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Scattering phase shifts and annihilation rates for low-energy positrons interacting
with noble gas atoms are calculated ab initio using many-body theory
implemented in the Gaussian-orbital code EXCITON+. Specifically, we
construct the positron–atom correlation potential (self-energy) as the sum of
three classes of infinite series describing the screened polarization, virtual
positronium formation, and positron-hole repulsion found via the solution of
Bethe–Salpeter equations for the two-particle propagators. The normalization of
the continuum states is determined using the shifted pseudostates method [A. R.
Swann and G. F. Gribakin, Phys. Rev. A 101, 022702 (2020)]. Comparison with the
previous sophisticated B-spline many-body approach, which is restricted to
atoms [J. Ludlow, D. G. Green, and G. F. Gribakin, Phys. Rev. A 90, 032712
(2014)], validates the EXCITON+ code, which can be used for multicentered
targets including molecules, clusters, and condensed matter. Moreover, the
relative effects of higher-order diagrams are quantified. It is found that the
screening of the electron–positron Coulomb interaction represented by the
infinite ring-diagram series (random-phase approximation) is compensated
effectively by the additional electron-hole attraction corrections to it (the
Bethe–Salpeter equation approximation) and that the use of the screened
Coulomb interaction (screened at BSE level) in place of the bare Coulomb
interaction in the virtual positronium and positron-hole ladder diagrams has
negligible effect on both the phase shifts and Zeff. Our scattering length for Ne
and Kr is in improved agreement with the convergent close-coupling result, and
for Ar, the scattering length is in better agreement with the experiment compared
with the previous B-spline many-body approach.
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1 Introduction

Positrons are unique probes of matter with important
applications in medical imaging (positron emission
tomography [PET]) [1]; astrophysics (understanding the
composition of the galaxy) [2]; materials science as
ultrasensitive diagnostics of surfaces, defects, and porosity [3,
4]; molecular spectroscopy [5]; and key to the formation and
exploitation of positronium [6, 7] and antihydrogen [8–14],
which are used for tests of fundamental symmetries and gravity.

Proper interpretation of the fundamental experiments andmaterials
science experiments, as well as development of the antimatter-based
technologies (traps, accumulators, ultra-high energy resolution beams,
and next-generation PET), relies on the theoretical understanding of
positron interactions with atoms, molecules, and condensed matter. The
positron–atom system is, however, characterized by strong many-body
correlations [15, 16]. A powerful method that accurately describes
positron–electron correlations in a systematic, intuitive, and
computationally scalable way is the many-body theory [16–26]. It
has provided a full ab initio description of positron scattering and
annihilation rates in atoms [16, 18], annihilation γ spectra [27], and
positron cooling in noble gas atoms [28, 29], solving a number of long-
standing problems. Moreover, the approach enabled ab initio
calculations of annihilation vertex enhancement factors that can be
used to calculate core annihilation probabilities in condensedmatter [24]
and also enabled a many-body approach to calculations of Ps-atom
scattering and pickoff annihilation [30, 31]. Most recently, we have
developed themany-body theory for positron binding [32] inmolecules,
and extended to non-resonant scattering and annihilation [33] (in the

fixed nuclei approximation) using a Gaussian-basis approach that
constructed the positron–molecule correlation potential via a solution
of the Bethe–Salpeter equations for the two-particle propagators,
implemented in our code EXCITON+ [32], which is an extended
version of the all-electron EXCITON code of Patterson [34, 35] that
additionally handles positrons.

High-quality many-body theory calculations of positron
scattering and annihilation in noble gas atoms were performed by
Green, Ludlow, and Gribakin in 2014 employing a single-centered
B-spline basis approach (which is restricted to atoms) [16]. In that
work, the positron–atom correlation potential (self-energy) was
calculated (with diagrams constructed from Hartree–Fock states
obtained from an atomic code [36]) including the bare
polarization diagram Σ(2) but included screening corrections at
third-order only. Moreover, the virtual positronium contribution
Σ(Γ) was calculated using bare Coulomb interactions in the ladder
series. Extrapolation of observable quantities with respect to
angular momenta of intermediate states included in the
diagram sums was performed. Here, we applied our Gaussian-
basis Bethe–Salpeter approach to calculate elastic scattering
phase shifts, cross sections, and annihilation rates of positrons
with noble gas atoms. The purpose is two-fold: first, comparison
with the accurate B-spline results allows verification of the
suitability of Gaussian-basis expansion and veracity of the
EXCITON+ code (which is also applicable to molecules,
clusters, and condensed matter); and second, to quantify the
relative effects of the higher-order diagrams omitted in the
previous B-spline-based study, including the infinite random-
phase approximation and electron-hole attraction corrections to

FIGURE 1
Main contributions to the positron–atom self-energy: (A) GW diagram, which describes polarization, and screening and electron-hole interaction
corrections to it; (B,C) infinite ladder series of screened electron–positron interactions (“Γ-block”) and positron–hole interactions (“Λ-block”). Lines
labeled ] (μ) [(n)] are excited positron (electron) [(hole)] propagators; a single (double) wavy line denotes a bare (dressed) Coulomb interaction. The GW
diagram in (A) involves the positron Green’s function G] and the dynamic part (due to the absence of an electron–positron exchange interaction) of
the screened Coulomb interaction Wd = vΠv, where Π is the electron-hole polarization propagator [see (D)]. It satisfies the Bethe–Salpeter equation
[diagram (E)] with kernel K = v − WRPA [diagram (F)], where WRPA = v + Wd,RPA is the screened electron–hole Coulomb interaction calculated in the
random-phase approximation. Setting K = 0 results in the bare polarization enteringW only and gives the Σ(2) approximation, so-called as it is a second-
order diagram in the electron–positron Coulomb interaction. Setting K = v, the direct part of the Coulomb interaction only, gives the “random-phase
approximation” (GW@RPA). Setting K = v − vexch, i.e., including exchange, which gives rise to interactions within the bubbles and yields the “time-
dependent Hartree–Fock” approximation (GW@TDHF). Using screened Coulomb interactions in the exchange term is “Bethe–Salpeter” approximation
(GW@BSE). See Figure 2 for more details. Finally, (G) shows the summed infinite ladder diagram series of screened electron–positron interactions, the “Γ
block in the virtual positronium contribution in (B).
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FIGURE 2
Different approximations to the positron GW self-energy diagram [Figure 1A] dependent on the choice of the kernel K of the electron-hole
propagator: (A) setting K = 0 reduces the electron-hole propagator to the bare propagator Π(0) and results in the second-order bare polarization self-
energy diagram Σ(2); (B) setting K = v, the direct part of the Coulomb interaction only gives in addition to the Σ(2) diagram, the infinite series of connected
ring diagrams, the random-phase approximation (GW@RPA); (C) setting K = v − vexch, i.e., including exchange, additionally gives rise to diagrams
beyond RPA that include interactions within the rings. When the bare Coulomb interaction is used as the intra-ring interaction, one obtains the time-
dependent Hartree–Fock approximation (GW@TDHF). When one instead uses the screened Coulomb interaction W, one obtains the Bethe–Salpeter
approximation (GW@BSE).

FIGURE 3
Comparison of the present calculated scattering phase shifts (symbols) with previous MBT B-spline results (lines) [16]. Panels (A–C) show s-, p-, and
d-wave positron scattering phase shifts, respectively, for both helium (blue) and neon (red). Panels (D–F) show that for argon (green) and krypton (black).
The present Σ(2) results from EXCITON+ are shown as circles (Ne and Ar) and triangles (He and Kr), with the previous B-spline results shown as dot-dashed
lines. The present Σ(2+Γ) results from EXCITON+ are shown as diamonds (Ne and Ar) and crosses (He and Kr), with the previous B-spline results shown
as dashed lines.
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the polarization diagram (so called GW@BSE), and determining the
virtual positronium and positron-hole ladder series using dressed
Coulomb interactions rather than bare Coulomb interactions.

The outline of the remainder of the paper is as follows. Section 2
gives an overview of the many-body theory and its numerical
implementation in the Gaussian-orbital code EXCITON+. Section
3 presents results for helium, neon, argon, and krypton, including
scattering phase shifts, cross sections, and annihilation rates, before
concluding with a summary.

We use atomic units (a.u.) unless otherwise stated.

2 Theory and numerical
implementation

In the many-body theory approach, the positron quasiparticle
wavefunction ψε of energy ε is found from the solution of the Dyson
equation [37, 38] as follows:

H 0( ) + Σ̂ε( )ψε r( ) � εψε r( ), (1)

whereH(0) is the zeroth-order Hamiltonian, which is taken to be that of
the positron in the Hartree–Fock field of the ground-state atom, and Σ̂ε

FIGURE 4
Scattering phase shifts for positron on helium (A–C), neon (D–F), argon (G–I), and krypton (J–L)with s- (A,D,G,J), p- (B,E,H,K), and d-wave (C,F,I,L)
results shown. Previous MBT B-spline results [16] (red squares) and current MBT results with different approximations: HF (dotted lines), Σ(2) (dot-dashed
lines), ΣBSE (dashed lines), ΣBSE+Γ (dot-dot-dashed lines), and ΣBSE+Γ+Λ with three alternative treatments of Γ and Λ terms: crosses, using unscreened (bare)
Coulomb interaction; circles, using screened Coulomb interaction; and our most sophisticated approximation: solid lines with diamonds, using the
screened Coulomb interaction and GW instead of HF energies in the energy denominators of the diagrams.
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is a non-local, energy-dependent correlation potential (irreducible self-
energy of the positron in the field of the atom). The self-energy is
expanded in residual electron–electron and electron–positron
interactions. Figure 1 shows the three infinite classes of diagrams
considered, with the total self-energy given by their sum as Σ = ΣGW

+ ΣΓ + ΣΛ. The GW diagram [Figure 1A, the product of the positron
Green’s function G and the dressed Coulomb interactionW] describes
the polarization of the electron cloud by the positron and screening, and
electron-hole interaction corrections to it. It can be calculated at the bare
(Σ(2)), random-phase approximation (RPA), time-dependent
Hartree–Fock (TDHF), or Bethe–Salpeter equation approximations
depending on the kernel K used in the calculation of the electron-
hole propagator Π [Figures 1D–F and Figure 2]. In this work, we
present results obtained using GW at either Σ(2) or the BSE level.
Figure 1B shows the infinite ladder series of (either bare or screened)
electron–positron interactions, the “Γ-block,”which represents the non-
perturbative process of virtual positronium formation. Finally, we also
consider the infinite series of (either bare or screened) positron-hole
Coulomb interactions ΣΛ [Figure 1C].

The EXCITON+ program employs distinct Gaussian-basis sets
to expand the electron (−) and positron (+) Hartree–Fock orbitals
φ±
a(r) as φ±

a(r) � ∑N±
c

A ∑N±
A

k�1C
±
aAkχ

±
Ak
(r), where A labels the N±

c basis
centers and k labels theN±

A different Gaussians on center A, each taken
to be of Cartesian type with angular momentum l x + l y + l z, viz.,
χAk

(r) � N Ak(x − xA)lxAk(y − yA)l
y
Ak (z − zA)lzAk exp{−ζAk|r − rA|2},

where N Ak is a normalization constant and C are the expansion
coefficients. We use diffuse-function-augmented correlation-consistent
polarized aug-cc-pVQZ (TZ onKr)Dunning basis sets [39–41] centered
on atomic nuclei, enabling the accurate determination of the electronic
structure including polarizabilities. For the positron, we additionally use
a much more diffuse even-tempered basis of the form 19s17p16d15f
with exponents for the jth Gaussian for each angular momentum given
as ζAj � ζA1β

j−1 (j � 1, . . . ,N+l
A ), with β = 2 and ζA1 = 10−5 for l =

0 − 1 and ζA1 = 10−4 for l = 2 − 3. Convergence tests were performed,
varying ζA1, β, N+0

A , and lmax for the positron basis on the atoms.
Moreover, tomore accurately describe the virtual positronium formation
process, which takes place away from the atom and requires large
angular momentum to resolve the electron–positron distance, for He
and Ne, we placed 12 additional hydrogen type aug-cc-pVTZ basis sets
symmetrically on a sphere of radius ~ 1 a.u. from the atom
(corresponding to the vertices of a regular icosahedron), and for Ar
and Kr, 20 ghosts on a sphere of radius ~ 2 a.u. (corresponding to the

vertices of a regular dodecahedron), finding this to be sufficient for the
convergence of the final eigenstates.

2.1 Scattering calculations

For the positron–atom system, the solution of the Dyson equation
(Eq. 1) in a Gaussian basis yields a discrete set of n continuum
pseudostates of energy εn, which decay exponentially rather than
oscillate at large positron–atom separations, and are normalized to
unity instead of to an asymptotic plane wave, as required by a true
continuum state. Although these are not true continuum states, they
can be used to extract information about positron elastic scattering
from the target, as outlined in Swann and Gribakin [42]. First, we
determine the s-type pseudostates1 of a free positron, i.e., eigenstates of
the positron kinetic energy Hamiltonian in the Gaussian basis, with
energies ε(0)n0

. Since these energies increase monotonically with n0
(where n0 = 1, 2, . . .), there exists an invertible function f such that

f0 n0( ) � ε 0( )
n0
. (2)

Then, we determine the phase shift for the s-type pseudostates of
energy εn0 for the positron in the dressed field of the atom as follows:

δ0 � n0 − f−1
0 εn0( )[ ]π, (3)

where the inverse function f−1
0 is constructed by the interpolation of

integer n0 against ε(0)n0
. In practice, for even-tempered Gaussian-basis

sets, the energies ε(0)n0
and εn0 grow approximately exponentially with

n0. It is, therefore, easier to determine function g by the interpolation
of n0 vs. ln(ε(0)n0

), making g(ln(εn0)) � f−1
0 (εn0), which is nearly

linear. The phase shift for positron energy εn0 is then given by

δ0 � n0 − g ln εn0( )( )[ ]π. (4)
The same procedure is used for p- and d-type pseudostates, utilizing
p- and d-type free positron pseudostates to form invertible functions
f1(n1) and f2(n2).

TABLE 1 Scattering lengths a (a.u.) at the ΣBSE+Γ+Λ level of theory for the noble gas–atom sequence He–Kr determined using the fitting equations in Eq. 5. Here, α is
the static dipole polarizability in a.u. computed at the BSE level of theory.

α Eq. 5a Eq. 5b Eq. 5c Eq. 5d Other calculations Experiment

He 1.32 −0.465 −0.476 −0.467 −0.467 −0.435a, −0.53b, −0.48c, and −0.506d

Ne 2.45 −0.527 −0.537 −0.536 −0.535 −0.467a, −0.61b, and −0.53e

Ar 10.7 −4.896 −5.084 −5.036 −5.006 −4.41a, −5.3b, −4.3e, −5.8d, and −4.76d −4.9 ± 0.7f

Kr 16.2 −11.62 −11.79 −11.67 −11.45 −9.71a, −10.4b, and −11.2e −10.3 ± 1.5f

aB-spline [16].
bPolarized orbital calculations He [52, 53], Ne [54], Ar [55], and Kr [56].
cKohn variational [57].
dModel potential [42].
eCCC [58].
fExperiment Ar [59] and Kr [60].

1 In selecting the s-type states, we look for states with L2 < 1, i.e., l < 0.6. For
p-type states, 1 < L2 < 3, i.e., 0.6 < l < 1.3 and for d-type functions, 5 < L2 < 7,
i.e., 1.8 < l < 2.2.
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Since Σ̂E depends on the energy E of the pseudostate involved
and the pseudostate energies are not known a priori, we first
calculate ΣE on a dense energy grid and interpolate to the energy
of the pseudostate. For all of our calculations, we use a linear
energy mesh for the self-energy, typically using 30 points between
0 and 0.3 a.u. We also tested a denser exponential energy mesh
but found negligible improvement in accuracy, owing to the weak
energy (E) dependence of the eigenvalues.

In addition to scattering phase shifts, we determined the
scattering length a from the effective-range expansion of the
s-wave phase shift for momenta k � ��

2ε
√

→ 0 [43], independently
fitting to each of

k cot δ0 � −1
a
+ πα

3a2
k, (5a)

k cot δ0 � −1
a
+ πα

3a2
k + C1k

2 lnC2k, (5b)

FIGURE 5
Elastic scattering cross sections for helium. Partial s-, p-, and d-wave contributions (A–C), and their sum (D), calculated presently using MBT in
different approximations: HF (dotted lines), Σ(2) (dot-dashed lines), ΣBSE (dashed lines), ΣBSE+Γ (dot-dot-dashed lines), and ΣBSE+Γ+Λ, our most sophisticated
approximation (solid lines). Previous MBT B-spline results [16] are shown as the red line. (E) Comparison of theory and the experiment. Previous
calculations: presentmany-body theory (black solid line); previous B-splineMBT [16] (magenta dot-dash-dashed); polarized orbital [52, 53] (red dot-
dashed); previous MBPT of [17] (green dashed); CCC [61] (blue dotted); and Kohn variational [62] (purple dot-dot-dashed). Experiment: [63] (red squares);
[64] (blue circles); [65] (brown stars); [66] (magenta diamonds); [67] (black crosses); [68] (purple triangles up); and [69] (cyan triangles down).
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tan δ0 � −ak 1 − παk

3a
− 4αk2

3
ln C

��
α

√
k

4
( )[ ]

−1
, (5c)

δ0 � −ak − παk2

3
− 4aαk3

3
ln

��
α

√
k

4
( ) + Ck3, (5d)

where α is the static dipole polarizability of the atom determined by
EXCITON+ at the BSE level of theory and C, C1, and C2 are constants.
We use the first four or five lowest energy discrete datapoints of δ0(k) for
fitting. Finally, the elastic scattering cross section is obtained as a sum
over the partial waves l = 0, 1, 2 (s, p, d −waves), which dominate at low
positron energies [44]:

σel � 4π
k2

∑2
l�0

2l + 1( )sin2δl k( ). (6)

2.2 Annihilation rates

For a gas of number density ng, the positron annihilation
rate is parametrized as λ � πr20cngZeff , where r0 is the classical
electron radius, c is the speed of light, and Zeff is the effective
number of electrons that participate in the annihilation process.
Formally, Zeff is equal to the electron density at the positron,

Zeff k( ) � ∫∑Ne

i�1
δ r − ri( )|Ψk r1, . . . , rNe, r( )|2 dr1 . . . drNedr, (7)

where Ψk is the total wavefunction of the system, with the electron
coordinate ri and positron coordinate r. It describes the scattering of
the positron of momentum k by the atom and is normalized
asymptotically to the product of the ground-state target atomic
wavefunction and positron plane wave. Using the finite basis
approach, it can be approximated by [42] Zeff = 4πδepA

−2, with
the normalization factor A2 � (2l + 1)−12 ��

2ε
√

πdε/dn [42], and the

annihilation contact density in the independent-particle
approximation is as follows:

δep � 2 ∑Ne/2

i�1
γi ∫ |φi r( )|2|ψ r( )|2dr. (8)

The summation in Eq. 8 runs over all occupied electronic orbitals φi,
including vertex enhancement factors γi � 1 + �������

1.31/|εi|√ +
(0.834/|εi|)2.15 for orbital i with energy εi (in a.u.) that account for the
effects of short-range electron–positron Coulomb attraction [24, 27]. The
integral inEq. 8 is calculated as a four-centeredoverlap integral over pairs of
electron andpositron basis functions χ±i (r)χ±j (r). To speedup calculations
and reduce the memory cost, we employ density fitting (DF), which
involves approximating the electronic density using Naux auxiliary
(corresponding aug-cc-pVTZ or QZ type) basis functions {~χ−μ(r)}Naux

μ�1
such that χ−i (r)χ−j (r) ≈ ∑μd

i,j
μ ~χ

−
μ(r) with optimal fitting coefficients di,jμ

determined using the Coulombmetric [35, 45–49]. The use of DF reduces
four-centered integrals (which for basis size N requires memory ~
N 4) to products of three-centered integrals and matrix elements
of the Coulomb operator in the auxiliary basis (of order N 2Naux,
where Naux ≳ N). We found DF implementation gives results
within 0.5% of the exact calculation.

When analyzing the results of the many-body calculations, it is
instructive to consider the physically motivated form of the s-wave
Zeff at low momenta k [16, 50]

Zeff k( ) � F

κ2 + k2 + Ak4
+ B, (9)

where F, B, A and κ are constants. We also compute the Maxwellian
average Zeff at room temperature:

�Zeff � ∫∞

0
Zeff k( ) exp −k2/2kBT( )

2πkBT( )3/2 4πk2dk, (10)

where kB is the Boltzmann constant and kBT = 9.28 × 10−4 a.u. at
room temperature T = 293 K.

3 Results

3.1 Positron scattering on noble gas atoms

3.1.1 Benchmarking the Gaussian-basis approach
against previous B-spline many-body theory
calculations

First, we benchmark our method against the previous B-spline
atomic MBT [16] at Σ(2) and Σ(2+Γ) levels of theory2. Figure 3
shows comparisons of the s-, p-, and d-wave scattering phase
shifts for the noble gas sequence He–Kr (He and Ne shown on top
panels, and Ar and Kr shown on bottom panels). Overall, there is

FIGURE 6
Elastic scattering cross section for neon. Theory: present many-
body theory (solid black line); B-spline MBT [16] (magenta dot-dash-
dashed); polarized orbital [54] (red dot-dashed); previous MBPT of [17]
(green dashed); CCC [58] (blue dotted); and relativistic polarized
orbital [70] (purple dot-dot-dashed). Experiment: [63] (red squares);
[71] (blue circles); [66] (magenta diamonds); [70] (black crosses); and
[72] (purple triangles).

2 Both methods can calculate the self-energy at these levels, and so, they
provide for faithful comparisons. Beyond those levels, the present method
and B-spline calculations diverge in how they include screening effects,
e.g., the B-spline method accounts only for third-order screening
diagrams, while the current approach calculates the infinite ring series
(random-phase approximation) and corrections to it, via a solution of the
Bethe–Salpeter equation for the dressed electron-hole propagator.
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very good agreement. The Σ(2) results are in excellent
agreement, validating the Gaussian-basis many-body
implementation and its combination with the shifted
pseudostate method. The present Σ(2+Γ) results are, in some
cases, slightly less positive compared to the B-spline reference.
Accurate calculation of the virtual positronium formation
contribution to the correlation potential is perhaps the most

challenging aspect of positron–atom calculations. In the
previous atomic MBT B-spline method [16], B-spline basis
functions were used for the expansion of the radial part of
the positron wavefunction with angular integrations carried out
analytically (via diagrammatic angular momentum algebra),
reducing the numerics to a one-dimensional problem.
Moreover, extrapolation to infinite angular momenta in the

FIGURE 7
Elastic scattering cross section for argon. Partial s-, p-, and d-wave contributions (A–C), and their sum (D), calculated presently using MBT in
different approximations: HF (dotted lines), Σ(2) (dot-dashed lines), ΣBSE (dashed lines), ΣBSE+Γ (dot-dot-dashed lines), and ΣBSE+Γ+Λ, our most sophisticated
approximation (solid lines). Previous MBT B-spline results [16] are shown as the red line; (E) Comparison of theory and experiment. Previous calculations:
present MBT (black solid line), B-spline MBT [16] (magenta dot-dash-dashed line), polarized orbital [55] (red dot-dashed line), previous MBPT of [17]
(green dashed line), CCC [58] (blue dotted line), and relativistic polarized orbital [70] (purple dot-dot-dashed line). Experiment: [73] (red squares), [71] (blue
circles), [74] (brown stars), [66] (magenta diamonds), [59] (purple up triangles), and [70] (black crosses).
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intermediate sums was performed via well-defined
extrapolation formula (Eqs 22, 23 in [16]). In contrast, our
Gaussian-basis approach is three-dimensional, currently
making no use of the spherical symmetry, i.e., we use all the
non-symmetry-adapted states at once; thus, the convergence
with respect to the basis set size is relatively slower. Moreover,
we do not perform an extrapolation to a complete basis set limit
but only perform convergence checks by increasing the number

of virtual states by adding multiple ghost centers, as explained
previously. Agreement could be improved by including larger
angular momentum functions in the Gaussian-basis approach3.
With these considerations in mind, the overall agreement of the
current Gaussian-basis implementation in EXCITON+ and the
previous B-spline reference Σ(2+Γ) results are excellent.

3.1.2 Effect of higher-order diagrams
With the EXCITON+ implementation validated, we now go

beyond the previous B-spline study and consider the relative
effects of higher-order diagrams, including Bethe–Salpeter
equation treatment of screening of the electron–positron
Coulomb interaction, and screening corrections to the ladder
series in Γ and the inclusion of the Λ block (Figure 1).

Elastic scattering phase shifts for the noble gas atoms are
shown in Figure 4 for different approximations: HF, Σ(2), ΣBSE,
ΣBSE+Γ, and ΣBSE+Γ+Λ, with three alternative treatments of Γ and Λ
terms: using unscreened (bare) Coulomb interaction; using
screened Coulomb interaction; and using screened Coulomb
interaction and GW instead of HF energies in the energy
denominators (see also Table 1 for scattering lengths). For the
ease of comparison, we also show in Figure 4 the previous
B-spline MBT calculations, which were calculated at the Σ2+3+Γ

level, i.e., including the second-order bare polarization diagram,
third-order screening diagrams, and the virtual positronium
formation contribution. The general features of the phase
shifts as functions of the positron momentum k are mostly the
same for all studied atoms. In HF approximation, the phase shifts
are negative and linear, indicating a repulsive electrostatic field,
as expected for positrons. Inclusion of the second-order
polarization diagram, Σ(2) makes the phase shifts positive at
low k, reaching a maximum and then fall off with increasing k
and passing through zero (Ramsauer–Townsend effect). Going
from Σ(2) to GW@BSE increases the low-energy positive phase
shifts for He and Ne; there is little difference between them in Ar,
and the opposite is found in Kr. Compared to Σ(2), GW@BSE
includes, on one hand, the infinite random-phase approximation
ring series of screening diagrams, and on the other hand, intra-
ring attractive electron-hole dressed Coulomb interactions. Thus,
we find that for the smaller atoms, the intra-ring electron-hole
attractions give a larger effect than the repulsive screening effects
from the ring series. The latter only start to dominate in krypton
[Figure 4J]. The inclusion of virtual positronium (ΣΓ)
significantly increases the phase shifts of the BSE calculations
by nearly a factor of 3 at the peak values. The inclusion of
positron-hole repulsion (ΣΛ) reduces the overall phase shifts,
sitting between the results of BSE and BSE+Γ. There are also
multiple ways to treat ΣΓ and ΣΛ (see [32] for more details): using
screened interactions in the ladders reduces the strength of the
dominant virtual positronium diagram and correspondingly
reduces the phase shifts, but by a small amount. The effect of
the screened ladders are, however, compensated and almost

FIGURE 8
Elastic scattering cross section for krypton. Theory: present
many-body theory (black solid line), B-spline [16] (magenta dot-dash-
dashed line), polarized orbital [56] (red dot-dashed line), previous
MBPT of [17] (green dashed line), CCC [58] (blue dotted line), and
relativistic polarized orbital [75] (purple dot-dot-dashed line).
Experiments: [76] (red squares), [71] (blue circles), [66] (magenta
diamonds), [77] (purple up triangles), and [75] (black crosses).

FIGURE 9
Normalized annihilation rate Zeff for s-wave positron on He
calculated in the independent-particle model vertex, i.e., using
enhancement factors γi set to unity (Eq. 8), in different approximations
to the positron wavefunction: Hartree–Fock (red), Σ2 (blue), and
Σ2+Γ (green) approximations to the Dyson positron wavefunction,
calculated using the present Gaussian-basis approach (symbols) and
previous B-spline results (lines) [16].

3 Including higher angular momentum functions is a major challenge: see
the discussion in [51], where an efficient algorithm was recently proposed
for 4-centered integrals only (i.e., not including 3-centered integrals,
which are central to the density-fitting approach we use).
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FIGURE 10
Zeff for positrons on helium showing the s (A), p (B), and d (C)wave contributions to the total (D). Legend is the same as in Figure 4with the addition of
total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based in Eq. 9 and the parameters in Table 2.

FIGURE 11
Zeff for positrons on neon showing the s (A), p (B), and d (C)wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of
total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.
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FIGURE 12
Zeff for positrons on argon showing the s (A), p (B), and d (C)wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of
total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.

FIGURE 13
Zeff for positrons on krypton showing the s (A), p (B), and d (C)wave contributions to the total (D). Legend is the same as in Figure 4 with the addition
of total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based in Eq. 9 and the parameters in Table 2.
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cancelled by the introduction of GW electronic energies in place
of the HF energies in the construction of the diagrams. Overall,
we find the full ΣBSE+Γ+Λ results in good agreement with the Σ2+3+Γ

B-spline results across all atoms and partial waves, although our
current results typically sit higher than the B-spline results. Given
that our approach slightly underestimates the virtual
positronium contribution, as discussed in the previous section,
the overall effect of the higher-order diagrams has been to
increase the strength of the attractive positron–atom potential.
This has resulted from a delicate balance of attractive
polarization, screening via the random phase approximation,
intra-ring electron-hole attractive corrections to screening,
attraction from the virtual positronium block, and repulsion
from the positron-hole block.

Table 1 compares the scattering lengths extracted from the s-
wave phase shifts with other theoretical and experimental results.
The scattering length increases along the noble gas atom
sequence. The results of the fits to Eqs. 5a–d all agree within
5%. For neon and krypton, we observe very good agreement
(notably closer than the previous B-spline result) with the
convergent close-coupling (CCC) calculations [58]. Otherwise,
our present results tend to be of larger magnitude than other
theoretical predictions, including the previous many-body theory
calculations [16]. The scattering length of argon is in better
agreement (and within the error bars) with the experimental
result [59], while the result for krypton is of slightly larger
magnitude but within error bars of the measurement [60].

Although it is more illuminating to compare the results of the
different self-energy approximations at the level of phase shifts,
in panels A–D in Figure 5, for completeness, we also show the s-,
p-, and d-wave partial-wave contributions to the elastic scattering
cross section for He and their sum, using different
approximations and corresponding to the phase shift results in
Figure 4A–C. The HF s-wave cross section stands out as weakly
energy-dependent and much larger than those calculated with
higher-order approximations. Furthermore, one can see that the
effect of the virtual positronium diagram with respect to Σ(2) or
BSE is to increase the s-wave cross section at energies below
approximately 2.5 eV and decrease it above that threshold. For p-
and d-waves, the cross sections closely mirror the phase shift data
in Figures 4B, C. Our total elastic scattering cross sections for

He–Kr are compared with previous results in Figure 5E,
Figure 6–8, respectively. Of the theoretical reference data, our
results are in very good overall agreement with, although slightly
larger at small energy than, the previous B-spline MBT method
[16]. For He and Ne, there is also close agreement with recent
experimental measurements of [70, 75], which are recommended
as the best in recent reviews [78, 79]. It should be noted that the
Ramsauer–Townsend minimum, which is very prominent in He
and Ne, is not visible in Ar and Kr. This is due to the shift of the
minimum in the s-wave scattering cross section toward higher
energies, where it combines with p and d partial wave
contributions to produce a characteristic plateau in the cross
section, which stretches from approximately 2 eV to 8–10 eV. For
Ar, the present MBT results are very similar to the previous
B-spline MBT, although slightly larger at small energy, and in
good agreement with the CCC calculations [58] and more recent
measurements of Refs. [59] and [70]. For Kr, the present results
are in good agreement with the measurements of [77] at small
energy and in good agreement with the CCC calculations. At the
larger energies, where the higher partial waves contribute, our
calculations are likely to be underconverged compared with the
atomic B-spline MBT calculations, and thus underestimate
experiment.

3.2 Positron annihilation on noble gas atoms

Figure 9 shows Zeff calculated for s-wave positron on He using
the zeroth-order annihilation vertex [setting the enhancement
factor γi = 1 in Eq. 8] for different approximations of the positron
Dyson wave function: calculated at HF, Σ(2) and Σ2+Γ from the
present Gaussian-based approach and the previous B-spline
MBT approach. The HF results are in excellent agreement,
confirming the veracity of the Gaussian basis combined with
shifted pseudostate method (including the use of density fitting
for the integrals, as described previously). The Σ(2) and Σ2+Γ

annihilation rates are in good agreement, although the
Gaussian-basis results are slightly smaller than the B-spline
results, mirroring what was found previously for the phase
shifts. Regardless, we can here assess the relative effect of the
higher-order diagrams on Zeff.

TABLE 2 Annihilation rates Zeff both at room temperature and thermally averaged for noble gas atoms at the ΣBSE+Γ+Λ level of theory, using enhancement factors to
account for the short-range electron–positron attraction, compared with other theories and experiments.

Atom Zeff(kth)a �Zeff
a Other theories Experiment

He 4.08 4.08 3.79b, 3.88c, and 3.95d 3.94 ± 0.02e

Ne 7.28 7.28 5.58b and 6.98f 5.99 ± 0.08e

Ar 30.9 31.4 26.0b, 30.5f, 44.3d, and 31.0d 26.77e and 33.8g

Kr 68.8 74.5 66.1b and 56.3f 65.7 ± 0.3e and 90.1g

aFitting parameters (F, κ, B, and A) in Eq. 9 are (0.50, 0.45, 1.71, and 0.003) for He; (0.55, 0.35, 2.94, and 0.004) for Ne; (0.48, 0.12, 3.45, and 0.02) for Ar; and (0.46, 0.07, 4.31, and 0.002) for Kr.
bB-spline [16].
cKohn variational calculations [80].
dModel potential [42].
eDense gas experiment He, Ne, Ar [81], and Kr [82].
fPolarized orbital calculations Ne [54], Ar [55], and Kr [56].
gPositron trap-based experiment [83].
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Figures 10–13 show the s-, p-, and d-wave partial-wave
contributions to the total momentum-dependent positron
annihilation rate Zeff for the sequence He–Kr. It should be noted
that at low-positron momenta k, the s-wave contribution always
dominates and the annihilation rates increase as one moves along
the noble-gas sequence. The second-order diagram Σ(2) provides the
largest contribution to the s-wave Zeff at low momenta for all atoms
except for krypton. In all atoms except for helium, the BSE
approximation lowers Σ(2) Zeff due to screening of electron-hole
interactions. For helium p- and d-waves, the higher-order MBT
diagrams modify Zeff only slightly. The virtual positronium diagram
increases the annihilation rates significantly, and it becomes more
important as the atom size increases. In argon and krypton, it
contributes more to low-energy Zeff than the second-order Σ(2)

diagram (see [16] for more details). Finally, the positron-hole
ladder series diagram decreases Zeff in all cases. We found that
(static) screening of the ladder diagrams has a negligible effect on
the Zeff results. Specifically, using dressed instead of bare Coulomb
interactions in the ladders results in < 1% decrease in �Zeff for He
and Ne, and 6% and 10% decrease for Ar and Kr, respectively.
However, using dressed (GW) energies instead of HF energies in
the screening kernel mostly cancels out these changes (to within
2%). When compared with the previous B-spline results, our s-
wave results are noticeably larger for all of the atoms. The opposite
is true for d-wave and p-wave results (with the exception of neon).
This is reflected in the total Zeff results, with the current MBT
results being higher at low k, but B-spline being higher as k
increases (with the exception of neon, where the difference
between the s-wave results are too much for the additional
partial waves to overcome). When compared with the semi-
empirical results of Ref. [84], He and Ne match the shape well
but are noticeably larger (5% for He and 20% for Ne), Ar stays
within 15%, and Kr matches the shape well but is about 25% lower.

Table 2 shows the values of Zeff at room temperature (k = 0.053
a.u.) and thermally averaged values using the fit in Eq. 9 for our
best calculation (BSE + Γ + Λ) compared with the previous results.
Overall, our thermalized Zeff results tend to be higher than the
previous theoretical data. Notably, the agreement with previous
MBT results [16] is worse than in the case of phase shift results. This
could be due to the (energy-dependent) enhancement factors that
approximate the annihilation vertex correction. We note that a
proper ab initio description of the annihilation vertex is beyond
current capabilities of our approach. The calculated thermally
averaged annihilation rate �Zeff is in excellent accord with a
previous measurement of [81] for He (within 2.8%), while for
neon, argon, and krypton, we calculate �Zeff values that are 20%,
16%, and 12% larger than measurements of [81, 82], respectively.
However, our �Zeff results for Ar and Kr are lower than positron trap
measurements of [83] by 8% and 18%, respectively.

4 Summary

Many-body theory calculations of positron scattering and
annihilation in the noble gas atoms have been performed, using
a Gaussian-basis approach implemented in the
EXCITON+ program [32] combined with the recent shifted
pseudostate method of [42]. The veracity of the EXCITON+

code was confirmed by comparing the scattering phase shifts
calculated using bare polarization, and additionally including
virtual positronium formation, with the previous atomic
B-spline MBT method [16]. The previous B-spline approach
included self-energy diagrams up to third order and
additionally the infinite ladder series of electron–positron
interactions that describe the virtual positronium contribution
to the positron–atom correlation potential. We considered the
relative effects of higher-order diagrams, going beyond the
previous B-spline approach, including e.g., the infinite random-
phase series of ring diagrams, dressed with intra-ring electron hole
interactions, known as GW@BSE, calculated by solving the
Bethe–Salpeter equation for the electron-hole propagator. We
found that the screening of the infinite series of ring diagrams
(random-phase approximation) was compensated by the electron-
hole intra-ring attraction corrections (BSE) to it. We also found
that using screened Coulomb interactions in the ladder series for
the virtual positronium contribution and positron-hole
interactions had negligible effects. The importance of the
electron-hole intra-ring attraction leads to phase shifts that
are larger than those calculated in the B-spline approach for
all the atoms considered. For Ne and Kr, our calculated scattering
length is in better agreement with the CCC [58] calculations than
the previous B-spline MBT results, and for Ar, we find a
scattering length in better agreement with the experiment, and
�Zeff in better agreement with the trap-based measurement [83].
For Kr, our �Zeff is larger than the previous B-spline calculation
and dense gas experiment [81] but is closer to the trap-based
measurement [83]. Overall, as the various higher-order diagrams
act to somewhat compensate, our results for the scattering
lengths and Zeff are in reasonable agreement with the previous
B-spline values.

Ultimately, the spherical symmetry of the positron–atom
problem is better suited for the B-spline approach, in which
angular integrations can be carried out analytically. The present
study, however, has demonstrated that the strong positron–atom
and positron–electron many-body correlations can be described
via a Gaussian-basis approach. The importance of the latter is
that it can be used to calculate positron scattering and
annihilation on molecules, clusters, and condensed matter, the
multicentered nature of which makes a single-centered B-spline
basis unsuitable.
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