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Placental maturity grading (PMG) is often utilized for evaluating fetal growth and
maternal health. Currently, PMG often relied on the subjective judgment of the
clinician, which is time-consuming and tends to incur a wrong estimation due to
redundancy and repeatability of the process. The existing methods often focus on
designing diverse hand-crafted features or combining deep features and hand-
crafted features to learn a hybrid feature with an SVM for grading the placental
maturity of ultrasound images. Motivated by the dominated performance of end-
to-end convolutional neural networks (CNNs) at diverse medical imaging tasks,
we devise a dilated granularity transformer network for learning multi-scale global
transformer features for boosting PMG. Our network first devises dilated transformer
blocks to learn multi-scale transformer features at each convolutional layer and then
integrates these obtained multi-scale transformer features for predicting the final
result of PMG. We collect 500 ultrasound images to verify our network, and
experimental results show that our network clearly outperforms state-of-the-art
methods on PMG. In the future, we will strive to improve the computational
complexity and generalization ability of deep neural networks for PMG.
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1 Introduction

The placenta, an essential organ for fetal–placental blood circulation, gas exchange,
nutrient supply, and fetal waste elimination, can serve as an immune barrier and minimize
small gestational age (SGA), stillbirth, and pregnancy complications [1]. It cannot be
emphasized more that placental development is indispensable for fetal growth and
normal pregnancy, as well as closely related to the placental size, umbilical cord, and
cord blood flow. The blood exchange between the mother and the fetus begins in the early
embryo after the fourth week of pregnancy and may stop any time when approaching late
pregnancy. Therefore, the correct identification of a mature placenta plays a key role in
preventing fetal death by removing the fetus before placental senescence.

As a commonmedical modality for routine placental evaluation, ultrasound imaging has
been widely adopted for prenatal diagnosis, prognosis, and evaluation of placental
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abnormalities [1–3], due to its non-radiation, convenience, and
efficiency. Furthermore, ultrasound imaging can reflect the
changes of the calcification degree from placental images without
applying a contrast agent. These factors have successfully inspired
many interests [1, 2, 4–6]. However, most existing placental
maturity staging methods heavily depend on a doctor’s subjective
measurement, which inevitably results in human error. Based on
this, we argue that better and more consistent decisions can be
obtained with an objective assessment. Hence, an automatic method
for the objective assessment that complements the doctor’s
subjective assessment would provide a more precise
interpretation for placental evaluation [4, 5]. Although the
challenging issues of placental maturity have been widely
resolved, the changes in calcification and image quality
limitations make subjective measurements uncompetitive [7].
Automatic computer-assisted diagnosis not only reduces errors
caused by subjective judgment [8] but also provides an attractive
and meaningful standardization tool [9–11] to improve the
efficiency of diagnosis.

However, the existing automatic methods heavily relied on hand-
crafted features to combine hand-crafted features with deep features
from grayscale ultrasound images to evaluate placental maturity. It is
time-consuming to design the specific hand-crafted features and
inefficiency to deploy upon different datasets. Deep learning has
shown tremendous potential in medical image analysis over the
past decade. Medical images are complex and heterogeneous, and
traditional machine learning algorithms struggle to accurately classify
and segment them. Deep learning algorithms, on the other hand, have
shown remarkable success in these tasks due to their ability to learn
complex features from limited data [12–14]. One of the most popular
deep learning architectures used in medical image classification and
segmentation is convolutional neural networks (CNNs). CNNs are
designed to automatically learn and extract features from images
through layers of convolutional filters. They have been used
successfully in a variety of medical imaging applications, including
mammography [15], brain imaging [16], and prostate cancer
detection [17].

Motivated by the dominant performance of CNNs, it is
desirable to develop an end-to-end network for automatic
placental maturity grading (PMG) from ultrasound images. In
this work, we present a dilated granularity transformer network
for staging placental maturity from ultrasound images by
learning multi-scale long-range dependency features. To the
best of our knowledge, our work is the first end-to-end
network to grade placental maturity from ultrasound images.
In our work, we devise a set of dilated transformer blocks to
extract long-range dependency global features in a multi-scale
manner from the input ultrasound image. Then, we progressively
integrate these global features to predict the final result of the
placental maturity grading. We collected 500 ultrasound images
to evaluate the effectiveness of our method, and the experimental
results show that our network clearly outperforms the state-of-
the-art methods.

In summary, the contributions of our work have been
summarized as follows:

• We devised a transformer-based pipeline to grade the placental
maturity of the B-mode ultrasound image. To the best of our

knowledge, our work is the first end-to-end network for
addressing PMG from the ultrasound image.

• In our network, we devised a dilated transformer block to learn
multi-scale transformer features and then integrate the obtained
features at different convolutional layers for the reliable prediction
of PMG.

• We collected 500 annotated ultrasound images, and experimental
results show that our network clearly outperforms the state-of-the-
art methods.

2 Related work

2.1 Placental maturity grading

Grannum et al. [6] presented the first PMG method on gray-
scale ultrasound images to classify the chorionic plate, substance,
and basal plate of the placenta into four grades, as shown in Figure 1.
Although achieving promising results, this method largely relied on
the visual inspection of ultrasound images to stage the placental
maturity, which is subjective and time-consuming and lacks
objective measurement. To alleviate this issue, many researchers
have developed diverse automatic algorithms for grading placental
maturity. Lei et al. [5] graded placental maturity by computing a fish
vector (FV) and invariant descriptor based on local intensity, while
Li et al. [4] adopted a dense DAISY [18] descriptor for staging
placental maturity due to its superior performance over co-variant
affine feature descriptors. Apart from the B-mode ultrasound (BUS)
images, features are also computed from color Doppler energy
(CDE) images for boosting the PMG performance. Lei et al. [19]
utilized a hybrid learning framework to combine BUS images and
CDE images, and later harnessed multi-view and multi-layout
discriminative learning to fuse features extracted from BUS and
CDE images in Eq. 3. Moreover, Lei et al. [20] proposed to integrate
deep descriptors extracted from CNNs and hand-crafted features on
BUS and CDE images to produce hybrid descriptors for boosting the
grading performance. Despite achieving good performance in PMG,
these methods are not effective to learn long-range context features,
which has been proven to be an efficient manner as a self-attention
mechanism [21] for booting network prediction performance than
classical CNNs.

2.2 Transformer

Transformer was first proposed for the machine translation task
[22]. In the NLP domain, the transformer-based methods have
achieved the state-of-the-art performance in various tasks [23]. ViT
[24] first introduced transformer into visual tasks and achieved
impressive performance because of the capacity for its global
dependencies. Vision tasks developed a new stage inspired by
ViT. For example, DeiT [25] explored the efficient training
strategies for ViT, and the Swin transformer [26] was an effective
hierarchical vision transformer, whose window-based mechanism
enhances the locality of features. PVT [21] proposed a pyramid
transformer with spatial reduction attention (SRA) to reduce the
computational complexity, while MViT [27] created a multiscale
pyramid of features to simultaneously model simple low-level visual
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information and complex high-dimensional features. For medical
imaging tasks, TransUNet [28] combined the merits of transformer
and U-net to construct a stronger alternative for medical image
segmentation, while DS-TransUNet [29] incorporated the
hierarchical Swin transformer into both the encoder and the
decoder of the standard U-shaped architecture. Most works
[30–34] in medical image classification jointly adopt the CNN
and transformer model but did not develop a transformer-based
backbone without convolutions to capture multi-granularity
information in medical images.

3 Methods

The overall architecture of our designed DilatedFormer is
illustrated in Figure 2. Given an input image with a spatial size
of H × W × 3, we split it into the more informative token sequence

with the length of H
4 × W

4 and the dimension of C by an improved
overlapped patch embedding scheme. Our DilatedFormer network
has four transformer stages to extract hierarchical feature maps, and
each transformer stage stacks multiple dilated transformer blocks.
An additional convolution layer with stride 2, i.e., linear embedding,
is utilized between two stages to reduce a half size of the feature
maps, and the size of feature maps Si at the i-th (i = 1, 2, 3, 4) stages is
H
2i+1 ×

W
2i+1 × (C × 2i−1). Finally, only the last three feature maps will

be fed into our feature pyramid decoder to provide multi-resolution
knowledge for predicting the output placental grading.

3.1 Dilated transformer block

As shown in Figure 2, our proposed dilated transformer block
consists of a multi-head dilated self-attention (DSA) layer, a detail-
specific feed-forward layer, and two layer normalization operations.

FIGURE 1
Cases of four levels of placental maturity are listed. (A) Grade 0; (B) Grade I; (C) Grade II; (D) Grade III.

FIGURE 2
Overview of our DilatedFormer network. Top left: the encoder of our DilatedFormer network. Top right: details of the dilated transformer block.
Bottom: the procedure of Feature Pyramid Decoder.
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To reduce the computational cost when processing high-resolution
feature maps, PVT [21] adopted spatial reduction attention (SRA) to
replace the vanilla multi-head self-attention (MSA). Since the pooled
feature extracted by a single scale in PVT is less powerful, we
equipped self-attention with parallel dilated convolutions with
different dilated rates and scales to better detect multi-grain
objects in one cohort.

What makes DSA blocks outperform the traditional self-
attention blocks are the following: 1) DSA introduces a dilated
convolutional mechanism to capture multi-scale information and
integrate features of different sizes in one stage. 2) Weight-sharing
dilated convolution boosts the model performance with a marginal
increase in the number of parameters. 3) Detail-specific feed-
forward network recovers local information, while DSA enhances
its global counterpart. Furthermore, a feature pyramid decoder
network is designed to grade the placental maturity, considering
both high-resolution coarse features and low-resolution fine-grained
features.

3.1.1 Dilated self-attention
Multi-scale features have shown superior performance in

detecting objects with different grains [35]. Moreover, dilated
convolution [36, 37] is proposed to capture the multi-scale
context with the same amount of parameters as standard
convolutions. Weight-sharing dilated convolution [38] is also
designed to improve model performances without increasing
the number of parameters. Different from local convolution
operations, the self-attention mechanism learns long-range
features by performing a weighted sum of the projected input
vectors from all spatial locations and computing similarities
between the queries and keys. To consider multi-scale
information for computing weights of the self-attention
mechanism, we used parallel dilated convolutions with different
rates on the key and value. Specifically, given an input feature map
X, we first downsample X to obtain two feature maps (H1 and H2)
with a downsampling rate sri. It should be noted that the

downsampling rate sri varying across attention heads in one
layer further strengthens the ability to learn multi-granularity
features. For example, as shown in Figure 3, attention heads are
divided into two groups to emphasize the corresponding
downsampling rate. Then, we apply three dilated convolutions
on two downsampled featuresH1 and H2, respectively. These three
dilated convolutions have different dilation rates dr but a shared
3 × 3 kernel to capture the multi-scale contexts after spatial
reduction. After that, we added three dilated features from H1

and H2 by a self-calibration scheme (i.e., SiLU activation function
[39]) to compute a feature map P:

P � ∑
dr∈ 1,3,5{ }

SiLU Conv X̂, dr( )( ), (1)

X̂ � Conv X, sri( ), (2)
SiLU m( ) � m · σ m( ), (3)

where SiLU denotes the SiLU activation function. σ(·), dr, and sri
denote the Sigmoid activation function, the dilation rate, and the
spatial downsampling rate in the ith head module, respectively. As
shown in Figure 3, we can obtain two features (P1 and P2) from two
groups of three dilated convolutions. This scheme provides the
similarity calculation of the query and key between each pair of
spatial locations with multi-scale information.

Then, these two features (P1 and P2) are passed into a linear layer
to obtain the key feature and value feature. Meanwhile, we apply a
linear layer on the input feature to obtain a query feature map. For
the ith head, we can compute the query, key, and value vectors:

Q,K1, V1( ) � XWq, P1Wk, P1Wv( ), V1 � V1 +DWConv V1( ),
(4)

Q,K2, V2( ) � XWq, P2Wk, P2Wv( ), V2 � V2 +DWConv V2( ),
(5)

where Wq, Wk, and Wv denote the weight matrices of linear
transformations for generating the query, key, and value tensors
in the ith head, respectively. DWConv(·) is depth-wise convolution

FIGURE 3
Overall procedure of our dilated self-attention (DSA). In such a setting, attention heads are divided into two groups, which focus on different
downsampling rates. The corresponding outputs of similarity calculation are concatenated to be the final output of DSA.
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to enhance the local details for the value vector. After that,Q,K1, and
V1 are fed into the attention module to compute the self-attention
feature map A1, while Q, K2, and V2 are fed into the attention
module to compute the self-attention feature map A2. A1 and A2 are
computed as follows:

A1 � Softmax
Q K1( )T���

dK

√( ) × V1, A2 � Softmax
Q K2( )T���

dK

√( ) × V2,

(6)
where dK is the channel dimension of K and

���
dK

√
can serve as an

approximate normalization operation. Then, we concatenate two
self-attention features and pass the concatenation result into a 1 × 1
linear convolutional layer to compute the output feature map Z of
our DSA module:

Z � Conv Concat A1, A2( )( ). (7)
Each spatial location in different scales makes a diverse contribution
to the feature response, according to the computed attention.
Thanks to parallel dilated convolution, our DSA module
conducts multi-scale-in-one-stage spirit and successfully provides
at least 3× more scales than SRA with a marginal
computational cost.

3.1.2 Detail-specific feed-forward network
The feed-forward network (FFN) is an essential component of

transformers for feature enhancement [22]. The traditional
transformers usually apply a point-wise fully connected layer as
the FFN. To complement local information for the traditional FFN,
we added a detail-specific layer between the two fully connected
layers. Specifically, given an input feature map x, the output feature
map y of the FFN with a detail-specific layer can be computed by the
following equation:

y � FC GELU x′ +DS x′( )( )( ), where x′ � FC x( ), (8)
where FC(·) denotes a fully connected layer, while GELU(·)
represents the GELU activation function. DS(·) is the detail-
specific layer, which is implemented by a depth-wise
convolution.

3.2 Patch embedding

As is known, a conventional transformer is initially designed
for handling sequential data in NLP, and how to map the image
to a patch sequence is vital for a vision transformer. ViT [24]
directly splits the input image into 16 × 16 non-overlap patches,
while other recent works [40] find that convolution in patch
embedding makes a significant contribution in mapping the
image to a token sequence with higher quality. Following the
existing works [21, 26] adopting overlapped patch embedding,
we first take a 7 × 7 convolution layer with a stride of 2 as the
first layer in the patch embedding, followed by an extra 3 ×
3 convolution layer with a stride of 1. Finally, a non-overlapped
projection layer with a stride of 2 is utilized to generate a patch
sequence with the size of H

4 × W
4 . It should be noted that linear

embedding, a convolution layer with a stride of 2, is introduced
to half the size of feature maps and connects two stages.

3.3 Feature pyramid decoder

The existing methods often utilize a single fully connected layer
as the classification head [21, 24, 26], thereby generating less reliable
prediction for dilated granularity grading. Inspired by [41], we
introduced a feature pyramid decoder (FPD) to better aggregate
multi-resolution features at different network levels for grading the
placental maturity. Specifically, we first generate five feature maps
(defined as {F2, F3, F4, F5, and F6}; Figure 2) at different network
levels. F2, F3, and F4 are produced by passing feature maps S2, S3, and
S4 from the last three stages of our dilated transformer to a 1 × 1
convolutional layer with the top–down connections [41], while F5
and F6 are generated by a convolutional layer with the stride of 2 on
F4 and F5, respectively. After that, we concatenate these five feature
maps together and then pass the concatenation result into a global
average pool (“GAP” of Figure 2) and two fully connected layers
(“fc” of Figure 2) for predicting the final PMG result of the input
ultrasound image.

3.4 Implementation details

For the model architecture, we adopt a standard four-stage
design [21]. The first stage downsamples the image into stride-4
resolution. The other three stages downsample the feature maps to
the resolution of stride-8, stride-16, and stride-32. The variants only
come from the number of layers in different stages. Specifically, the
number of blocks in each stage is set to 3, 4, 24, and 2, while the
number of heads in each block is set to 2, 4, 8, and 16, respectively.
The dilation rates are 1, 3, and 5 in each self-attention block, and the
spatial reduction rate is empirically set as {8,4}, {4,2}, and {2,1} for
two corresponding groups of attention heads in the first three stages
inspired by multi-scale-in-one-stage spirit. Such a setting produces
6× more scales than PVT [21] in one stage.

For training details, our network is implemented on PyTorch
[42] and trained using an Adam optimizer [43] with 80 epochs, an
initial learning rate of 1 × 10−4, and a learning rate decay of 0.9 (every
5 epochs). The cross-entropy loss is empirically utilized to compute
the predicted PMG error. The whole architecture is trained on one
GeForce RTX 3090 GPU with a batch size of 16. The original
ultrasound images are first cropped into a square region, resized into
a spatial resolution of 224 × 224, and then augmented by using
random horizontal flip and rotation before passing them to train our
network for PMG.

4 Experiments

4.1 Dataset and evaluation setting

To evaluate the effectiveness of our method, we collect and
annotate an ultrasound dataset for PMG. This dataset has
500 ultrasound images, comprising 128 ultrasound images with
Grade I, 115 ultrasound images with Grade II, 122 images with
Grade III, and 135 ultrasound images with Grade IV. All images are
BUS and taken from the anterior wall placenta using a GE Voluson
E8 Expert/Phillip EPIQ7 system. The image resolution ranges from
1136 × 852 to 1905 × 1183. The subjects involved in our dataset are
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pregnant women aged from 18 to 40 weeks. They are taken by
ultrasound doctors with more than 5 years of clinical experience to
ensure the image quality. For the whole dataset with 500 ultrasound
images, 100 images are randomly selected as the test set (20% of the
total data), while the remaining 400 images are used as the training
set (80% of the total data).

The three widely used metrics are utilized for quantitatively
comparing different PMG methods. They are accuracy, Cohen’s
kappa coefficient, and F1-score. Cohen’s kappa coefficient is the
standard evaluation metric for evaluating multi-category
classification methods. Based on the confusion matrix, Cohen’s
kappa coefficient takes its value in [−1, 1], usually greater than 0,
and can provide more details about the classification results than
accuracy.

4.2 Comparisons against state-of-the-art
methods

To demonstrate the effectiveness and feasibility of our
DilatedFormer network, we compare it against six state-of-the-art
methods, which are ResNet [44], FCOS [45], vision transformer
(ViT) [24], Swin transformer (Swin) [26], PVT [21], andMViT [27].
It should be noted that FCOS is a classical model for object detection
with ResNet50 as the backbone and feature pyramid network as the

decoder, and we replace the original head with a simple fully
connected layer for grading. For providing a fair comparison, we
obtain the classification results of all compared methods by
exploiting their public implementations or implementing them by
ourselves. We train these networks on our dataset and only set the
batch size and epoch number to the same as ours. Table 1 reports the
quantitative results of our network and compared methods. As
shown in Table 1, our DilatedFormer network outperforms all
these state-of-the-art methods in terms of three metrics, namely,
accuracy, Cohen’s kappa, and F1-score. Among all compared
methods, MViT and PVT have achieved the best accuracy score
of 0.85, while MViT has the best Cohen’s kappa score of 0.9407 and
the best F1-score of 0.8921. Compared with them, our method
further improves the accuracy score from 0.85 to 0.89 while
improving Cohen’s kappa score from 0.9407 to 0.9574 and F1-
score from 0.8921 to 0.9022.

4.3 Ablation study

4.3.1 Effectiveness of each component
We conducted ablation study experiments to verify major modules

in our DilatedFormer network. To do so, we first construct a baseline
(denoted as “basic”) by removing DSA from all dilated transformer
blocks and utilizing a vanilla classification head, and thus, the baseline is
equal to PVT [21]. Then, we construct another three baseline networks
from “basic” by progressively adding DSA into all dilated transformer
blocks, replacing the vanilla classification head by using the feature
pyramid network decoder, and incorporating a detail-specific layer into
the traditional feed-forward network.

Table 2 reports metric scores of our network and compared
methods in terms of accuracy and Cohen’s kappa. From these
quantitative results, we can find that “basic +DSA” has an
accuracy improvement of 0.02, a Cohen’s kappa improvement of
0.0115 over “basic,” and an F1-score improvement of 0.0060
(i.e., PVT [21]). Moreover, replacing the vanilla classification

TABLE 1 Quantitative comparisons of our network and compared methods on the collected ultrasound placental maturity dataset.

Metric ResNet34 [45] ResNet50 [45] FCOS [41] ViT [24] Swin [26] PVT [21] MViT [27] DilatedFormer (ours)

Accuracy 0.78 0.79 0.82 0.83 0.84 0.85 0.85 0.89

Cohen’s kappa 0.8754 0.8842 0.9101 0.9274 0.9212 0.9365 0.9407 0.9574

F1-score 0.8621 0.8651 0.8810 0.8845 0.8887 0.8904 0.8921 0.9022

The bold are the best values.

TABLE 2 Quantitative ablation study on major modules of our method. “FPD” denotes the feature pyramid network decoder, while “DS” represents the detail-
specific layer in the feed-forward network (FFN) of our method.

Method DSA FPD DS Accuracy Cohen’s kappa F1-score

Basic × × × 0.85 0.9365 0.8904

Basic + DSA ✓ × × 0.87 0.9480 0.8964

Basic + DSA + FPD ✓ ✓ × 0.88 0.9538 0.9001

Basic + DSA + FPD + Detail-specific (Ours) ✓ ✓ ✓ 0.89 0.9574 0.9022

The bold are the best values.

TABLE 3 Quantitative comparisons on our DSA with three different dilation
rates.

Metric {1,2,3} {1,3,5} (Ours) {1,6,10} {2,4,6}

Accuracy 0.88 0.89 0.86 0.86

Cohen’s kappa 0.9491 0.9574 0.9402 0.9430

F1-score 0.8988 0.9022 0.8960 0.8969

The bold are the best values.
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head with a feature pyramid network decoder (+FPD) incurs an
accuracy improvement of 0.01, a Cohen’s kappa improvement of
0.0058, and an F1-score improvement of 0.0037, as shown in the
quantitative comparisons between “basic +DSA” and “basic +DSA
+FPD.” Finally, our method further outperforms “basic +DSA
+FPD” in terms of three metrics. “basic +DSA +FPD” has an
accuracy score of 0.88, a Cohen’s kappa score of 0.9538, and an
F1-score of 0.9001, while the accuracy, Cohen’s kappa, and F1-score
of our method are 0.89, 0.9574, and 0.9022, respectively.

4.3.2 Evaluation on dilation rates
As shown in Figure 3, the DSA block of our method leverages

three dilated convolutions with different dilated rates to generate key
and value features for computing the long-range dependency
features via a self-attention mechanism. Here, we provide an
ablation study experiment to discuss how to select specific dilated
rates in these dilated convolutions.

As illustrated in Table 3, we quantitatively compare the
accuracy, Cohen’s kappa, and F1-score of our method with
different dilated rates in our DSA block and we utilize {1,2,3},
{1,3,5}, {1,6,10}, and {2,4,6} to assign the corresponding dilation
rates for three weight-shared dilated convolutions, respectively.
Apparently, our method with three dilated rates of {1,3, and 5}
has the best accuracy, Cohen’s kappa, and F1-score. Hence, we
empirically set the dilated rates of three dilated convolutions in DSA
as 1, 3, and 5, respectively.

5 Conclusion

This work proposed an end-to-end deep learning-based pipeline,
which presents a dilated granularity transformer network for boosting
PMG in ultrasound images by learningmulti-scale transformer features.
The main idea is to devise dilated transformer blocks to learn multi-
scale transformer features at each convolutional layer and then integrate
them from all convolutional layers together to give the stronger
constraint from multiple granularities for the more reliable
prediction of the PMG result. We collect and annotate
500 ultrasound images for PMG. The experimental results show that
our network outperforms the state-of-the-art methods in terms of three
metrics in the PMG task.

However, we still have several limitations to be tackled in future
work. First, we can develop a more lightweight model and improve
the computational complexity based on this work. This will facilitate
the deployment of our network onto clinical sites. Second, our model
is trained by ultrasound images with the same intensity distribution
in a fully supervised fashion. When generalized to other new clinical
sites, the performance of our method may degrade due to the
variability of vendors. In the future, we should devise a more

generalizable deep learning algorithm for robust PMG. Third, to
improve the data efficiency, we can incorporate multi-modality
information, such as clinical data, into the deep learning model
to support the grading from different perspectives.
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