(3) Lie
algebra because the expectation values of λi (i = 1, . . ., 7) cannot be
larger than 1, while we needed to renormalize λ8 to combine with λ′′4
and λ′′5 . Then, we focused on the conservation relationships of

λ21 + λ22 + λ23 � cos2
θy
2

( ), (153)

λ′′4( )2 + λ′′5( )2 + λ8( )2 � 4
3
− cos2

θy
2

( ) (154)

and considered the following non-surjective mapping from SO(6) to
SO(5) while we renormalize:
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which preserve

λ′′′4( )2 + λ′′′5( )2 � 4
3
− cos2

θy
2

( ). (157)

We also confirm that the renormalized Gell-Mann parameters
conserve the norm

∑5
i�1

Si( )2 � 4
3
, (158)

which is consistent with the constant Casimir operator.
Consequently, expectation values are embedded on a compact
Gell-Mann hypersphere of S4 in SO(5).

5 Discussion

5.1 SU(2) × SU(3) and higher-dimensional
systems

However, we assumed that the ray is polarized such that the
polarization state is fixed. We can control the polarization state
using a phase-shifter and a rotator. We recently proposed a Poincaré
rotator, which allows an arbitrary rotation of the polarization state
by realizing SU(2) rotations in a combination of half- and quarter-
wave plates and phase-shifters [63, 70, 75, 76]. If we use the Poincaré
rotator for the ray with SU(3) states of vortices under certain
polarization, we can realize SU(2) × SU(3), since spin angular

momentum and orbital angular momentum are different
quantum observables, such that a general state is made of a
direct product state for spin and orbital angular momentum. We
can also realize a state created by a sum of these states with different
spin and orbital angular momentum states. For example, if we
realize the SU(2) state of left and right vortices and assign
horizontally and vertically polarized states, respectively, we can
realize both singlet and triplet states by controlling the phase
among two different many-body states.

Recently, the relationships between topology and polarization
are being extensively studied in various forms of structured lights [6,
49, 76, 84–88]. Three-dimensional polarization states [84–86] are
novel structured lights to realize knots and links in intensity profiles.
It is also exciting that skyrmions were realized by combining spin
and orbital angular momentum of photons [89, 90]. Our results
suggest that photons have a higher order SU(N) symmetry by
allowing various superposition states among orthogonal basis
states of spin and orbital angular momentum.

5.2 Cavity QCD and photonic mesons

It is well established that a photonic crystal is an excellent test
bed to explore a cavity quantum electro-dynamics (QED) in an
artificial environment [91]. Here, we consider an analog to a cavity
QED as a cavity QCD. We construct a one-dimensional cavity, for
example, a Fabry–Perot interferometer, where |L〉, |R〉, and |O〉
states are realized. The ray propagates in the cavity along z and is
reflected back to propagate along the opposite direction of −z. The
chiralities of spin and orbital angular momentum are reversed upon
reflections [15–21, 24–27], such that the state along −z would be a
conjugate state to the state along z. Consequently, we can construct
multiplets, similar to mesons, made of quarks and anti-quarks [4, 5,
9, 10]. For quarks, an individual quark is very difficult to observe in
experiments due to the strong confinements in composite materials
of mesons and baryons. On the other hand, we expect an opposite
behavior since photons trapped inside the cavity are difficult to
observe as is, while photons escaping from the cavity are observed
and analyzed using detectors. This corresponds to observing an
individual quark, which is a ray of photons propagating at either z or
−z. It is quite hard to observe the composite meson analog, which is
realized inside the cavity, and it would be difficult to allocate
detectors to observe photons propagating in the opposite
directions at the same time, which would require a transparent
detector. However, it is not essential to observe within the cavity
since we can examine the state inside the cavity from the photons
escaping from both ends. The cavity QCD experiments will allows us
to explore SU(3) and SU(2) × SU(3) multiplets in a standard
photonic experimental setup. If we distinguish each polarization
state with different orbital angular momentum states as an
individual orthogonal state, we can also explore SU(6) states, for
example, and it will also be possible to investigate how symmetry
breaking from SU(6) to SU(2) × SU(3) affects the photonic states by
observing the corresponding expectation values of generators of
rotations in a higher-dimensional space. Another remarkable
difference in the proposed photonic systems with quarks is
quantum statistics; quarks are fermions, and photons are bosons.
Our analysis is quite primitive, such that some of our ideas could be
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applicable to fermionic systems. However, coherent photons out of
lasers are quite easy to treat due to technological advances, while a
macroscopic number of photons are coherently degenerate, which
would be ideal for experiments that require coherent interference.
As mentioned previously, phases and amplitudes of a wavefunction
determine the crucial Gell-Mann parameters, similar to Stokes
parameters for polarization. Polarization is a macroscopic
manifestation of the nature of spin for photons, represented on
the Poincaré sphere. A similar argument will hold for orbital angular
momentum of coherent photons, and the Gell-Mann hypersphere
can play a similar role in clarifying the SU(3) states for photons.

5.3 Correlation between SU(n) and SO(n2 − 1)

Finally, we discuss the relationship between SU(n) wavefunctions
and expectation values in SO(n2 − 1). It is well known that the SU(2)
wavefunction for spin is related to spin average values in SO(3), and
therefore, the rotation in SU(2) is linked to the corresponding rotation
in SO(3). This fact is also explained by the relationship SU(2)/
Z2 �SO(3), claiming that the SU(2) is the twofold coverage of
SO(3). In this paper, we discussed the relationship between SU(3)
and SO(8). More generally, we show that a quantum mechanical
average of an generator in SU(n) is related to a rotation in SO(n2 − 1)
using an adjoint representation of the su(n) Lie algebra.

We assume that a generator of rotation in SU(n) is X̂a and the
commutation relationship is [X̂a, X̂b] � i∑cfabcX̂c [5]. In the
aforementioned example of SU(3), this corresponds to X̂a � λ̂a. We
consider that an initial SU(n) state of |I〉 will be rotated by an
exponential map of exp(−iX̂aθ) with an angle of θ to be the final state:

|F〉 � e−iX̂aθ|I〉. (159)
Then, we consider how an average expectation value of X̂b in the

initial state 〈X̂b〉I � 〈I|X̂b|I〉 is transferred to the final state:

〈X̂b〉F � 〈F|X̂b|F〉, (160)
� 〈I|eiX̂aθX̂be

−iX̂aθ|I〉, (161)
≈ 〈I| 1 + iX̂aθ( )X̂b 1 − iX̂aθ( )|I〉 +O θ2( ), (162)
≈ 〈I| X̂b + iθ X̂a, X̂b[ ]( )|I〉 +O θ2( ), (163)

≈ δbc −∑
c

fabcθ⎛⎝ ⎞⎠〈X̂c〉I +O θ2( ), (164)

≈ ∑
c

e−F̂aθ( )
bc
〈X̂c〉I +O θ2( ), (165)

where we assumed that θ is infinitesimally small and considered only
the first order in the expansion, and F̂a is an adjoint operator, whose
matrix element becomes (F̂a)bc � fabc, which is a matrix of (n2 −
1) × (n2 − 1). Therefore, the rotation of the wavefunction in SU(n)
becomes the rotation of the corresponding expectation value in
SO(n2 − 1), as expected.

We also checked its validity in the second order of θ as

O θ2( ) � −θ
2

2
〈I|X̂2

aX̂b|I〉 + θ2〈I|X̂aX̂bX̂a|I〉 − θ2

2
〈I|X̂2

bX̂a|I〉, (166)
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2
〈I| X̂

2

aX̂b − 2X̂aX̂bX̂a + X̂
2

bX̂a|I〉(
� − θ2

2
〈I| X̂

2

aX̂b( − 2X̂a X̂aX̂b − i∑
c

fabcX̂c
⎛⎝ ⎞⎠

+ X̂
2

aX̂b − i∑
c

fabc X̂aX̂c + X̂cX̂a( )⎞⎠|I〉

� − θ2

2
〈I| 2i∑

c

fabcX̂aX̂c
⎛⎝ ⎞⎠⎞⎠|I〉,

(167)

� − i
θ2

2
∑
c

〈I| fabcX̂aX̂c + fcbaX̂cX̂a( )⎞⎠|I〉

� − i
θ2

2
∑
c

fabc〈I| X̂a, X̂c[ ]|I〉, (168)

� θ2

2
∑
cd

fabcfacd〈I|X̂d|I〉, (169)

� θ2

2
∑
c

F̂
2

a( )
bc
〈I|X̂c|I〉, (170)

and therefore, the aforementioned formula is also valid in the
second order. Actually, this is a reflection of the differentiability
of the Lie group, which was originally called an infinitesimal
group. Once a formula is derived in an infinitesimal small value,
it is straightforward to extend it to the finite value. In our case,
we can repeat the infinitesimal amount of rotation with an angle
of θ/N, while we can repeat N times, and we take the limit N →
∞ as

〈X̂b〉F � lim
N→∞ ∑

c

1 − F̂a
θ

N
( )N

bc

〈X̂c〉I, (171)

� ∑
c

e−F̂aθ( )
bc
〈X̂c〉I. (172)

Therefore, we proved that the quantum mechanical rotation of
the wavefunction in SU(N), which is given by Cn on S( n−1) upon the
normalization, will rotate the expectation value of the generator,
which is a vector ofRn2−1 in SO(n2 − 1), using the adjoint operator of
the su(3) Lie algebra.

6 Conclusion

In this study, we proposed to use photonic orbital angular
momentum for exploring the SU(3) states as a photonic analog of
QCD. We showed that the eight-dimensional Gell-Mann
hypersphere in SO(8) characterizes the SU(3) state, made of
left- and right-twisted photons and no-twisted photons. There
are several ways to visualize the Gell-Mann hypersphere, and we
calculated expectation values for the orbital angular momentum
and defined hyperspin to represent the coupling between twisted
and no-twisted states, which could be shown on two Poincaré
spheres or one hypersphere in SO(6) or SO(5). We believe that
the proposed superposition state of photons is useful for
exploring photonic many-body states to gain some insights
into the nature of the symmetries in photonic states.
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