
A space-time domain RBF method
for 2D wave equations

Fu-Zhang Wang1,2, Ming-Yu Shao2*, Jia-Le Li2 and
Zhong-Liang Zhang2

1Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application, Ministry of
Natural Resources, Zhangzhou, China, 2School of Mathematics and Statistics, Xuzhou University of
Technology, Xuzhou, China

In the present study, we demonstrate the feasibility to reveal the numerical
solution of the multi-dimensional wave equations. A simple semi-analytical
meshless method was proposed to obtain the numerical solution of the wave
equation with a newly-proposed space-time radial basis function to enhance the
numerical stability. The wave equation was discretized into equivalent algebraic
equations. By specifying boundary and initial conditions, the wave propagation in a
two-dimensional domain can be virtually reconstructed. Our results exhibit that
the semi-analytical meshless method is suitable and efficient for solving multi-
dimensional wave equations.
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1 Introduction

Awide range of physical processes is related to the multi-dimensional wave equation and
it has been applied to many practical engineering problems such as underwater sound
propagation, motion of vibrating strings and membranes. The ultimately physical model of
the wave propagation problem is the time-dependent hyperbolic partial differential
equations. For practical engineering problems, only approximate solutions can be
obtained by numerical methods. Because of all the problems arose when solving the
second-order derivative in time, the numerical solution for this type of equation has
been little studied [1].

Several numerical methods have been proposed to get numerical solutions to the multi-
dimensional wave equations. The finite-difference-based schemes have gained considerable
attention in getting the numerical solutions of different time-dependent partial differential
equations [2]. Based on the Houbolt finite difference scheme, the method of the particular
solutions and the method of fundamental solutions are combined for the solution of multi-
dimensional wave equations [3]. An implicit time difference scheme in conjunction with
moving least squares reproducing kernel particle approximation is suggested for time-
dependent diffusion-wave equation by Rezvan [4].

The finite-difference-based scheme is another choice. The weak Galerkin finite element
method is employed to solve the two-dimensional wave equations [5–7]. A semi-discrete
numerical method is introduced for wave equation with the spatial variable discretized by the
finite element method [8]. For the other methods, a radial integration boundary element
method has been developed for the solution of 2D scalar wave equation. Domain integrals
appearing in the integral equations are transformed to the boundary with the help of a
modified radial integration method. This technique is accomplished applying two time
stepping schemes including Newmark and Houbolt methods [9]. The Laplace
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transformation is implemented to convert diffusion-wave equation
to a series of time-independent nonhomogeneous equations in
Laplace domain. A semi-analytical collocation Trefftz scheme is
used to obtain the solution of high-order homogeneous equation
with boundary-only collocation in Laplace domain [10]. The
convolution quadrature method is formulated for the two-
dimensional wave equation and the boundary element method is
introduced for its spatial discretization [11]. Nevertheless, even
when many of these methods obtain satisfactory results, they are
based on a two-step solution process. More specifically, the time-
dependent problem is treated by the finite difference discretization
first which will lead to time-independent equations. Then the other
numerical method is employed to solve the time-independent
equations.

As is known to all, the radial basis function (RBF) methods
perform very well in numerical simulation of mathematical
modeling thanks to the features in terms of simple, flexible, and
truly meshfree [12–15]. In this paper, we propose a semi-analytical
meshfree method with one-step approximation, which is based on
newly-proposed RBFs, to analyze the phenomena occurring in the
wave propagation.

This paper is briefly organized as follows. Based on the multi-
dimensional wave equation, the newly-proposed space-time
distance as well as corresponding formulation of RBF is provided
in Section 2. Section 3 presents the methodology for multi-
dimensional wave equation under initial condition and boundary
conditions. Discussions with different wave speed numbers are
presented to validate the accuracy and stability of the proposed
semi-analytical meshfree method. Section 5 provides some
conclusions and future directions.

2 Modeling and methods

The mathematical modeling of wave propagation is one of the
earliest well-known multi-dimensional time-dependent wave
equation

∂2Φ x, t( )
∂t2

� c2∇2Φ x, t( ), x ∈ Ω, t> 0 (1)

where x is the space vector with x � (x, y) for two-dimensional and
x � (x, y, z) for three-dimensional, respectively. c is the wave speed.
Due to the complexity of practical problems, analytical solutions
cannot be obtained for the above wave equation. An alternative is the
numerical methods.

Since Eq. 1 is time-dependent, the time-variable is always treated
by using the finite difference method, Laplace transformation or the
other methods. This will lead to time-nondependent equations.
Together with specified boundary and initial conditions, the
other numerical methods can be employed to get the
approximate solutions of the corresponding mathematical
modeling. This procedure is a two-step numerical method. In
order to get a one-level numerical method, we propose a semi-
analytical meshfree method by using the traditional RBF.

The basic theory of the RBF-based collocation methods lies in
that the approximate solution can be written as a linear combination

of RBFs. Here, we consider the commonly-used multiquadric RBF as
an example [16–18].

ϕ ri( ) �
��������
1 + εri( )2

√
(2)

where ε is the multiquadric RBF parameter, ri � ‖X −Xi‖ ������������������
(x − xi)2 + (y − yi)2

√
is the distance between X � (x, y) and Xi �

(xi, yi) for two-dimensional cases.
In order to propose a direct meshless method with one-level

approximation, we propose a space-time RBF by combination of x
and t as a “space” point (x, t). Finally, one can obtain the simple
direct radial basis function (DRBF)

ϕ ri( ) �
��������
1 + εri( )2

√
(3)

with ri � ‖X −Xi‖ �
��������������������������
(x − xi)2 + (y − yi)2 + (t − ti)2

√
for (2 + 1)-

dimensional problems and

ϕ ri( ) �
��������
1 + εri( )2

√
(4)

with ri � ‖X −Xi‖ �
�����������������������������������
(x − xi)2 + (y − yi)2 + (z − zi)2 + (t − ti)2

√
for (3 + 1)-dimensional problems. It should be noted that the
simple direct radial basis function can be easily extended to
higher dimensional cases [19].

3 Methodology for direct meshless
method

Based on the definition of space-time radial basis functions, the
approximate solutionΦ � (x, t) satisfying the Pennes equation Eq. 1
has the form

ΦN •( ) ≈ ∑N
j�1
λjϕj •( ) (5)

where N denotes the number of the collocation points. To seek
for the unknown coefficients λj, traditional collocation method
can be used, i.e., Eq. 1 is imposed atN1 internal points. The wave
equation is reduced to a system of algebraic equations. The
system of algebraic equations that corresponds to Eq. 1 is
considered when the mixed nonhomogeneous Dirichlet
boundary condition and initial conditions are imposed. We
can describe the boundary condition as

x ∈ Γ: Φ x, t( ) � g1 x, t( ) (6)
x ∈ Γ: ∂Φ x, t( )

∂n
� g2 x, t( ) (7)

The initial conditions should be assumed

Φ x, t( ) � g3 x, t( ), t � 0 (8)
The following procedure is executed by collocating the boundary

conditions Eqs 6–7 at boundary collocation points Xi{ }N2+N3
i�1 and

initial condition Eq. 8 at initial points Xi{ }N4
i�1, respectively. This

procedure yields the following equations

∑N
j�1
λjLϕj Xi, Xj( ) � 0, i � 1, ..., N1 (9)
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∑N
j�1
λjϕj Xi, Xj( ) � g1 Xi, Xj( ), i � N1 + 1, ..., N1 +N2 (10)

∑N
j�1
λj
∂ϕj Xi, Xj( )

∂n
� g2 Xi, Xj( ),

i � N1 +N2 + 1, ..., N1 +N2 +N3 (11)

∑N
j�1
λjϕj Xi, Xj( ) � g3 Xi, Xj( ), i � N1 +N2 +N3 + 1, ..., N (12)

with

Lϕj �
∂2ϕj

∂t2
− c2∇2ϕj (13)

where N2 and N3 are the collocation point numbers on
the Dirichlet boundary and Neumann boundary, respectively.
N −N1 −N2 −N3 is the initial point number which corresponds
to time step.

4 Results and discussions

Two examples are considered by implementing the semi-
analytical meshless method for the multi-dimensional wave
equation. To verify the accuracy and stability of the proposed
method in this paper, we consider the mentioned scheme for
different values of multiquadric RBF parameter, δh � δt (the
distance between the nodes in space direction and time
direction). Numerical solutions obtained from this method are
compared with the exact solutions. The root mean square relative
error (RMSE) in the following figures is defined as

RMSE �

��������������
1
NT

∑NT

i�1
Φi − �Φi( )

√√
(14)

where Φi and �Φi are the exact and numerical solutions, respectively.
NT denotes the total number of testing points.

4.1 Example one

Here, the time-dependent problem in the unit square domain
[0, 1] × [0, 1] having analytic solutions is considered to validate the
capability of the proposed semi-analytical meshless method. The
initial boundary conditions can be written as

Φ x, y, t( )∣∣∣∣x�0 � 0,Φ x, y, t( )∣∣∣∣x�1 � 0,Φ x, y, t( )∣∣∣∣y�0
� 0,Φ x, y, t( )∣∣∣∣y�1 � 0 (15)

while the initial boundary condition is

Φ x, y, t( )∣∣∣∣t�0 � xy 1 − x( ) 1 − y( ), ∂Φ x, y, t( )
∂t

∣∣∣∣∣∣∣∣t�0 � 0 (16)

By using themethod of separation of variables, we can obtain the
analytical solution for this problem

Φ x, y, t( ) � 64
π6

∑∞
m�1

∑∞
n�1

1
m3n3

sin mπx( ) sin nπy( ) cos �������
m2 + n2

√
πct( )
(17)

For the unit wave speed, we consider the effect of RBF parameter
to the numerical results. Figure 1 presents the RMSE variation curve
for fixed space distance δh � δt � 0.1 at point (0.1, 0.1). We can see
that the RBF parameter performs well in the scope (0.01, 0.45). The
optimal choice of RBF parameter in the direct meshless method is
similar to the traditional RBF. This is beyond the scope of our
investigation, more details related to the optimal choice of RBF
parameter can be found in [19–21] and references therein.

For fixed RBF parameter, Figure 2 shows the RMSE variation
curves for time t ∈ [0, 2] at three different points. It can be seen that
the RMSE are almost smaller than 10−3 for all the three different
points, i.e., these numerical solutions compare well with the
analytical solutions. It should be pointed that the method used in
[3] requires more fine time step (δt � 0.05) to achieve the same
RMSE 10−3 while our method only requires δt � 0.1.

4.2 Example two

In this case, we consider the time-dependent problem in the unit
square domain [0, 1] × [0, 1] with the analytical solution

FIGURE 1
RMSE variation curve for fixed δh � 0.1.

FIGURE 2
RMSE variation curves for time t ∈ [0, 2] at three different points.
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Φ x, y, t( ) � 8 sin πy( )
cπ3

∑∞
n�0

sin wnπct( ) cos 2n + 1( )πx/2( )
wn 2n + 1( )2 (18)

with wn �
���������
1 + (2n+12 )2

√
.

We consider the wave speed c � 1, the corresponding initial
boundary conditions can be written as

∂Φ x, y, t( )
∂x

∣∣∣∣∣∣∣∣x�0 � 0,Φ x, y, t( )∣∣∣∣x�1 � 0,Φ x, y, t( )∣∣∣∣y�0
� 0,Φ x, y, t( )∣∣∣∣y�1 � 0 (19)

while the initial boundary condition is

Φ x, y, t( )∣∣∣∣t�0 � 0,
∂Φ x, y, t( )

∂t

∣∣∣∣∣∣∣∣t�0 � 1 − x( ) sin πy( ) (20)

Figure 3 presents the RMSE versus RBF parameter for fixed space
distance δh � δt � 0.1 at point ( 9

20, 0). We can see that the RBF
parameter performs well in the scope (0.15, 0.95), the quasi-optimal

choice is c � 0.76 with corresponding RMSE � 7.5 × 10−4. It should
be pointed that the method used in [3] requires more fine time step
(δt � 0.05) to achieve RMSE about 10−2. Even for the more fine time
step δt � 0.015, the corresponding RMSE is about 10−3. It cannot
compete with ourmethod for larger time step δt � 0.1. Figure 4 shows
the RMSE variation curves for time t ∈ [0, 2] at three different points.

5 Conclusion

As presented in the paper, the multiquadric radial basis function is a
good base to build an approximate solution of wave propagation
problems. The multiquadric radial basis function can be easily
generated with the use of any program of Computer Algebra System
type executing the symbolic calculations. In the presented paper, the
MATLAB program has been used. The semi-analytical meshless method
has been presented to find the approximate solution of the multi-
dimensional wave equation. Numerical results obtained for the wave
equation are similar to/are in accordance with the analytical results.
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FIGURE 3
RMSE versus RBF parameter for fixed δh � 0.1.

FIGURE 4
Shows the RMSE variation curves for time t ∈ [0, 2] at three
different points. It can be seen that the RMSEs are very small for t< 1.8
at point (1,0) and the RMSEs are small for all time t ∈ [0, 2] at points
(9/20,0) and (0.1,0).
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