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The fractional-order nonlinear Gardner and Cahn–Hilliard equations are often
used to model ultra-short burst beams of light, complex fields of optics, photonic
transmission systems, ions, and other fields of mathematical physics and
engineering. This study has two main objectives. First, the main objective of
this investigation is to solve the fractional-order nonlinear Gardner and
Cahn–Hilliard equations by using the modified auxiliary equation method,
which is not found in the literature. Second, the exact and approximate
solutions of these equations are obtained by utilizing the fractional
conformable residual power series algorithm and the modified auxiliary
equation method. For the analytical and numerical solutions to two equations,
we employ two separate techniques and establish consistency between the
precise answers that are derived and the compatible numerical solution. To
the best of our knowledge, this method of solving equations has never been
investigated in this manner. The 2D and 3D contours have been defined using
appropriate parametric values to support the physical compatibility of the results.
The assessed findings suggested that the approach used in this study to recover
inclusive and standard solutions is approachable, efficient, and faster in computing
and can be considered a useful tool in resolving more complex phenomena that
arise in the field of engineering, mathematical physics, and optical fiber.
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1 Introduction

In complicated areas of fields that can be modeled by various
types of partial differential equations, many linear and nonlinear
solutions appear. The nonlinear partial differential equations
(NLPDEs) are crucial for studying a variety of issues.
Understanding virtually nonlinear partial differential equations
requires an effort to determine precise solutions to nonlinear
equations [1–3]. Fractional calculus, which is the study of
integrals and derivatives of any arbitrary real or complex order,
has gained significant recognition over the past 30 years or so largely
because of its well-established applications in numerous and varied
disciplines of technical knowledge [4].

Fractional differential equations have received considerable
attention over the past 20 years as a result of their capacity to
accurately reproduce a broad range of events in a variety of

scientific and technical fields. In science and engineering,
fractional differential equations can be used to represent a
variety of physical applications [5]. Fractional differential
equations have been used to tackle numerous engineering and
scientific problems [6]. The differential equation in fractional
nonlinear partial differential equations (FNLPDEs) has
nonlinear variables which create complex behaviors and
phenomena not seen in linear equations. Complex patterns,
chaotic dynamics, solitons, and shocks can all occur as a
result of nonlinearity. The interaction between nonlinearity
and fractional derivatives makes it particularly difficult to
comprehend and analyze the dynamics of FNLPDEs.

The usage of fractional differential equations (FDEs) is
widespread throughout many scientific disciplines due to their
various applications in physics and engineering. Fractional
partial differential equations (FPDEs) have grown in

TABLE 1 Comparison of analytical solutions via the MSSE technique and numerical solutions computed via the modified VI technique for the model under
investigation.

Iteration Analytical Numerical Absolute error Relative error

1 6.2 23 17 2.8333

2 2.2 11 9 4.5

3 −19.2 −22 3 0.15789

4 −75.2 −94 19 0.25333

5 −190.2 −229 39 0.20526

6 −394.2 −457 63 0.1599

7 −723.2 −814 91 0.12586

8 −1219.2 −1342 123 0.1009

9 −1930.2 −2089 159 0.082383

21 −52894.2 −53797 903 0.017072

22 −63498.2 −64489 991 0.015607

23 −75619.2 −76702 1083 0.014322

24 −89395.2 −90574 1179 0.013189

25 −1.0497e + 05 −1.0625e + 05 1279 0.012184

26 −1.2249e + 05 −1.2388e + 05 1383 0.01129

27 −1.4212e + 05 −1.4361e + 05 1491 0.010491

28 −1.6402e + 05 −1.6562e + 05 1603 0.0097733

29 −1.8835e + 05 −1.9007e + 05 1719 0.0091266

30 −2.1529e + 05 −2.1713e + 05 1839 0.008542

31 −2.4502e + 05 −2.4698e + 05 1963 0.0080116

32 −2.7772e + 05 −2.7981e + 05 2091 0.0075291

33 −3.1359e + 05 −3.1582e + 05 2,223 0.0070888

34 −3.5283e + 05 −3.5519e + 05 2,359 0.0066859

35 −3.9564e + 05 −3.9813e + 05 2,499 0.0063164

36 −4.4222e + 05 −4.4486e + 05 2,643 0.0059767

37 −4.928e + 05 −4.9559e + 05 2,791 0.0056636
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significance and reputation among FDEs in recent years as a
result of their demonstrated utility in a wide range of extremely
diverse scientific and engineering disciplines [7]. Many fractional
types of equations are solved using novel transform [8] and zz
transform with the Mittag-Leffler kernel [9]. Since they cannot be
solved precisely, the majority of nonlinear FDEs require
approximate and numerical solutions such as the Adomian
decomposition method [10], spectral collocation method [11],
Euler method and homotopy analysis method [12], Laplace

residual power series [13], variational iteration transform
method [14], and homotopy analysis method [15]. FNLPDEs
find applications in various cutting-edge areas of research. For
example, in materials science, FNLPDEs are used to model
diffusion and transport in heterogeneous media. In finance,
they are employed to describe complex price dynamics and
risk management. In biology, FNLPDEs are utilized to study
the spread of diseases and population dynamics. The unique
combination of nonlinearity and fractional derivatives in

FIGURE 1
Physical depiction of v1,1 at σ = 0.4, θ = −1.4, and η = 0.5.
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FNLPDEs provides a versatile framework for modeling these
emerging phenomena.

One of the most recent methods developed in this field is the
auxiliary equation method proposed by Khater [16]. Although
this approach was employed in numerous research studies [17], a
modified auxiliary equation approach (also known as the
modified Khater method) was developed to get precise
traveling wave solutions. The soliton and other solitary wave
solutions of the equations are obtained in this research paper
using the modified auxiliary equation approach. It enhances the

auxiliary equation method. This article describes a method that
modifies the auxiliary differential equation methodology for
solving nonlinear partial differential equations [18]. Over the
past 30 years, fresh and state-of-the-art methods for investigating
nonlinear differential systems with fractional-order equations
have been created, along with new computer methods and
symbolic programming. Analytical methodologies, new
mathematical theories, and computational systems that enable
us to study nonlinear complicated phenomena have triggered this
revolution in understanding. Furthermore, the sub-equation

FIGURE 2
Physical depiction of v1,2 at σ = 0.34, θ = −2.4, and η = 1.5.
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method [19], modified Kudryashov method [20], and
F-expansion method [21–23] are just a few of the methods
that have been used.

A semi-approximate approach called numerical simulations
was developed specifically for addressing challenging nonlinear
temporal FPDEs that can appear in a variety of scientific fields.
This approach, which was devised and developed by Abu Arqub
for the study of fuzzy differential equations, is used for
generalizing the expansion of the Taylor series of arbitrary
order and minimizing the residual error identified to detect

the unknown compounds. This method has the ability to
immediately solve nonlinear terms without any constraints,
transformations, linearizations, or changes to the models. As a
result, it has attracted considerable attention and has become an
energizing focus of the research community [24, 25].

The Gardner equation [26] is developed to illustrate the
description of solitary inner waves in shallow water and combines
the KdV and modified KdV equations. The Gardner equation is
frequently used in various branches of physics, such as plasma
theories, quantum area theories, fluid mechanics, and physics [27].

FIGURE 3
Physical depiction of v1,3 at σ = −0.4, θ = 0.4, and η = −0.5.
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Numerous wave phenomena in the plasma and solid phases are also
covered [28]. We recognize the conformable fractional-order
nonlinear Gardner (FG) equation in the following form:

∂αt w x, t( ) + 6 w − λ2w2( ) ∂w
∂x

− ∂3w

∂x3
� 0, (1)

with an initial condition

w x, 0( ) � 1
2
+ 1
2
tanh

x

2
( ),

and boundary condition

w 0, t( ) � 1
2
+ 1
2
tanh

−t
2

( ),
w 1, t( ) � 1

2
+ 1
2
tanh

1 − t

2
( ).

A binary alloy’s phase separation under a critical temperature is
illustrated by the Cahn–Hilliard equation, which was first proposed
by Cahn and Hilliard in 1958 [29]. The spinodal decomposition,

FIGURE 4
Physical depiction of v1,4 at σ = 0.44, θ = −0.54, and η = 2.5.
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phase separation, and phase ordering dynamics are three fascinating
physical phenomena that depend critically on this equation [30]. In
this framework, the fractional Cahn–Hilliard (FCH) equation [31] is
expressed as follows:

∂αt w x, t( ) − ∂w

∂x
− 6w

∂w

∂x
( )2

− 3w2 − 1( ) ∂2w
∂x2

+ ∂4w

∂x4
� 0, (2)

with an initial condition

w x, 0( ) � tanh

�
2

√
x( )

2
( ),

and boundary condition

w 0, t( ) � tanh

�
2

√
t( )

2
( ),

w 1, t( ) � tanh

�
2

√
1 + t( )
2

( ).

FIGURE 5
Physical depiction of v1,5 at σ = 1.4, θ = −1.24, and η = 1.4.
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The methodology of this paper includes the following: Section 2
discusses the modified auxiliary equation method (MAEM) and also
solves the equations. Section 3 discusses the semi-analytical fractional
conformable residual power series algorithm and contains an explanation
of the system to a solution. Section 4 examines the stability property of the
equations. Section 5 contains the discussion and results of the system to
illustrate the approximate delicacy. Section 6 presents the conclusion.

Preliminaries

Definition 1: The α-order fractional conformable derivative of a
function w(x, t) of order αϵ(0, 1) is given as

∂αw t( )
∂t

� lim
ϵ→0

w ϵt1−α + t( ) − w t( )
ϵ , t> 0.

Moreover, if the previous limit exists at a point s; s > 0 in (0, s),
then w(t) is called α-differentiable so that ∂αw(s)

∂t � limt→s+
∂αw(t)

∂t .

Definition 2: The multiple time-fractional series (MTFS)
expansion t0 > 0 is given as

∑∞
i�0

ζ i x( ) t − t0( )iα � ζ0 x( ) + ζ1 x( ) t − t0( )α + . . . ,

FIGURE 6
Physical depiction of v2,1 at σ = −0.4, θ = −1.4, and η = −0.5.
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where ϵ(n − 1, n), tϵ(t0, t0 + r1/α), r > 0, r1/α is a radius of
convergence and ζi(x) indicates unknown coefficients of the
expansion. When α = 1, then the expansion in Definition
2 reduces to the usual series expansion at t0 > 0, with a radius
of convergence r that converges uniformly on |t − t0| < r. Many
other definitions are provided in [32].

2 Methodology

2.1 Modified auxiliary equation method

First, we introduce the MAEM [33]. Let us consider FNLPDEs.

F v, vαt , vxx, , vxt, , . . .( ) � 0, (3)

FIGURE 7
Physical depiction of v2,2 at σ = 0.74, θ = −1.74, and η = 0.75.
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where F is the function’s polynomial. In Eq. 3, v is a function of the
spatial variables x and t and represents the propagation of the wave
profile. To modify the following, Eq. 3 is transformed into an
ordinary differential equation as

v � V η( ), η � x − vtα

α
, (4)

where α represents arbitrary constants. Eq. 3 is converted into an
ODE of the kind using transforms from Eq. 4.

M V,V′, V″, . . .( ) � 0, (5)
whereM stands for the polynomial involving the function V and its
regular derivatives V′ = dV/dη. The solution to Eq. 5 is

V η( ) � a0 +∑m
i�1

aiL
iϕ η( ) + a−i L( )−iϕ η( )( ), (6)

where a0 and ai are unknown constants. Function ϕ′(η) is
expressed as

FIGURE 8
Physical depiction of v2,3 at σ = 1.4, θ = −3.4, and η = 3.5.
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ϕ′ η( ) � θLϕ η( ) + ϑL−ϕ η( ) + σ

In L( ) , (7)

where σ, θ, and ϑ are arbitrary constants and L≠ 1, L> 0. On the basis of
the (HBP), we may calculateN. The formal solution to Eq. 5 is obtained
by replacing the N in Eq. 6. By substituting the ODE Eq. 7 formal
solution into Eq. 5 and setting the coefficients of Liϕ(η), i = 0, ±1, ±2 . . . to
zero, the system of linear equations is produced. The unknown
constants a0, ai, and a−i can be found by solving this system of

equations. The following solutions for auxiliary Eq. 7 are taken into
consideration as follows:

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

tan 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

, (8)
or

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

cot 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

. (9)

FIGURE 9
Physical depiction of v2,4 at σ = −0.3, θ = −1.3, and η = 0.35.
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Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

tanh 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

, (10)
or

Lϕ η( ) � −σ + ��������−σ2 + 4θϑ
√

coth 1
2

��������−σ2 + 4θϑ
√

η( )
2ϑ

. (11)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

Lϕ η( ) � −ση + 2
2ϑη

. (12)

By substituting the unknown values for a0, ai, a−i and the
aforementioned cases into Eq. 6, using transformations from Eq.
4, it is possible to obtain the closed-form solutions to Eq. 1 and Eq. 2.

FIGURE 10
Physical depiction of v2,5 at σ = 0.4, θ = −1.4, and η = 0.5. (A) is 3-D plot, (B) is 2-D plot, and (C) is contour plot.
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2.1.1 Application to the fractional-order nonlinear
Gardner equation

The governing Eq. 1 transforms into the following ODE
using the following conformable derivative transformation
from Eq. 4:

−vV′ + V 3( ) + 6 V − λ2V2( )V′ � 0,

−vV + V″ − 2λ2V3 + 3V2 � 0. (13)
By changing the degree of the highest-order derivative term and

nonlinear with HBP, N = 1 is calculated. According to the formal
solution in Eq. 13 derived from Eq. 6, we obtain

V η( ) � a0 + a1L
ϕ η( ) + a−1

Lϕ η( ). (14)
When Eq. 14 is substituted with Eq. 7 in Eq. 13, the coefficients

of powers of Liϕ(η), i = 0, ±1, ±2 . . . are set to zero, resulting in a linear
equation system. The following sets of solutions are found by using
Mathematica software.
Set 1:

a1 � 0, a−1 � ϑ

λ
, a0 � 0, v � 1

λ2
, θ � 0, σ � −1

λ
. (15)

Set 2:

a1 � − 1

16λ3ϑ
, a−1 � −ϑ

λ
, a0 � 1

2λ2
, v � 1

λ2
, θ � − 1

16λ2ϑ
, σ � 0. (16)

Set 3:

a1 � 1

16λ3ϑ
, a−1 � ϑ

λ
, a0 � 1

2λ2
, v � 1

λ2
, θ � − 1

16λ2ϑ
, σ � 0. (17)

Set 4:

a1 � 0, a−1 � −ϑ
λ
, a0 � 1

λ2
, v � 1

λ2
, θ � 0, σ � −1

λ
. (18)

Set 5:

a1 � 0, a−1 � ϑ

λ
, a0 � 1

λ2
, v � 1

λ2
, θ � 0, σ � 1

λ
. (19)

Family 1. Solutions to Eq. 1 are derived by substituting the
values from Set 1 into Eq. 15.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

v1,1 � 2ϑ2

λ
�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( ), (20)

or

v1,2 � − 2ϑ2

λ
�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( ). (21)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v1,3 � − 2ϑ2

λ
�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( ), (22)

or

v1,4 � − 2ϑ2

λ
�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( ). (23)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v1,5 � −
2ϑ2 x − tα

αλ2
( )

λ 2 −
x − tα

αλ2

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

FIGURE 11
Comparison of error terms between numerical and analytical results by using values of Table 1.
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Family 2. Solutions to Eq. 1 are derived by substituting the
values from Set 2 into Eq. 16.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

v1,6 � 1

2λ2
−

�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ

32λ3ϑ2

− 2ϑ2

λ
�������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( ),
(25)

or

v1,7 � 1

2λ2
+

�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( ).
(26)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v1,8 � 1

2λ2
+

�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( ),
(27)

or

v1,9 � 1

2λ2
+

�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ

32λ3ϑ2

+ 2ϑ2

λ
�������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( ).
(28)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v1,10 � 1

2λ2
+

2ϑ2 x − tα

αλ2
( )

λ σ x − tα

αλ2
( ) + 2( ) +

σ x − tα

αλ2
( ) + 2

32λ3ϑ2 x − tα

αλ2
( ). (29)

2.1.2 Application to the fractional-order nonlinear
Cahn–Hilliard equation

The governing Eq. 2 transforms into the following ODE using
the traveling wave transformations from Eq. 4:

−vV′ + V 4( ) − 3V2 − 1( )V″ − 6VV′2 − V′ � 0.

Then, integrating the aforementioned equation, we obtain

−v − 1( )V + V 3( ) + 1 − 3V2( )V′ � 0. (30)
By adjusting the highest-order derivative term’s degree and

nonlinear using homogeneous balance principal, N = 1 is calculated.
According to the formal solution of Eq. 30 derived fromEq. 6, we obtain

V η( ) � a0 + a1L
ϕ η( ) + a−1

Lϕ η( ). (31)

When Eq. 31 is substituted with Eq. 7 into Eq. 30, the coefficients of
powers of Liϕ(η), i = 0, ±1, ±2 . . . are set to zero, resulting in a linear
equation system. The following sets of solutions are found using
Mathematica software.
Set 1:

a1 � −5
�
3

√
32ϑ

, a−1 � − 2ϑ�
3

√ , a0 � 1
4

�
3

√ , v � −1, σ � 0, θ � − 15
64ϑ

. (32)

Set 2:

a1 � 0, a−1 � 2ϑ�
3

√ , a0 � 1
27

4
�
3

√ − 5
��
30

√( ), v � −1,

σ � 1
9

5 − 4
��
10

√( ), θ � 0.
(33)

FIGURE 12
Comparison between numerical and analytical results by using values of Table 1.
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Set 3:

a1 � 5
�
3

√
32ϑ

, a−1 � 2ϑ�
3

√ , a0 � − 1
4

�
3

√ , v � −1, σ � 0, θ � − 15
64ϑ

.

Set 4:

a1 � 0, a−1 � 2ϑ�
3

√ , a0 � 1
27

4
�
3

√ + 5
��
30

√( ), v � −1,

σ � 1
9

4
��
10

√ + 5( ), θ � 0.

Set 5:

a1 � 0, a−1 � − 2ϑ�
3

√ , a0 � 1
27

5
��
30

√ − 4
�
3

√( ),
v � −1, σ � 1

9
5 − 4

��
10

√( ), θ � 0.

Family 1. Solutions to Eq. 2 are derived by substituting the
values from Set 1 into Eq. 32.

Case I: When ϑ ≠ 0, σ2 − 4θϑ < 0,

FIGURE 13
Physical depiction of H in Eq. 92 under σ = 0.5, v = 2.4, λ = 1.4, and ϑ = 0.4.
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v2,1 � 1
4

�
3

√ − 4ϑ2�
3

√ �������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( )
−
5

�
3

√ �������
4θϑ − σ2

√
tan

1
2
η

�������
4θϑ − σ2

√( ) − σ( )
64ϑ2

,

(34)

or

v2,2 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
cot

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

.

(35)

Case II: When ϑ ≠ 0, σ2 − 4θϑ > 0,

v2,3 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
tanh

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

,

(36)

or

v2,4 � 1
4

�
3

√ + 4ϑ2�
3

√ �������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
+
5

�
3

√ �������
4θϑ − σ2

√
coth

1
2
η

�������
4θϑ − σ2

√( ) + σ( )
64ϑ2

.

(37)

Case III: When ϑ ≠ 0, σ2 − 4θϑ = 0,

v2,5 � 1
4

�
3

√ + 4ηϑ2�
3

√
ησ + 2( ) + 5

�
3

√
ησ + 2( )

64ηϑ2
. (38)

3 Numerical investigation using the
fractional conformable residual power
series algorithm

In this section, a newly developed approach is utilized to
produce accurate approximations of the time-fractional equations
supplied with a given initial condition inside a finite spatiotemporal
domain [34]. This approach uses a newly designed algorithm. Let us
consider the following nonlinear time-fractional equations to
achieve our goal:

∂αt w x, t( ) +N w,w2, wx, wxx( ) + . . . � 0, (39)
with an initial condition

w x, 0( ) � w0 x( ). (40)
The numerical simulation that is being provided assumes that

the solution to Eqs 39, 40 has a multiple time-fractional series
(MTFS) expansion of approximately t0 = 0 of the following form:

w x, t( ) � ∑m
i�1

tiαζ i x( )
i!αi

. (41)

The mth truncated solution of w(x, t) of Eq. 40 is defined as

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

. (42)

Initially, the residual error Rs(x, t) of Eqs 39, 40 is given as

Rs x, t( ) � ∂αt w x, t( ) +N w,w2, wx, wxx( ) + . . . . (43)
The Rs(x, t) mth residual error should be truncated so that

Rm
s x, t( ) � ∂αt wm x, t( ) +N wm,w

2
m, wx,m, wxx,m( ) + . . . . (44)

By replacing the mth truncated residual error in Eq. 44 with the
truncated MTFS solution in Eq. 42, we obtain

∂α m−1( )
t R2

s x, t( ) � ∂mα
t ζ0 x( ) +∑m

i�1

tiαζ i x( )
i!αi

⎛⎝ ⎞⎠
+N ∑m

i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

N ∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠2

,⎛⎝
∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠
x

,

∑m
i�1

tiαζ i x( )
i!αi

+ ζ0 x( )⎛⎝ ⎞⎠
xx

⎞⎠ + . . . .

(45)

To make the major steps of the provided FCRPSA in
determining the m-term truncated solution’s unknown
coefficients ζi(x) more clear (Eq. 42), set m = 1 and equate
R1
s(x, t) to zero at t = 0. Therefore, ζ1(x) is obtained. Thereafter,

set m = 2, apply operator ∂αt on both sides of the resulting relevant
equation, and solve ∂αtR2

s(x, 0). Then, ζ2(x) is also obtained. The
unknown coefficient ζi(x) of the MTFS expansion would be
discovered if we continue solving in this manner (Eq. 42).

3.1 Numerical simulation of the fractional-
order nonlinear Gardner equation

Let us consider the equation

Dα
t x, t( ) + 6 w − λ2w2( ) ∂w

∂x
− ∂3w

∂x3
� 0, (46)

with an initial condition

w 0, t( ) � 1
2
tanh

x

2
( ) + 1

2
. (47)

We use the fractional conformable residual power series algorithm
to solve this equation. For this, the m-truncated term is taken as

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

, (48)

and the residual error function is

Rm
s x, t( ) � ∂αwm

∂t
+ 6wm − λ2w2

m

∂wm

∂x
+ ∂3wm

∂x3
. (49)

For m = 0,

w0 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
.
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For m = 1, the truncated term is

w1 x, t( ) � ζ0 x( ) + ζ1 x( )tα
α

, (50)

ζ0 x( ) � w0 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
, (51)

w1 x, t( ) � 1
2
tanh

x

2
( ) + 1

2
+ ζ1 x( )tα

α
. (52)

Therefore, the first residual error function is

R1
s x, t( ) � ∂αw1

∂t
+ 6w1 − λ2w2

1

∂w1

∂x
+ ∂3w1

∂x3
. (53)

Substituting Eq. 50 into Eq. 53,we obtain

R1
s x, t( ) � 6

tαζ1 x( )
α

+ ζ0 x( )( ) − λ2
tαζ1 x( )

α
+ ζ0 x( )( )2( )

tαζ1′ x( )
α

+ ζ0′ x( )( ) + tαζ31 x( )
α

+ ζ30 x( )( ) + ζ1 x( ).
(54)

Thus, R1
s(x, t) at t = 0 results in

6 ζ0 x( ) − λ2ζ0 x( )2( )ζ0′ x( ) + ζ30 x( ) + ζ1 x( ) � 0, (55)
ζ1 x( ) � 1

8
sech4

x

2
( ) 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ).

(56)
So, the first series solution w1(x, t) is provided by

w1 x, t( ) � 1
2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( )

× 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ) tα
α
. (57)

For m = 2, the truncated term is

w2 x, t( ) � ζ2 x( )t2α
2α2

+ ζ1 x( )tα
α

+ ζ0 x( ), (58)

w2 x, t( ) � 1
2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( )

× 3 λ2 − 1( )sinh x( ) + 3λ2 − 4( )cosh x( ) − 1( ) tα
α

+ ζ2 x( )t2α
2α2

, (59)

and the second residual error function is obtained by substituting
Eq. 58 into Eq. 59

R2
s x, t( ) � ∂α

∂t

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
+ 6

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )(
−λ2 t2αζ2 x( )

2α2
+ tαζ1 x( )

α
+ ζ0 x( )( )2)

∂2

∂x2

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
+ ∂3

∂x3

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( ),

(60)

R2
s x, t( ) � tαζ2 x( )

α
+ ζ1 x( )( )

+ 6
t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )(
−6λ2 t2αζ2 x( )

2α2
+ tαζ1 x( )

α
+ ζ0 x( )( )2)

t2αζ2′ x( )
2α2

+ tαζ1′ x( )
α

+ ζ0′ x( )( )
+ t2αζ32 x( )

2α2
+ tαζ31 x( )

α
+ ζ30 x( )( ).

(61)

Then, dα/dt is applied on both sides of Eq. 61 and thus at t = 0, we
obtain

−ζ31 x( )( ) ζ2 x( ) � 12λ2ζ0 x( )ζ1 x( )ζ0′ x( ) + 6λ2ζ0 x( )2ζ1′ x( )(
−6ζ1 x( )ζ0′ x( ) − 6ζ0 x( )ζ1′ x( )), (62)

ζ2 x( ) � − 1
64

sech7
x

2
( ) 18λ4 cosh

5x
2

( ) − 42λ2 cosh
5x
2

( )(
−24 λ2 − 1( )cosh x

2
( )) − 1

64
sech7 x

2
( )

−6 15λ4 − 37λ2 + 22( )cosh 3x
2

( ) + 24 cosh
5x
2

( )( )
− 1
64

sech7
x

2
( ) −204λ2 sinh x

2
( ) + 222λ2 sinh

3x
2

( )(
+ 206 sinh

x

2
( ) − 129 sinh

3x
2

( )) − 1
64

sech7 x

2
( )

−90λ4 sinh 3x
2

( ) + 18λ4 sinh
5x
2

( ) − 42λ2 sinh
5x
2

( )(
+25 sinh 5x

2
( )),

(63)
w2 x, t( ) � 1

2
+ 1
2
tanh

x

2
( ) + 1

8
sech4

x

2
( ) 3 λ2 − 1( )sinh x( )(

+ 3λ2 − 4( )cosh x( ) − 1) t
α

α
− 1
64

sech7 x

2
( )

18λ4 cosh
5x
2

( ) − 42λ2 cosh
5x
2

( )(
−24 λ2 − 1( )cosh x

2
( )) − 1

64
sech7 x

2
( )

−6 15λ4 − 37λ2 + 22( )cosh 3x
2

( ) + 24 cosh
5x
2

( )( )
− 1
64

sech7 x

2
( ) −204λ2 sinh x

2
( ) + 222λ2 sinh

3x
2

( )(
+ 206 sinh

x

2
( ) − 129 sinh

3x
2

( )) − 1
64

sech7 x

2
( )

( − 90λ4 sinh
3x
2

( ) + 18λ4 sinh
5x
2

( ) − 42λ2 sinh
5x
2

( )
+ 25 sinh

5x
2

( )) t2α

2α2
.

(64)
Similarly, through this process, we obtain
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wn x,t( ) � 1
2
+ 1
2
tanh

x

2
( )+ 1

8
sech4

x

2
( ) 3 λ2 −1( )sinh x( )(

+ 3λ2 −4( )cosh x( )−1)t
α

α
− 1
64

sech7
x

2
( )

18λ4 cosh
5x
2

( )−42λ2 cosh 5x
2

( )−24 λ2 −1( )cosh x

2
( )( )

− 1
64

sech7 x

2
( )(−6 15λ4 −37λ2 +22( )cosh 3x

2
( )

+24cosh 5x
2

( ))− 1
64

sech7 x

2
( )(−204λ2 sinh x

2
( )

+222λ2 sinh 3x
2

( )++206sinh x

2
( )) t2α

2α2
+ . . . .

(65)
If α = 1, we obtain the exact solution

w x, t( ) � 1
2
tanh

x − t

2
( ) + 1

2
. (66)

3.2 Numerical simulation of the fractional-
order nonlinear Cahn–Hilliard equation

Let us consider the equation

∂αw

∂t
� ∂w

∂x
− 6w

∂w

∂x
( )2

+ 3w2 − 1( ) ∂2w
∂x2

− ∂4w

∂x4
, (67)

with an initial condition

w x, 0( ) � tanh

�
2

√
x

2
( ). (68)

We use the fractional conformable residual power series algorithm
for solving this equation. For this, the m-truncated term is

wm � ζ0 x( ) +∑m
i�1

tiαζ i x( )
i!αi

, (69)

and the residual error function is

Rm
s x, t( ) � ∂αwm

∂t
− ∂wm

∂x
− 6wm

∂wm

∂x
( )2

− 3w2
m − 1

∂2wm

∂x2
+ ∂4wm

∂x4
.

(70)
For m = 0,

w0 x, t( ) � tanh

�
2

√
x

2
( ).

For m = 1, the truncated term is

w1 x, t( ) � ζ0 x( ) + ζ1 x( )tα
α

, (71)

ζ0 x( ) � w0 x, t( ) � tanh

�
2

√
x

2
( ), (72)

w1 x, t( ) � tanh

�
2

√
x

2
( ) + ζ1 x( )tα

α
. (73)

Therefore, the first residual error function is

R1
s x, t( ) � ∂αw1

∂t
− w1 − 6w1

∂w1

∂x
( )2

− 3w2
1 − 1( ) ∂2w1

∂x2
+ ∂4w1

∂x4
.

(74)
Substituting Eq. 71 into Eq. 74, we obtain

R1
s x, t( ) � ∂α

∂t

ζ1 x( )tα
α

+ ζ0 x( )( ) − ∂

∂x
ζ0 x( ) + ζ1 x( )tα

α
( )

− 6 ζ0 x( ) + ζ1 x( )tα
α

( ) ∂

∂x
ζ0 + ζ1xt

α

α
( )2

− 3 ζ0 x( ) + ζ1xt
α

α
( )2

− 1( ) ∂2

∂x2

ζ1 x( )tα
α

+ ζ0 x( )( )
+ ∂4

∂x4 ζ0 x( ) + ζ1 x( )tα
α

( ).
(75)

Thus, R1
s(x, t) at t = 0,

−6ζ0 x( )ζ0′ x( )2 − 3ζ0 x( )2 − 1( )ζ0″ x( ) − ζ0 x( ) + ζ40 x( ) + ζ1 x( ) � 0,

(76)

ζ1 x( ) � sech2 x�
2

√( )�
2

√ . (77)
Therefore, the first series solution w1(x, t) is provided by

w1 x, t( ) � tanh

�
2

√
x

2
( ) + sech2 x�

2
√( )�
2

√ tα

α
. (78)

For m = 2, the truncated term is

w2 x, t( ) � ζ2 x( )t2α
2α2

+ ζ1 x( )tα
α

+ ζ0 x( ), (79)

w2 x, t( ) � tanh

�
2

√
x

2
( ) + sech2 x�

2
√( )�
2

√ tα

α
+ ζ2 x( )t2α

2α2
. (80)

Substituting Eq. 79 into Eq. 80, the second residual error function is

R2
s x, t( ) � ∂α

∂t

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
− ∂

∂x

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
− 6

t2αζ2 x( )
2α2

+ ζ1xt
α

α
+ ζ0 x( )( )

∂

∂x

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2

− 3
t2αζ2 x( )
2α2

+ ζ1xt
α

α
+ ζ0 x( )( )2

− 1( )
∂2

∂x2

t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
+ ∂4

∂x4

t2αζ2 x( )
2α2

+ ζ1xt
α

α
+ ζ0 x( )( ),

(81)
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R2
s x, t( ) � tαζ2 x( )

α
+ ζ1 x( )( ) − t2αζ2′ x( )

2α2
+ tαζ1′ x( )

α
+ ζ0′ x( )( )

− 6
t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )
t2αζ2′ x( )
2α2

+ tαζ1′ x( )
α

+ ζ0′ x( )( )2

− 3
t2αζ2 x( )
2α2

+ tαζ1 x( )
α

+ ζ0 x( )( )2

− 1( )
t2αζ2″ x( )

2α2
+ tαζ1″ x( )

α
+ ζ0″ x( )( )

+ t2αζ42 x( )
2α2

+ tαζ41 x( )
α

+ ζ40 x( )( ).
(82)

Then, dα/dt is applied on both sides of Eq. 82 and thus at t = 0, we
obtain

ζ2 x( ) � 12ζ0 x( )ζ0′ x( )ζ1′ x( ) + 6ζ1 x( )ζ0′ x( )2 + 3ζ0 x( )2ζ1″ x( )
+ 6ζ1 x( )ζ0 x( )ζ0″ x( ) − ζ1″ x( ) + ζ1 x( ) − ζ41 x( ), (83)

ζ2 x( ) � tanh
x�
2

√( ) −sech2 x�
2

√( )( ) , (84)

w2 x, t( ) �
t2α tanh

x�
2

√( ) −sech2 x�
2

√( )( )
2α2

+
tαsech2

x�
2

√( )�
2

√
α

+ tanh

�
2

√
x

2
( ).

(85)
Similarly, through this process, we obtain

w3 x, t( ) � 1
16

sech6 x�
2

√( ) tanh
x�
2

√( ) �
2

√
sinh 2

�
2

√
x( )( )( )

1
16

sech6
x�
2

√( ) −224 cosh �
2

√
x( ) + 4 cosh 2

�
2

√
x( ) + 492( ) − 4

�
2

√( ),
(86)

wn x, t( ) �
t2α tanh

x�
2

√( ) −sech2 x�
2

√( )( )
2α2

+
tαsech2

x�
2

√( )�
2

√
α

+ tanh

�
2

√
x

2
( ) + 1

16
sech6 x�

2
√( )

tanh
x�
2

√( ) �
2

√
sinh 2

�
2

√
x( ) − 224 cosh

�
2

√
x( )((

+4 cosh 2
�
2

√
x( ) + 492) − 4

�
2

√ ) + . . . .

(87)

If α = 1, we obtain the exact solution

w x, t( ) � tanh

�
2

√
x + t( )
2

( ). (88)

4 Stability analysis

In this section, we examine the stability property [35] for Eqs 1,
2. Understanding the stability of an equilibrium solution may be
gained by linearizing the FNLPDE around it. In order to investigate

the rise or decay of minor perturbations, eigenvalue analysis is
performed on the linearized equation, which has fractional
derivatives. By solving the characteristic equation linked to the
linearized system, the eigenvalues may be found. The equilibrium
is stable if all of the eigenvalues have negative real portions;
otherwise, it is unstable. Nevertheless, it is crucial to keep in
mind that the fractional character of the derivatives makes the
eigenvalue analysis more complicated. A Hamiltonian system is
used to investigate the stability feature of the nonlinear fractional
equations. The Hamiltonian system’s momentum is represented
using the following formula:

H � 1/2∫k

−k
w2 x( ), dx. (89)

Consequently, the condition for the stability of solutions is as
follows:

∂H

∂v
> 0. (90)

For example, we check the stability property for Eq. 24, and we
obtain

H �
2ϑ4

σ − v−10( )( )+ 4
σ v−10( )−2−4 log 10σ+σ −v( )+2( )

σ3
− σ − v+10( )( )+ 4

σ v+10( )−2−4 log 2−σ v+10( )( )
σ3( )

λ2
.

(91)
Therefore,

∂H

∂v
|v � 2 � 1.6> 0. (92)

So, this solution is stable on the interval xϵ[−10, 10]. Similarly,
we can check the stability of other obtained solutions with our novel
technique.

5 Results and discussion

The MAEM and methods for fractional conformable residual
power series are designed particularly to handle fractional equations.
They take into account the special characteristics and behaviors
related to fractional calculus and are designed to operate with
fractional derivatives. These techniques offer specialized tools that
are ideally suited for studying FNLPDEs with fractional-order
derivatives. When compared to other numerical techniques, the
MAEM and fractional conformable residual power series algorithms
can provide computational efficiency. They frequently require
shortening series expansions or solving auxiliary equations, which
can lower the complexity and expense of computing. This benefit
may be especially important when handling complex or
computationally difficult FNLPDEs. Table 1 presents a
comparison of the absolute error |w − w2| of both equations.
These results clearly demonstrate the accuracy and effectiveness
of the numerical technique. The results of the MAEM include the
periodic and singular solutions. Utilizing 3D surface plots, 2D
contour plots, density graphs, and 2D line graphs, the graphical
simulation of a few retrieved solutions is discussed. The graphs are
created for appropriate values of the arbitrary parameters α, λ, and ϑ.
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Figure 1 shows the 3D, 2D, and counterplot graphs at α = 1, λ = 1,
ϑ = −1, and t = 5 of v1,1(x, t). Similarly, Figure 2 shows the 3D, 2D,
and counterplot graphs at α = 1, λ = 1, ϑ = 1, and t = 10, which is a
periodic solitary wave of v1,3(x, t). Figure 3 shows the 3D, 2D, and
counterplot graphs at α = 1, λ = 1, ϑ = −1, and t = 0.5, 1, 1.5 of v1,5(x,
t). Similarly, Figure 4 shows the 3D, 2D, and counterplot graphs at
α = 1 and t = 5 of v1,7(x, t). Figure 5 shows the 3D, 2D, and
counterplot graphs at θ = 1 and ϑ = 0.1 of v2,2(x, t). Similarly,
Figure 6 shows the 3D, 2D, and counterplot graphs at θ = 1 and ϑ =
0.1, which is periodic solitary wave of v2,4(x, t). Figure 7 shows the
3D, 2D, and counterplot graphs at α = 1, which is a singular soliton
solution of v2,5(x, t). Figure 8 shows the 3D, 2D, and counterplot
graphs at θ = 1 and ϑ = 0.1, which is periodic solitary wave of v2,4(x,
t). Figure 9 shows the 3D, 2D, and counterplot graphs at α = 1, which
is a singular soliton solution of v2,5(x, t). Figure 10 shows the 3D, 2D,
and counterplot graphs at θ = 1 and ϑ = 0.1, which is a periodic
solitary wave of v2,4(x, t). Figure 11 shows the comparison of error
terms between numerical and analytical techniques. Figure 12 shows
the comparison between numerical and analytical techniques.
Figure 13 shows the stability analysis of governing equations.
Fundamental mathematical techniques used to describe and
examine real-world occurrences in science and engineering
include trigonometric, hyperbolic, and rational functions. In
order to represent oscillatory motion and periodic phenomena
like waves and tides, trigonometric functions like sine and cosine
are used. Heat conduction, population expansion, and fluid
dynamics are the three areas where hyperbolic functions, such
as hyperbolic sine and cosine, are used to depict exponential
growth and decay. Rational functions, which are polynomial
ratios, have asymptotes, holes, and other graph characteristics
that make them useful for simulating complex systems in
financial analysis, control systems, population dynamics, and
circuit design.

6 Conclusion

The nonlinear fractional Cahn–Hilliard and Gardner
equations have been addressed in this paper using a unique
methodology. This analytical technique is useful for creating
partial differential equations and discovering approximate
solutions under the right initial circumstances. The
effectiveness of the suggested method is also shown by the
precise results obtained utilizing MAEM with a smaller
number of series terms. The application of this method to
two different physical models demonstrates its accuracy and
efficiency in handling fractional nonlinear equations, leading to
stunning and complicated graphics. Additionally, the
approximation series’ quick convergence is noted. We can see
how the graphs change as a result of changing parameter values.
When the calculations and simulations performed in

Mathematica 11 were compared to previous numerical
findings, it became clear that this numerical method is
capable of handling difficult fractional equations in higher
dimensions. The analytical approach used here is also notable
for being straightforward, reliable, and succinct when solving
nonlinear partial differential equations. The overall findings of
the study emphasize the importance of this strategy in
improving our knowledge and management of such difficult
equations.
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