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This article proposes a new approach to solving fuzzy M-fractional
integrodifferential models under strongly generalized differentiability using an
innovative formulation of the characterization principle. The study presents
theoretical effects on the existence-uniqueness of fuzzy two M-solutions and,
thus, showcases the solvability of the fuzzy Volterra models. Moreover, the study
offers numerical solutions using the Hilbert reproducing kernel algorithm in a new
fuzzy look, utilizing two fitting Hilbert spaces. The proposed models and
algorithms are under scrutiny, with particular attention given to the analysis of
the series solution, the assessment of convergence, and the evaluation of error.
The debated Hilbert approach is shown to be effective in solving several fractional
Volterra problems under uncertainty, and the numerical impacts manifest the
accuracy and competence of the algorithm. Overall, our work contributes to the
advancement of mathematical tools for solving complex fractional Volterra
problems under uncertainty and shows potential to impact various fields of
science and engineering, as depicted in the utilized figures, tables, and
comparative analysis. The findings of the study are evaluated based on the
analysis conducted, and a numerical algorithm is presented in the final section,
along with several suggestions for future research directions.
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1 Introduction

In recent years, fuzzy calculus and fuzzy integrodifferential models
have gained significant attention due to their ability to model complex
real-world problems that are inherently imprecise or uncertain [1–3].
Fuzzy calculus extends traditional calculus by incorporating the concept
of fuzzy sets, which allows for the representation of uncertain or vague
data in a mathematical framework. Fuzzy integrodifferential models
combine the concepts of fuzzy sets and integrodifferential equations to
model systems that involve both memory and uncertainty. In contrast,
fractional calculus has emerged as a mighty mathematical tool for the
formation of complex systems in various fields of science and
engineering [4–6]. Recently, there has been a growing fascination
with extending the concepts of fractional calculus to fuzzy
environments, where the parameters of the system are not precisely
defined but are instead represented by fuzzy numbers. This has led to the
development of fuzzy fractional calculus, which has shown promising
results in modeling and analyzing complex systems under uncertainty
[7–9]. In this article, we will explore the concept of fuzzy fractional
calculus and its application to FM-FIDMs. We will discuss the
fundamental concepts of fuzzy calculus and fractional M-calculus,
and then show how the two concepts can be combined to form a
powerful tool for modeling and analyzing fuzzy systems represented by
Volterra patterns. We will also present some examples of FM-FIDMs
and their solutions utilizing HRKA, showcasing the productivity of our
approach.

HRKA is a powerful mathematical tool that has found
numerous products in assorted areas of stochastics and
nonlinear phenomena [10–12]. The algorithm is based on the
theory of Hilbert spaces, which provides a framework for the
study of functions and their properties. HRKA is particularly
useful for solving problems involving function approximation,
interpolation, and regression, and has been used in applications
such as machine learning, signal processing, and control theory
[13–22]. One of the key characteristics of HRKA is its ability to
represent functions in terms of inner products, which allows for
efficient computation of function values and derivatives. This
property is closely related to the concept of reproducing kernels,
which are positive definite functions that satisfy certain
properties. The construction of the reproducing kernel is an
important aspect of HRKA and involves finding a function

that satisfies the reproducing property and other properties
that ensure its suitability for the problem at hand.

HRKA is a powerful mathematical framework used in applied
mathematics, applied physics, machine learning, and other fields
[10–12]. It offers several advantages over other approaches when it
comes to solving NLDMs. Some of the distinguishing features of
HRKA are as follows:

1. Nonlinear modeling: HRKA can capture nonlinear relationships
between variables, making it a powerful tool for modeling
NLDMs.

2. Flexibility: HRKA is very flexible and can be used to model a wide
range of NLDMs, including those with complex constraint
conditions.

3. High-dimensional feature space: HRKA maps data points into a
high-dimensional feature space, where linear methods can be
used to perform nonlinear tasks. This makes it possible to solve
complex NLDMs using simple successive techniques.

4. Reproducing property: HRKA has a unique property called the
reproducing property, which allows the evaluation of functions in
the reproducing Hilbert space at any point in the input space.
This means that it can be used to interpolate solutions to NLDMs
and make predictions at any point in the input space.

5. Regularization: HRKA uses regularization to control the
complexity of the model and prevent overfitting. This is
performed by introducing a penalty term in the objective
function that penalizes large coefficients in the model.

Indeed, when using HRKA to solve NLDMs, these advantages
translate into several distinct benefits.

1. Accuracy: The flexibility of HRKA allows it to accurately model
complex NLDMs, producing solutions with high accuracy.

2. Efficiency: The use of high-dimensional feature space and simple
successive techniques can make HRKA more computationally
efficient than other methods for solving NLDMs.

3. Interpolation: The reproducing property of HRKA allows it to
interpolate solutions to NLDMs, making it possible to accurately
predict values at any point in the input space.

4. Regularization: The use of regularization helps prevent
overfitting, producing more reliable solutions to NLDMs.

FIGURE 1
Phasor diagram of the crisp IRCC.
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Generally, HRKA offers several advantages over other
approaches when it comes to solving NLDMs. Its ability to
model nonlinear relationships, flexibility, use of high-dimensional
feature space, reproducing property, and regularization all
contribute to its accuracy, efficiency, and ability to interpolate
solutions.

This article delves into two important mathematical concepts:
the existence-uniqueness and characterization theorems, and the
simulated HRKA. In the first part, we explore the theorem’s
significance in proving the existence-uniqueness of fuzzy two
M-solutions, and we will discuss how the characterization
theorem helps us provide a framework for understanding the

proof. In the second part, we delve into HRKA, which is a
powerful tool for analyzing numerical approximations and their
properties. Through this, we will explore our requirements for the
following general model:

R v,w{ }
M ß ͷ( ) �  ͷ, ß ͷ( )( ) + ∫ͷ

0
 ͷ, x, ß x( )( )dx,

ß 0( ) � Ɯ.
{ (1)

Here, ͷ ∈ ℘: � [0, 1], x ∈ [0,ͷ], v ∈ D ≔(0, 1], w> 0,
Ɯ ∈ Rℵ, ß ∈R(℘,Rℵ),  ∈R(℘ × Rℵ,Rℵ), and
 ∈ (℘2 × Rℵ,Rℵ). Indeed, R v,w{ }

M ß(ͷ) is the FM-D of order v,
concerning the Mittag–Leffler parameter w, and Rℵ denotes the
set of fuzzy numbers.

TABLE 1 |թn(ͷ , θη)| concerning HRKA (1)-fuzzy M-solutions for [n(ͷ)]θη in Application 1 in Phase 1 at v � w � 1.

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

n
1(θη )(ͷ)

0 6.21725 × 10−15 1.11022 × 10−15 1.02141 × 10−14 5.10703 × 10−15 0

0.2 2.12053 × 10−14 3.31957 × 10−14 1.67644 × 10−14 4.44089 × 10−16 2.65343 × 10−14

0.4 5.77316 × 10−15 1.78746 × 10−14 1.29896 × 10−14 1.33227 × 10−14 2.99760 × 10−15

0.6 1.13243 × 10−14 1.29896 × 10−14 1.96509 × 10−14 2.35367 × 10−14 1.48770 × 10−14

0.8 8.34333 × 10−14 6.38378 × 10−14 6.52256 × 10−14 7.38298 × 10−14 6.83342 × 10−14

1 1.79684 × 10−12 1.78052 × 10−12 1.77858 × 10−12 1.77103 × 10−12 1.77053 × 10−12

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

n
2(θη )(ͷ)

0 5.10703 × 10−15 7.32747 × 10−15 9.54792 × 10−15 1.19904 × 10−14 0

0.2 1.29896 × 10−14 1.73195 × 10−14 7.32747 × 10−15 1.17684 × 10−14 2.65343 × 10−14

0.4 1.33227 × 10−15 1.28786 × 10−14 2.55351 × 10−15 6.99441 × 10−15 2.99760 × 10−15

0.6 2.66454 × 10−15 4.32987 × 10−15 7.88258 × 10−15 1.49880 × 10−14 1.48770 × 10−14

0.8 6.75016 × 10−14 6.96110 × 10−14 6.97220 × 10−14 7.50511 × 10−14 6.83342 × 10−14

1 1.70530 × 10−12 1.70564 × 10−12 1.74882 × 10−12 1.75610 × 10−12 1.77053 × 10−12

TABLE 2 |թn(ͷ , θη)| concerning HRKA (2)-fuzzy M-solutions for [n(ͷ)]θη in Application 1 in Phase 2 at v � w � 1.

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

n
1(θη )(ͷ)

0 6.32827 × 10−15 1.22125 × 10−15 1.03251 × 10−14 5.21805 × 10−15 0

0.2 4.32987 × 10−15 1.85407 × 10−14 1.54321 × 10−14 2.10942 × 10−14 1.59872 × 10−14

0.4 4.55191 × 10−15 2.42029 × 10−14 1.04361 × 10−14 3.33067 × 10−15 2.99760 × 10−15

0.6 6.99441 × 10−15 4.10783 × 10−15 1.56541 × 10−14 5.77316 × 10−15 4.20775 × 10−14

0.8 5.46785 × 10−14 5.91194 × 10−14 4.55191 × 10−14 5.86198 × 10−14 9.68114 × 10−14

1 1.69492 × 10−12 1.72101 × 10−12 1.73284 × 10−12 1.75149 × 10−12 1.76148 × 10−12

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

n
2(θη )(ͷ)

0 5.10703 × 10−15 7.32747 × 10−15 9.54792 × 10−15 1.17684 × 10−14 0

0.2 1.04361 × 10−14 8.43769 × 10−15 2.05391 × 10−14 9.99201 × 10−15 1.59872 × 10−14

0.4 4.55191 × 10−15 8.21565 × 10−15 7.77156 × 10−15 9.54792 × 10−15 2.99760 × 10−15

0.6 2.22045 × 10−16 1.76525 × 10−14 6.88338 × 10−15 1.03251 × 10−14 4.20775 × 10−14

0.8 9.19820 × 10−14 6.28941 × 10−14 9.80327 × 10−14 9.73666 × 10−14 9.68114 × 10−14

1 1.79268 × 10−12 1.80050 × 10−12 1.80117 × 10−12 1.78746 × 10−12 1.76148 × 10−12
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FM-D is a relatively new concept in the field of fractional
calculus. It was introduced as an innovative class of fractional
derivatives that has some advantages over other fractional
approaches, such as Riemann or Caputo derivatives. One of the
main advantages of FM-D is that it preserves the chain rule of
differentiation. This means that if we apply FM-D to a composite
function, we can use the chain rule to simplify the result. This
property is not shared by other fractional derivatives, which can
make it difficult to apply them in practice. Another advantage of
FM-D is that it is more closely related to the ordinary derivative than
other fractional derivatives. In particular, it satisfies a version of the
Leibniz rule, which allows us to differentiate products of functions

naturally. This makes it easier to use FM-D in applications where we
need to differentiate products of functions, such as in physics and
engineering [23–28]. It also has some interesting mathematical
properties that make it an attractive tool for studying fractional
models. For example, it has been shown that FM-D can be used to
obtain exact solutions for certain types of fractional models. This
could be useful in applications where we need to solve NLDMs that
involve fractional derivatives. Other theoretical and application
results concerning fractional calculus patterns with several
constraints and types can be collected from [29–35]. Overall,
FM-D is a promising new tool in the branch of calculus, and it
shows potential to be useful in a wide range of applications.

TABLE 3 |թn(ͷ , θη)| concerning HRKA (1)-fuzzy M-solutions for [ßn(ͷ)]θη in Application 2 in Phase 1 at v � w � 1.

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

ßn1(θη )(ͷ)

0 0 0 0 0 0

0.2 1.11022 × 10−15 1.11022 × 10−15 8.88178 × 10−16 5.55112 × 10−16 1.11022 × 10−16

0.4 6.66134 × 10−16 3.33067 × 10−16 1.11022 × 10−16 3.33067 × 10−16 1.11022 × 10−16

0.6 1.48770 × 10−14 1.33227 × 10−14 1.06581 × 10−14 7.43849 × 10−15 5.55112 × 10−15

0.8 2.52567 × 10−11 2.18747 × 10−11 1.78592 × 10−11 1.26283 × 10−11 2.81664 × 10−11

1 2.18094 × 10−08 1.88875 × 10−08 1.54216 × 10−08 1.09047 × 10−08 4.16714 × 10−08

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

ßn2(θη )(ͷ)

0 0 0 0 0 0

0.2 1.11022 × 10−15 8.88178 × 10−16 8.88178 × 10−16 5.55112 × 10−16 1.11022 × 10−16

0.4 8.88178 × 10−16 3.33067 × 10−16 1.11022 × 10−16 4.44089 × 10−16 1.11022 × 10−16

0.6 1.35447 × 10−14 1.15463 × 10−14 9.76996 × 10−15 6.77236 × 10−15 5.55112 × 10−15

0.8 2.52567 × 10−11 2.18756 × 10−11 1.78600 × 10−11 1.26283 × 10−11 2.81664 × 10−11

1 2.18095 × 10−08 1.88875 × 10−08 1.54216 × 10−08 1.09047 × 10−08 4.16714 × 10−08

TABLE 4 |թn(ͷ , θη)| concerning HRKA (2)-fuzzy M-solutions for [ßn(ͷ)]θη in Application 2 in Phase 2 at v � w � 1.

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

ßn1(θη )(ͷ)

0 0 0 0 0 0

0.2 4.44089 × 10−16 9.38832 × 10−15 8.88178 × 10−16 2.22044 × 10−16 1.00390 × 10−16

0.4 8.88178 × 10−16 1.55431 × 10−15 1.33226 × 10−15 4.44089 × 10−16 2.44249 × 10−15

0.6 3.48165 × 10−13 3.03534 × 10−13 2.47579 × 10−13 1.74082 × 10−13 2.62290 × 10−15

0.8 7.99339 × 10−10 6.92248 × 10−10 5.65217 × 10−10 3.99669 × 10−10 1.00452 × 10−11

1 5.63910 × 10−08 4.88361 × 10−08 3.98745 × 10−08 2.81955 × 10−08 1.18801 × 10−08

ͷ θ0 � 0 θ1 � 1/4 θ2 � 1/2 θ3 � 3/4 θ4 � 1

ßn2(θη )(ͷ)

0 0 0 0 0 0

0.2 4.44089 × 10−15 3.99680 × 10−15 3.55271 × 10−15 2.22044 × 10−15 1.00390 × 10−16

0.4 3.99680 × 10−15 2.88657 × 10−15 1.55431 × 10−15 1.99840 × 10−15 2.44249 × 10−15

0.6 3.81916 × 10−13 3.32844 × 10−13 2.71338 × 10−13 1.90958 × 10−13 2.62290 × 10−15

0.8 7.99206 × 10−10 6.92129 × 10−10 5.65123 × 10−10 3.99603 × 10−10 1.00452 × 10−11

1 5.63910 × 10−08 4.88360 × 10−08 3.98744 × 10−08 2.81955 × 10−08 1.18801 × 10−08
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After the preliminary stage and the problem formulation phase, the
study is structured as follows: Section 2 provides an overview of fuzzy
calculus and FM-D. Section 3 introduces fuzzy FM-D as differentiation
and continuity, followed by fuzzy FM-I as integration and inversion. In
Section 4, we examine FM-FIDM as structures, tools, and steps, while
Section 5 presents a new characterization theorem. Section 6 introduces
HRKA in terms of structures and tools, and Section 7 implements
HRKA as structures and tools. Section 8 showcases the numerical
implementations and computed results. Finally, Section 9 presents the
key points and summary of the study.

2 Outline of fuzzy calculus and FM-D

Herein, we will delve into the concept of fuzzy numbers, which
are an essential tool in the fuzzy set theory. Fuzzy numbers are a
generalization of traditional real numbers, allowing for uncertainty
and imprecision to be incorporated into numerical values. We will
explore the θ-cut concerning fuzzy numbers, their metric structure,
and their fundamental theorem, which establishes the relationship
between fuzzy numbers and intervals. Additionally, we will discuss
the concept of H-difference.

Specifically, substitute I ≔ [0, 1] and ∀θ ∈ I − 0{ }, and set
[Ɯ]θ � ƻ ∈ R|Ɯ(ƻ)≥ θ{ } and [Ɯ]0 � ƻ ∈ R|Ɯ(ƻ)> 0{ }. Then,

Ɯ ∈ Rℵ if [Ɯ]θ is a compact convex in R and [Ɯ]1 ≠ ϕ [36]. So,
if Ɯ ∈ Rℵ, then [Ɯ]θ � [Ɯ1(θ),Ɯ2(θ)] whenever Ɯ1(θ) �
min ƻ|ƻ ∈ [Ɯ]θ{ } and Ɯ2(θ) � max ƻ|ƻ ∈ [Ɯ]θ{ }. Hitherto, [Ɯ]θ
is the θ-cut ofƜ. For simplicity,Ɯ1(θ) ≔ Ɯ1(θ) andƜ2(θ) ≔ Ɯ2(θ).

Theorem 1. [36] Presume that Ɯ1,2: I → R fulfills the following
criterion: Ɯ1 nondecreasing bounded and Ɯ2 nonincreasing
bounded, limθ→−Ɯ1,2(θ) � Ɯ1,2() and limθ→0+Ɯ1,2(θ) � Ɯ1,2(0),
and ∀ ∈ I − 0{ }: Ɯ1(1) ≤Ɯ2(1). Then, Ɯ: R → I with Ɯ(ƻ) �
sup θ|Ɯ1(θ) ≤ƻ≤Ɯ2(θ){ } belongs to Rℵ with parameterization
[Ɯ1θ ,Ɯ2θ]. Likewise, if Ɯ1,2: I → R belongs to Rℵ with
parameterization [Ɯ1(θ),Ɯ2(θ)], then Ɯ1,2 meets the previously
mentioned requirements.

For a more in-depth explanation, letƜ, �Ɯ∈ Rℵ. If ∃Ɯ ∈ Rℵ with
�Ɯ +Ɯ � Ɯ, thenƜ entitled theH-difference of (Ɯ, �Ɯ) is denoted by
Ɯ ⊖ �Ɯ, whereas ⊖ implies constantly to theH-difference being mindful
of Ɯ ⊖ �Ɯ≠ Ɯ + (−1) �Ɯ � Ɯ − �Ɯ. Whenever the H-difference Ɯ ⊖ �Ɯ
exists, [Ɯ ⊖ �Ɯ]θ � [Ɯ1(θ) − �Ɯ1(θ),Ɯ2(θ) − �Ɯ2(θ)].

A metric (Rℵ, d∞) is complete with d∞: R2
ℵ → R+ ∪ 0{ } and

d∞(Ɯ, �Ɯ) � sup
θ∈I

max |Ɯ1(θ) − �Ɯ1(θ)|, |Ɯ2(θ) − �Ɯ2(θ)|{ }. ß ∈R(℘ →
Rℵ) at ͷ* ∈ ℘ provided ∀ε> 0 and ∀ͷ ∈ ℘; ∃δ > 0 with
d∞(ß(ͷ), ß(ͷ*))< ε whenever |ͷ − ͷ*|< δ. Undoubtedly, ß is
continuous over ℘; if it is continuous, ∀ͷ ∈ ℘.  ∈R(℘ × Rℵ,Rℵ)
at (ͷ*, z*) in ℘ × Rℵ provided ∀ε> 0 and ∃δ(ε, θ)> 0 with

FIGURE 2
Plot of HRKA (1)- and (2)-fuzzy M-solutions [n(ͷ)]θη in Application 1 in the phase of v(1),w{ }-fuzzy FM-D: (A) at v,w{ } � 1, 1{ }, (B) at
v,w{ } � 0.9, 1{ }, (C) at v,w{ } � 0.8, 1{ }, and (D) at v,w{ } � 0.7, 1{ }. Herein, green represents n

1(θη )(ͷ), and blue represents n
2(θη)(ͷ).
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FIGURE 3
Plot of HRKA (1)- and (2)-fuzzy M-solutions [n(ͷ)]θη in Application 1 in the phase of v(2),w{ }-fuzzy FM-D: (A) at v,w{ } � 1, 1{ }, (B) at
v,w{ } � 0.9, 1{ }, (C) at v,w{ } � 0.8, 1{ }, and (D) at v,w{ } � 0.7, 1{ }. Herein, green represents n

1(θη )(ͷ) and blue represents n
2(θη )(ͷ).

FIGURE 4
Plot of HRKA (1)- and (2)-fuzzy M-solutions [n(ͷ)]θη in Application 2 in the phase of v(1),w{ }-fuzzy FM-D: (A) at v,w{ } � 1, 1{ }, (B) at
v,w{ } � 0.9, 1{ }, (C) at v,w{ } � 0.8, 1{ }, and (D) at v,w{ } � 0.7, 1{ }. Herein, green represents ßn

1(θη )(ͷ) and blue represents ßn
2(θη)(ͷ).
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d∞(f(ͷ, z), f(ͷ*, z*))< εwhenever |ͷ* − ͷ|< δ and d∞(z, z*)< δ,
∀ͷ ∈ ℘ and ∀z ∈ Rℵ. Similarly, for  ∈R(℘2 × Rℵ → Rℵ). Indeed,
if R(℘,Rℵ) be the set of all continuous ß: ℘ → Rℵ mapping, then
d1: R(℘,Rℵ) ×R(℘,Rℵ) → R+ ∪ 0{ } with d1(ß1, ß2) �
sup
ͷ∈℘

(d∞(ß1(ͷ), ß2(ͷ))e−Ỽͷ), ∀ß1, ß2 ∈R(℘,Rℵ), where Ỽ ∈ R is

fixed. It is evidenced in [37] that (R(℘,Rℵ), d1) is a complete metric.
Using a pair of fuzzy functions and the θ-cut approach, the

Zadeh extension principle allows us to perform fuzzy arithmetic
operations in a fuzzy setting.

Theorem 2. [37] If U ∈ C(R2 → R), then ß ∈ C(R2
ℵ → Rℵ) and

[ß(Ɯ, �Ɯ)]θ � U([Ɯ]θ , [ �Ɯ]θ), ∀Ɯ, �Ɯ∈ Rℵ, and θ ∈ I.
In the following paragraphs, we will explore the concept of FM-

D, which is a memorization of conformable scaling derivative. We
will start by defining FM-D and discussing its mathematical
properties, including its relationship to classical derivatives, and
its applications in various fields of study. Additionally, we will
examine several related results that shed light on the behavior of
FM-D and its significance in understanding the complexity of real-
world phenomena.

FM-Dhas several tools in engineering and applied sciences [23–28].
For example, it can be used to model non-Newtonian fluids, which
exhibit complex and nonlinear behaviors that cannot be described by
ordinary derivatives. In addition, it can be used to simulate fractional-
order systems, like electrical circuits and control systems, which exhibit
memory effects and other non-ideal behaviors. However, FM-D is a
generalization of the classical derivative to noninteger values of the
differentiation of order v ∈ D concerning the Leffler parameter w.

Definition 1. [23] Let U ∈ C(℘ → R). Then, FM-D of order v ∈ D

concerning the Leffler parameter w of U at ͷ ∈ ℘ is

R v,w{ }
M U ͷ( ) �

lim
ε→0

U ͷEw εͷ−v( )( ) − U ͷ( )
ε

,ͷ > 0,

lim
ͷ→0+

Rv,w
M U ͷ( ),ͷ � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

Herein, Ew(ͷ) � ∑∞
�0

ͷ

Γw+1 is the infinite Mittag–Leffler operator

with w> 0 and ͷ > 0. It is assumed that U is v,w{ }-differentiable
whenever U is differentiable ∀ͷ ∈ ℘. Indeed, R v,w{ }

M U(0) exists
whenever lim

ͷ→0+
R v,w{ }

M U(ͷ) exists.

FIGURE 5
Plot of HRKA (1)- and (2)-fuzzy M-solutions [n(ͷ)]θη in Application 2 in the phase of v(2),w{ }-fuzzy FM-D: (A) at v,w{ } � 1, 1{ }, (B) at
v,w{ } � 0.9, 1{ }, (C) at v,w{ } � 0.8, 1{ }, and (D) at v,w{ } � 0.7, 1{ }. Herein, green represents ßn

1(θη )(ͷ) and blue represents ßn
2(θη)(ͷ).
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Using the FM-D definition as our foundation, we can showcase the
linearity of FM-D, as well as its adherence to fundamental rules, such as
the product, composition, quotient, and chain rules for two
v,w{ }-differentiable functions. Additionally, the derivative of a
constant is indeed zero. However, whenever U ∈ ℘ → R is
v,w{ }-differentiable at ͷ* ∈ ℘ with v ∈ D and w> 0, then U is
continuous at ͷ*. Indeed, what sets FM-D apart from other
fractional approaches is its primary and fundamental differentiation
rule, which isR v,w{ }

M U(ͷ) � ͷ1−v
Γw+1U′(ͷ). For example,R v,w{ }

M (Γw+1
v
ͷv) �

1 and R v,w{ }
M (1) � 0.

Definition 2. [23] Let U ∈ C(℘ → R). Then, FM-I of order v ∈ D

with w> 0 of U at ͷ ∈ ℘ is

I v,w{ }
M U ͷ( ) � Γw+1∫ͷ

0

U x( )
x1−v dx. (3)

Next, theoretical results are employed to elucidate the
relationship between FM-D and FM-I behaviors. Specifically, the
inversion formula and the fundamental theorem of calculus are
utilized in the sense of fractional M-calculus.

Theorem 3. [23] For v ∈ D, w> 0, and ∀ͷ ∈ ℘, then

i. If U ∈ C(℘ → R) and I v,w{ }
M U exists,

then R v,w{ }
M (I v,w{ }

M U(ͷ)) � U(ͷ).
ii. If U ∈ ℘ → R is v,w{ }-differentiable and I v,w{ }

M U exists,
then I v,w{ }

M (R v,w{ }
M U(ͷ)) � U(ͷ) − U(0).

For additional information on the FM-D, FM-I, and
Mittag–Leffler parameter, including further results, historical
notes, characteristics, applications, and methods, please refer to
[23–28].

3 Fuzzy FM-D: differentiation and
continuity

Foremost, we present the fuzzy FM-D concept, its definitions,
and its properties. We utilize a new strongly generalized fuzzy FM-D
delineation for a ß value of order v ∈ D with w> 0 in two inclusive
phases. The derivative representation theory and continuity results
are also exhibited.

Definition 3. Let ß ∈R(℘,Rℵ) with v ∈ D and w> 0. Then, ß is a
strongly generalized fuzzy FM-D at ͷ ∈ ℘ if ∃R v,w{ }

M ß(ͷ) ∈ Rℵ with
one among the succeeding is met:

i. ∀ϵ> 0 small-scale, ß(ͷEw(εͷ−v)) ⊖ ß(ͷ) exists, and

R v,w{ }
M ß ͷ( ) �

lim
ε→0

ß ͷEw εͷ−v( )( ) ⊖~f ͷ( )
ε

,ͷ > 0,

lim
ͷ→0+

R v,w{ }
M ß ͷ( ),ͷ � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (4)

ii. ∀ϵ> 0 small-scale, ß(ͷ) ⊖ ß(ͷEw(εͷ−v)) exists, and

FIGURE 6
Plot of ȹn(ͷ , θη) at v,w{ } � 1, 1{ } gained from HRKA (1)- and (2)-fuzzy M-solutions: (A) in Application 1 in the phase of v(1),w{ }-fuzzy FM-D, (B) in
Application 1 in the phase of v(2),w{ }-fuzzy FM-D, (C) in Application 2 in the phase of v(1),w{ }-fuzzy FM-D, and (D) in Application 2 in the phase of
v(2),w{ }-fuzzy FM-D.
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R v,w{ }
M ß ͷ( ) �

lim
ε→0

ß ͷ( ) ⊖ ß ͷEw εͷ−v( )( )
−ε ,ͷ > 0,

lim
ͷ→0+

R v,w{ }
M ß ͷ( ),ͷ � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

Definition 4. Let ß ∈ C(℘,Rℵ) with v ∈ D and w> 0. Then,

i. ß is apparently v(1),w{ }-fuzzy FM-D on ℘ if ß concerning (4) is
v,w{ }-differentiable.

ii. ß is apparently v(2),w{ }-fuzzy FM-D on ℘ if ß concerning (5) is
v,w{ }-differentiable.

Undoubtedly, the fuzzy FM-Ds of ß will be characterized as
R v(1),w{ }

M ß andR v(2),w{ }
M ß in phases (i) and (ii), sequentially. The next

termination pertains to the intersection of fuzzy FM-D and crisp
differentiability.

Theorem 4. Let ß ∈R(℘,Rℵ) with v ∈ D and w> 0. Then,
i. If ß is v(1),w{ }-fuzzy FM-D, then ß1(θ)(ͷ) and ß2(θ)(ͷ) are

v,w{ }-differentiable on ℘ with

R v 1( ),w{ }
M ß ͷ( )[ ]θ � R v,w{ }

M ß1 θ( ) ͷ( ),R v,w{ }
M ß2 θ( ) ͷ( )[ ]. (6)

ii. If ß is v(2),w{ }-fuzzy FM-D, then ß1(θ)(ͷ) and ß2(θ)(ͷ) are
v,w{ }-differentiable on ℘ with

R v 2( ),w{ }
M ß ͷ( )[ ]θ � R v,w{ }

M ß2 θ( ) ͷ( ),R v,w{ }
M ß1 θ( ) ͷ( )[ ]. (7)

Proof. Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). Assuming that ͷ ∈ ℘ is
fixed, according to the given assumptions, one obtains

ß ͷEw εͷ−v( )( ) ⊖ ß ͷ( )[ ]θ � ß1 θ( ) ͷEw εͷ−v( )( ) − ß1 θ( ) ͷ( ),[
ß2 θ( ) ͷEw εͷ−v( )( ) − ß2 θ( ) ͷ( )]. (8)

Multiplying by 1
ε, we get

ß ͷEw εͷ−v( )( ) ⊖ ß ͷ( )
ε

[ ]θ

� ß1 θ( ) ͷEw εͷ−v( )( ) − ß1 θ( ) ͷ( )
ε

,
ß2 θ( ) ͷEw εͷ−v( )( ) − ß2 θ( ) ͷ( )

ε
[ ].

(9)
Passing to the limit, we get ß1(θ) and ß2(θ) as v,w{ }-differentiable

on ℘ with

R v 1( ),w{ }
M ß ͷ( )[ ]θ � R v,w{ }

M ß1 θ( ) ͷ( ),R v,w{ }
M ß2 θ( ) ͷ( )[ ].■ (10)

Theorem 5. Let ß ∈ C(℘,Rℵ) with v ∈ D and w> 0. If
[R(1)ß(ͷ)]θ � [ß1(θ)′ (ͷ), ß2(θ)′ (ͷ)] and [R(2)ß(ͷ)]θ � [ß2(θ)′ (ͷ),
ß1(θ)′ (ͷ)], then

i. If ß is v(1),w{ }-fuzzy FM-D, then

R v 1( ),w{ }
M ß ͷ( )[ ]θ � ͷ1−v

Γw+1
R 1( )ß ͷ( )[ ]θ . (11)

ii. If ß is v(2),w{ }-fuzzy FM-D, then

R v 2( ),w{ }
M ß ͷ( )[ ]θ � ͷ1−v

Γw+1
R 2( )ß ͷ( )[ ]θ . (12)

Proof: Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). Assuming that ͷ ∈ ℘ is
fixed, according to the given assumptions, one obtains

R v 1( ),w{ }
M ß ͷ( )[ ]θ � R v,w{ }

M ß1 θ( ) ͷ( ),R v,w{ }
M ß2 θ( ) ͷ( )[ ]

� lim
ε→0

ß1 θ( ) ͷEw εͷ−v( )( ) − ß1 θ( ) ͷ( )
ε

,[
lim
ε→0

ß2 θ( ) ͷEw εͷ−v( )( ) − ß2 θ( ) ͷ( )
ε

]. (13)

Since Ew(ͷ) � ∑∞
�0

ͷ

Γw+1 � 1 + ͷ
Γw+1 + ͷ2

Γ2w+1 + . . ., so

ͷEw εͷ−v( ) � ∑1
�0

εͷ−v( )
Γw+1

� ͷ + εͷ1−v

Γw+1
+ ͷ εͷ−v( )2

Γ2w+1
+ . . .

� ͷ + εͷ1−v

Γw+1
+O ε2( ).

(14)

Take h � εͷ1−v 1
Γw+1 +O(ε)( ), so ε � h

ͷ1−v 1
Γw+1+O(ε)( ), wheres if

ε → 0, then h → 0. Thereafter,

ß1 θ( ) ͷ + εͷ1−v
Γw+1 +O ε2( )( ) − ß1 θ( ) ͷ( )

ε
� ß1 θ( ) ͷ + h( ) − ß1 θ( ) ͷ( )

hͷv−1
1

Γw+1 1+Γw+1O ε( )( )
. (15)

ß2 θ( ) ͷ + εͷ1−v
Γw+1 +O ε2( )( ) − ß2 θ( ) ͷ( )

ε
� ß2 θ( ) ͷ + h( ) − ß2 θ( ) ͷ( )

hͷv−1
1

Γw+1 1+Γw+1O ε( )( )
. (16)

Thus, one can formulate

R v 1( ),w{ }
M ß ͷ( )[ ]θ � [ͷ1−v

Γw+1
lim
h→0

ß1 θ( ) ͷ + h( ) − ß1 θ( ) ͷ( )
h

1 + Γw+1O ε( )
,

ͷ1−v

Γw+1
lim
h→0

ß2 θ( ) ͷ + h( ) − ß2 θ( ) ͷ( )
h

1 + Γw+1O ε( )
]

� ͷ1−v

Γw+1
ß1 θ( )′ ͷ( ), ß2 θ( )′ ͷ( )[ ] � ͷ1−v

Γw+1
R 1( )ß ͷ( )[ ]θ .■

(17)

Theorem 6. Let ß ∈ (℘,Rℵ) with v ∈ D and w> 0. Then,

i. If ß is v(1),w{ }-fuzzy FM-D at ͷ* ∈ ℘, then ß ∈ C(ͷ*,Rℵ).
ii. If ß is v(2),w{ }-fuzzy FM-D at ͷ* ∈ ℘, then ß ∈ C(ͷ*,Rℵ).

Proof. Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). Assuming that ͷ* ∈ ℘,
∀ϵ> 0 being small enough, one obtains

ß ͷ*Ew ε ͷ*( )−v( )( ) ⊖ ß ͷ*( ) � ß ͷ*Ew ε ͷ*( )−v( )( ) ⊖ ß ͷ*( )
ε

· ε.
(18)

Catch the limits on both sides of Eq. 18 to obtain
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lim
ε→0

ß ͷ*Ew ε ͷ*( )−v( )( ) ⊖ ß ͷ*( )( )
� lim

ε→0

ß ͷ*Ew ε ͷ*( )−v( )( ) ⊖ ß ͷ*( )
ε

· ε

� lim
ε→0

ß ͷ*Ew ε ͷ*( )−v( )( ) ⊖ ß ͷ*( )
ε

· lim
ε→0

ε.

(19)

Utilizing (14), one obtains

lim
ε→0

ß ͷ + εͷ1−v

Γw+1
+O ε2( )( ) ⊖ ß ͷ( )( ) � ͷ1−v

Γw+1
R 1( )ß ͷ( ) · 0. (20)

It becomes apparent that lim
h→0

(ß(ͷ + h) ⊖ ß(ͷ)) � χ0,
lim
→0+

(ß(ͷ* +) ⊖ ß(ͷ*)) � χ0, or lim
→0+

ß(ͷ* +) � ß(ͷ*). Thus, one
infers that ß is continuous at ͷ*. ■

4 Fuzzy FM-I: integration and inversion

After utilizing several fuzzy FM-D results, a new approach for the
fuzzy FM-I for ß of order v ∈ D with w> 0 is suggested together with
various properties. Indeed, the fuzzy inversion formulas and the fuzzy
fundamental theorem of fuzzy fractional M-calculus are exhibited.

In this section, I v,w{ }
M is the fuzzy FM-I of order v ∈ D with w> 0

concerning the reference point 0.

Definition 5. Assume ß ∈ C(℘,Rℵ), v ∈ D, and w> 0. Then, the
fuzzy FM-I of ß at ͷ ∈ ℘ is constructed as

I v,w{ }
M ß ͷ( ) � Γw+1∫ͷ

0

ß x( )
x1−v dx. (21)

Theorem 7. Let ß ∈ C(℘,Rℵ) with v ∈ D and w> 0. Then,

i. (I v,w{ }
M ß)(ͷ) ∈ Rℵ

ii. [(I v,w{ }
M ß)(ͷ)]θ � (I v,w{ }

M ß1(θ))(ͷ), (I v,w{ }
M ß2(θ))(ͷ)[ ].

Proof. First, ∀ͷ ∈ ℘ with ͷ > 0 define ℊ: ℘ → R as ℊ(ͷ) �∫ͷ
0
(ß2(θ)(x)x1−v − ß1(θ)(x)

x1−v )dx. Because ß2(θ)(x) − ß1(θ)(x)≥ 0 and x1−v > 0
yield

ß2(θ)(ͷ)
ͷ1−v − ß1(θ)(ͷ)

ͷ1−v > 0 or ℊ is increasing, so ℊ(ͷ)>ℊ(0) or

∫ͷ
0

ß2(θ)(x)
x1−v dx> ∫ͷ

0

ß1(θ)(x)
x1−v dx. In other formations,

(I v,w{ }
M ß2(θ))(ͷ)> (I v,w{ }

M ß1(θ))(ͷ) or (I v,w{ }
M ß)(ͷ) ∈ Rℵ.

For part (ii) take S(ͷ, θ): � [(I v,w{ }
M ß1(θ))(ͷ), (I v,w{ }

M ß2(θ))(ͷ)],
then ∀ͷ ∈ ℘ and ∀θ ∈ I; S(ͷ, θ) is a compact convex in R with
S(ͷ, 1) ≠ ϕ. So,

S ͷ, θ( ) � ∫ͷ

0

Γw+1
x1−vß1 θ( ) x( )dx,∫ͷ

0

Γw+1
x1−vß2 θ( ) x( )dx[ ]

� ∫ͷ

0

Γw+1
x1−v ß1 θ( ) x( ), ß2 θ( ) x( )[ ]dx

� ∫ͷ

0

Γw+1
x1−v ß x( )[ ]θdx

� ∫ͷ

0

Γw+1
x1−v ß x( )dx[ ]θ

� I v,w{ }
M ß ͷ( )[ ]θ .

(22)

The results in [36] produce S(ͷ, θ) ∈ Rℵ and
S(ͷ, θ) � [(I v,w{ }

M ß)(ͷ)]θ . ■

Theorem 8. Let ß ∈ C(℘,Rℵ) with v ∈ D and w> 0. Then,

i. R v(1),w{ }
M (I v,w{ }

M ß)(ͷ) � ß(ͷ) when ß is v(1),w{ }-fuzzy FM-D.
ii. R v(2),w{ }

M (I v,w{ }
M ß)(ͷ) − ß(ͷ) � 0 when ß is v(2),w{ }-fuzzy

FM-D.

ProofFor part (i), ∀ͷ ∈ ℘, utilizing Theorem 6 and Theorem 8
with w ∈ D and w> 0, one obtains

R v 1( ),w{ }
M I v,w{ }

M ß( ) ͷ( )[ ]θ
� ͷ1−v

Γw+1
R 1( ) I v,w{ }

M ß( ) ͷ( )[ ]θ
� ͷ1−v

Γw+1

d

dͷ
I v,w{ }
M ß1 θ( )( ) ͷ( ), d

dͷ
I v,w{ }
M ß2 θ( )( ) ͷ( )[ ]θ

� ͷ1−v

Γw+1

d

dͷ
Γw+1∫ͷ

0

ß1 θ( )
x1−v dx( ) ͷ( ), d

dͷ
Γw+1∫ͷ

0

ß2 θ( )
x1−v dx( ) ͷ( )[ ]θ

� ͷ1−v

Γw+1
Γw+1

ß1 θ( )
ͷ1−v ,Γw+1

ß2 θ( )
ͷ1−v[ ]θ

� ß1 θ( ) ͷ( ),ß2 θ( ) ͷ( )[ ]θ
� ß ͷ( )[ ]θ .

(23)
Thus,R v(1),w{ }

M (I v,w{ }
M ß)(ͷ) � ß(ͷ). For part (ii), it is possible to

write

R v 2( ),w{ }
M I v,w{ }

M ß( ) ͷ( )[ ]θ
� ͷ1−v

Γw+1
R 2( ) I v,w{ }

M ß( ) ͷ( )[ ]θ
� ͷ1−v

Γw+1
d

dͷ
I v,w{ }
M ß2 θ( )( ) ͷ( ), d

dͷ
I v,w{ }
M ß1 θ( )( ) ͷ( )[ ]

� ͷ1−v

Γw+1
d

dͷ
Γw+1∫ͷ

0

ß2 θ( )
x1−v dx( ), d

dͷ
Γw+1∫ͷ

0

ß1 θ( )
x1−v dx( )[ ]

� ͷ1−v

Γw+1
Γw+1

ß2 θ( )
ͷ1−v , Γw+1

ß1 θ( )
ͷ1−v[ ]

� ß2 θ( ) ͷ( ), ß1 θ( ) ͷ( )[ ].

(24)

The rearranging of Eq. 24 gives [R v(2),w{ }
M (I v,w{ }

M ß)(ͷ)]θ −
[ß(ͷ)]θ � 0 or R v(1),w{ }

M (I v,w{ }
M ß)(ͷ) − ß(ͷ) � 0. ■

Theorem 9. Let ß ∈ C1(℘,Rℵ) with v ∈ D and w> 0. Then,

i. I v,w{ }
M (R v(1),w{ }

M ß)(ͷ) � ß(ͷ) ⊖ ß(0) when ß is v(1),w{ }-fuzzy
FM-D.

ii. ß(0) � ß(ͷ) − I v,w{ }
M (R v(2),w{ }

M ß)(ͷ) when ß is v(2),w{ }-fuzzy
FM-D.

Proof. For part (i), ∀θ ∈ I, it holds that
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I v,w{ }
M R v 1( ),w{ }

M ß( ) ͷ( )[ ]θ
� Γw+1∫ͷ

0

R v 1( ),w{ }
M ß x( )
x1−v dx[ ]θ

� Γw+1∫ͷ

0

R v,w{ }
M ß1 θ( ) x( )

x1−v dx, Γw+1∫ͷ

0

R v,w{ }
M ß2 θ( ) x( )

x1−v dx⎡⎣ ⎤⎦
� ∫ͷ

0

Γw+1
x1−v

x1−v

Γw+1

d

dx
ß1 θ( ) x( )dx,∫ͷ

0

Γw+1
x1−v

x1−v

Γw+1
d

dx
ß2 θ( ) x( )dx[ ]

� ∫ͷ

0

d

dx
ß1 θ( ) x( )dx,∫ͷ

0

d

dx
ß2 θ( ) x( )dx[ ]

� ß1 θ( ) x( ) − ß1 θ( ) 0( ), ß2 θ( ) x( ) − ß2 θ( ) 0( )[ ]
� ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )[ ] ⊖ ß1 θ( ) 0( ), ß2 θ( ) 0( )[ ]
� ß ͷ( )[ ]θ ⊖ ß 0( )[ ]θ .

(25)

Thereafter, I v,w{ }
M (R v(1),w{ }

M ß)(ͷ) � ß(ͷ) ⊖ ß(0). Moreover, for
part (ii), one obtains

I v,w{ }
M R v 2( ),w{ }

M ß( ) ͷ( )[ ]θ
� Γw+1∫ͷ

0

R v 2( ),w{ }
M ß x( )
x1−v dx[ ]θ

� Γw+1∫ͷ

0

R v,w{ }
M ß2 θ( ) x( )

x1−v dx, Γw+1∫ͷ

0

R v,w{ }
M ß1 θ( ) x( )

x1−v dx⎡⎣ ⎤⎦
� ∫ͷ

0

Γw+1
x1−v

x1−v

Γw+1

d

dx
ß2 θ( ) x( )dx,∫ͷ

0

Γw+1
x1−v

x1−v

Γw+1
d

dx
ß1 θ( ) x( )dx[ ]

� ∫ͷ

0

d

dx
ß2 θ( ) x( )dx,∫ͷ

0

d

dx
ß1 θ( ) x( )dx[ ]

� ß2 θ( ) x( ) − ß2 θ( ) 0( ), ß1 θ( ) x( ) − ß1 θ( ) 0( )[ ].
(26)

The rearranging of Eq. 26 gives

I v,w{ }
M R v 2( ),w{ }

M ß( ) ͷ( )[ ]θ + −ß2 θ( ) ͷ( ) − ß1 θ( ) ͷ( )[ ]
� −ß2 θ( ) 0( ) − ß1 θ( ) 0( )[ ]. (27)

Thus, −[(I v,w{ }
M R v(2),w{ }

M ß)(ͷ)]θ + [ß(ͷ)]θ � [ß(0)]θ or
ß(0) � ß(ͷ) − I v,w{ }

M (R v(2),w{ }ß(ͷ)). ■

5 FM-FIDM: structures, steps,
and tools

This section delves into the examination of existence-
uniqueness outcomes for coupled fuzzy solutions associated with

v(1),w{ }- and v(1),w{ }-fuzzy FM-D methodologies. Additionally,
this part includes the provision of a computational algorithm and
characterization theorem.

5.1 FM-FIDM formalism

Applying the strongly generalized v,w{ }-fuzzy FM-D on the
considered FM-FIDM; new CM-FIDM coupled equations
generate conditionality on v(1),w{ } or v(1),w{ } differentiability
types used.

The functional framework of FM-FIDM utilizing can be
prioritized as

R v,w{ }
M ß ͷ( ) �  ͷ, ß ͷ( )( ) + ∫ͷ

0
 ͷ, x, ß x( )( )dx,

ß 0( ) � Ɯ.
{ (28)

The θ-cut of (ß(ͷ),(ͷ, ß(ͷ)),(ͷ, x, ß(x)),Ɯ) can
be swapped in Eq. 33, concerning the next corresponding
terms:

 ͷ, ß ͷ( )( )[ ]θ � 1 θ( ) ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( ),[
2 θ( ) ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( )],

 ͷ, x, ß x( )( )[ ]θ � 1 θ( ) ͷ, x, ß1 θ( ) x( ), ß2 θ( ) x( )( ),[
2 θ( ) ͷ, x, ß1 θ( ) x( ), ß2 θ( ) x( )( )].

(29)

Thus, this leads to the determination of the
subsequent coupled CM-FIDMs concerning v,w{ }-fuzzy
FM-D as

R v 1( ),w{ }
M ß ͷ( ) �  ͷ, ß ͷ( )( ) + ∫ͷ

0
 ͷ, x, ß x( )( )dx,

ß 0( ) � Ɯ.
{ (30)

R v 2( ),w{ }
M ß ͷ( ) �  ͷ, ß ͷ( )( ) + ∫ͷ

0
 ͷ, x, ß x( )( )dx,

ß 0( ) � Ɯ.
{ (31)

Definition 6. Let ß ∈ C1(℘,Rℵ) with v ∈ D and w> 0 be such that
R v(1),w{ }

M ß(ͷ) or R v(2),w{ }
M ß(ͷ) exists. Then,

i. If ß(ͷ) and R v(1),w{ }
M ß(ͷ) satisfy (Eq. 30), then ß(ͷ) is

considered a (1)-fuzzy M-solution of Eq. 28.
ii. If ß(ͷ) andR v(2),w{ }

M ß(ͷ) satisfy (Eq. 31), then ß(ͷ) is considered
a (2)-fuzzy M-solution of Eq. 28.
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Phase I. If ß(ͷ) is v(1),w{ }-fuzzy FM-D on ℘, then use (Eq. 33)

and apply the following steps:

i. Solve v(1),w{ }-CM-FIDMs to the source [ß1(θ)(ͷ),ß2(θ)(ͷ)].
ii. Validate that [ß1(θ)(ͷ),ß2(θ)(ͷ)] and

[R v,w{ }
M ß1(θ)(ͷ),R v,w{ }

M ß2(θ)(ͷ)] are acceptable sets.

iii. Fit a (1)-fuzzy M-solution ß(ͷ) with [ß(ͷ)]θ �
[ß1(θ)(ͷ),ß2(θ)(ͷ)].

Phase II. If ß(ͷ) is v(2),w{ }-fuzzy FM-D on ℘, then use (Eq. 31)

and apply the following steps:

i. Solve the v(2),w{ }-CM-FIDMs to the source

[ß1(θ)(ͷ),ß2(θ)(ͷ)].
ii. Validate that [ß1(θ)(ͷ),ß2(θ)(ͷ)] and

[R v,w{ }
M ß2(θ)(ͷ),R v,w{ }

M ß1(θ)(ͷ)] are acceptable sets.

iii. Fit a (2)-fuzzy M-solution ß(ͷ) with [ß(ͷ)]θ �
[ß1(θ)(ͷ),ß2(θ)(ͷ)].

Algorithm 1. To construct a (1) or (2)-fuzzy M-solution of Eq. 38, the
following coupled CM-FIDMs should be included.

5.2 Existence-uniqueness of two fuzzy
M-solutions

Our focus in this study is to address two main questions. First,
we aim to identify the conditions under which solutions for FM-
FIDM (28) exist. Second, we aim to determine under what
circumstances two unique fuzzy M-solutions exist, with one
solution for an individual crosswise fuzzy FM-D.z

Lemma 1. FM-FIDM (28) with  ∈ C(℘ × Rℵ → Rℵ) and
 ∈ C(℘2 × Rℵ → Rℵ) is equivalent to

i. ß(ͷ)�Ɯ+∫ͷ
0
Γw+1
ƻ1−v(ƻ,ß(ƻ))dƻ+∫ͷ

0
Γw+1
ƻ1−v (∫ƻ0(ƻ,x,ß(x))dx)dƻ.

ii. ß(ͷ) �Ɯ⊖ (−1)∫ͷ
0
Γw+1
ƻ1−v (ƻ,ß(ƻ))dƻ⊖ (−1)∫ͷ

0
Γw+1
ƻ1−v (∫ƻ0(ƻ,x,

ß(x))dx)dƻ.

This depends on v(1),w{ }- or v(1),w{ }-fuzzy FM-D,
sequentially.

Proof. For part (i), because  ∈ C(℘ × Rℵ → Rℵ) and
 ∈ C(℘2 × Rℵ → Rℵ), they are integrable. First, considering
v(1),w{ }-fuzzy FM-D and applying fuzzy integration once to
both sides of Eq. 30, an equivalent form can be expressed as

ß ͷ( ) � ß 0( ) + ∫ͷ

0

Γw+1
ƻ1−v  ƻ, ß ƻ( )( )dƻ

+ ∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ, x, ß x( )( )dx( )dƻ. (32)

Considering v(2),w{ }-fuzzy FM-D and applying fuzzy
integration once to both sides of Eq. 31, an equivalent form can
be expressed as

ß 0( ) � ß ͷ( ) + −1( )∫ͷ

0

Γw+1
ƻ1−v  ƻ, ß ƻ( )( )dƻ

+ −1( )∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ, x, ß x( )( )dx( )dƻ. (33)

This is tantamount to the format presented in part (ii) of
Lemma 1. ■

From Lemma 1, one can consider ß ∈ C(℘ → Rℵ) as a solution
to (28) if ß satisfies phases (i) or (ii) of Definition 4 in the sense of
v(1),w{ }- or v(1),w{ }-fuzzy FM-D, sequentially.

Ƥ: R(℘,Rℵ) →R(℘,Rℵ) is a contraction on (R(℘,Rℵ), d). If
∃γ ∈ R alongside γ< 1 with d(G(ß), G(Ɣ))≤ γd(ß,Ɣ),
∀ß,Ɣ ∈R(℘,Rℵ), whilst Ɣ ∈R(℘,Rℵ) is a fixed point of Ƥ when
Ƥ(ß) � ß. Moreover, any Ƥ of (R(℘,Rℵ), d) into itself presence of a
sole fixed point.

Lemma 2. Both ],ω: ℘ → R with Ỽ ∈ R defined as ](ͷ) � 1
Ỽ2 (1 −

e−Ỽͷ − Ỽͷe−Ỽͷ) and ω(ͷ) � 1
Ỽ (1 − e−Ỽͷ) are nondecreasing with

](1) � sup
ͷ∈℘

](ͷ), ω(1) � sup
ͷ∈℘

ω(ͷ), and lim
Ỽ→+∞(](1) + ω(1)) � 0.

Proof. Since ]′(ͷ) � ͷe−Ỽͷ > 0 and ω′(ͷ) � e−Ỽͷ > 0, so ],ω are
b, ](1) � sup

ͷ∈℘
](ͷ), and ω(1) � sup

ͷ∈℘
ω(ͷ). Indeed, by employing

limit techniques, one obtains

Lim
Ỽ→+∞

] 1( )+ω 1( )( ) � lim
Ỽ→+∞

1

Ỽ2
1− e−Ỽ −Ỽe−Ỽ( )+ 1

Ỽ
1− e−Ỽ( )( )

� lim
Ỽ→+∞

1
Ỽ

1
Ỽ
+1− 1

Ỽ
e−Ỽ −2e−Ỽ( )� 0.■ (34)

It is important to note that the presence of a unique
fixed point is assured by Lemma 2, which is relevant to the
subsequent theorem. This means that a distinct fuzzy
M-solution exists for (28) for every type of differentiability.

Theorem 10. Let  ∈ C(℘ × Rℵ,Rℵ) with w ∈ D. If ∃K> 0, such
that ∀ͷ ∈ ℘, one has

d∞
1

ƻ1−v ƻ,ξ1 ƻ( )( ), 1

ƻ1−v ƻ,ξ2 ƻ( )( )( )≤K1d∞ ξ1 ƻ( ),ξ2 ƻ( )( ),

d∞
1

ƻ1−v ƻ,x,ξ1 x( )( ), 1

ƻ1−v ƻ,x,ξ2 x( )( )( )≤K2d∞ ξ1 x( ),ξ2 x( )( ).
(35)

Then,

i. FM-FIDM (28) possesses a unique fuzzy M-solution in ℘
concerning v(1),w{ }-fuzzy FM-D.

ii. FM-FIDM (28) possesses a unique fuzzy M-solution in ℘
concerning v(2),w{ }-fuzzy FM-D.

Proof. Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). However, ∀ζ(ͷ) ∈ Rℵ
defines Ƥ: C(℘,Rℵ) → C(℘,Rℵ) as

Ƥζ ͷ( ) � Ɯ + ∫ͷ

0

Γw+1
ƻ1−v  ƻ, ζ ƻ( )( )dƻ

+ ∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ, x, ζ x( )( )dx( )dƻ. (36)

First, we want to confirm whether the hypothesis of the
Banach theorem is satisfied well by Ƥζ . However,
∀ζ1, ζ2 ∈ C(℘,Rℵ) yields
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d1 Gξ1,Gξ2( ) � sup
ͷ∈℘

d∞ Ƥξ1( ) ͷ( ), Ƥξ2( ) ͷ( )( )e−Ỽͷ( )
� sup

ͷ∈℘
d∞ Ɯ+∫ͷ

0

Γw+1
ƻ1−v  ƻ,ξ1 ƻ( )( )dƻ({

+∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ,x,ξ1 x( )( )dx( )dƻ,Ɯ

+∫ͷ

0

Γw+1
ƻ1−v  ƻ,ξ2 ƻ( )( )dƻ

+∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ,x,ξ2 x( )( )dx( )dƻ)e−Ỽͷ}

� Γw+1 sup
ͷ∈℘

d∞ ∫ͷ

0

1

ƻ1−v ƻ,ξ1 ƻ( )( )dƻ({
+∫ͷ

0

1

ƻ1−v ∫ƻ

0
 ƻ,x,ξ1 x( )( )dx( )dƻ,

∫ͷ

0

1

ƻ1−v ƻ,ξ2 ƻ( )( )dƻ

+∫ͷ

0

1

ƻ1−v ∫ƻ

0
 ƻ,x,ξ2 x( )( )dx( )dƻ)e−Ỽͷ}

≤Γw+1 sup
ͷ∈℘

d∞ ∫ͷ

0

1

ƻ1−v ƻ,ξ1 ƻ( )( )dƻ,({
∫ͷ

0

1

ƻ1−v ƻ,ξ2 ƻ( )( )dƻ)e−Ỽͷ
+d∞ ∫ͷ

0

1

ƻ1−v ∫ƻ

0
 ƻ,x,ξ1 x( )( )dx( )dƻ,(

∫ͷ

0

1

ƻ1−v ∫ƻ

0
 ƻ,x,ξ2 x( )( )dx( )dƻ)e−Ỽͷ}

≤Γw+1 sup
ͷ∈℘

d∞ ∫ͷ

0

1

ƻ1−v ƻ,ξ1 ƻ( )( )dƻ,({
∫ͷ

0

1

ƻ1−v ƻ,ξ2 ƻ( )( )dƻ)e−Ỽͷ

+d∞ ∫ͷ

0
∫ƻ

0

1

ƻ1−v ƻ,x,ξ1 x( )( )dxdƻ,(
∫ͷ

0
∫ƻ

0

1

ƻ1−v ƻ,x,ξ2 x( )( )dxdƻ)e−Ỽͷ}
≤Γw+1 sup

ͷ∈℘
∫ͷ

0
d∞

1

ƻ1−v ƻ,ξ1 ƻ( )( ),({
1

ƻ1−v ƻ,ξ2 ƻ( )( ))dƻe−Ỽͷ

+∫ͷ

0
∫ƻ

0
d∞

1

ƻ1−v ƻ,x,ξ1 x( )( ),(
1

ƻ1−v ƻ,x,ξ2 x( )( ))dxdƻe−Ỽͷ}

≤Γw+1 sup
ͷ∈℘

∫ͷ

0
K1d∞ ξ1 ƻ( ),ξ2 ƻ( )( )dƻe−Ỽͷ{

+∫ͷ

0
∫ƻ

0
K2d∞ ξ1 x( ),ξ2 x( )( )dxdƻe−Ỽͷ

≤Γw+1max K1,K2{ }sup
ͷ∈℘

∫ͷ

0
d1 ξ1,ξ2( )eỼƻdƻe−Ỽͷ{

+∫ͷ

0
∫ƻ

0
d1 ξ1,ξ2( )eỼxdxdƻe−Ỽͷ

≤Γw+1max K1,K2{ }d1 ξ1,ξ2( )

sup
ͷ∈℘

∫ͷ

0
eỼƻdƻe−Ỽͷ +∫ͷ

0
∫ƻ

0
eỼxdxdƻe−Ỽͷ{ }

≤Γw+1max K1,K2{ }d1 ξ1,ξ2( )
sup
ͷ∈℘

e−Ỽͷ∫ͷ

0
eỼƻdƻ+ e−Ỽͷ∫ͷ

0
∫ƻ

0
eỼxdxdƻ{ }

� Γw+1max K1,K2{ }d1 ξ1,ξ2( )
sup
ͷ∈℘

e−Ỽͷ
1

Ỽ2
eỼͷ −1−Ỽͷ( )( )+ e−Ỽͷ 1

Ỽ
eỼͷ −1( )( ){ }

� Γw+1max K1,K2{ }d1 ξ1,ξ2( )
sup
ͷ∈℘

1

Ỽ2
1− e−Ỽͷ −Ỽͷe−Ỽͷ( )( )+ 1

Ỽ
1− e−Ỽͷ( )( ){ }

� Γw+1max K1,K2{ }d1 ξ1,ξ2( )
1

Ỽ2
1− e−Ỽ −Ỽͷe−Ỽ( )( )+ 1

Ỽ
1− e−Ỽ( )( ){ }

� Γw+1max K1,K2{ }1
Ỽ

1
Ỽ
+1− 1

Ỽ
e−Ỽ −2e−Ỽ( )d1 ξ1,ξ2( ).

(37)

Utilize Lemma 2 and choose Ỽ> 0 as Γw+1 max K1,K2{ } 1Ỽ (1Ỽ + 1 −
1
Ỽ e

−Ỽ − 2e−Ỽ)< 1. However, Ƥ is contractive, and so, a unique fixed
point concerningƤ belongs to R(℘,Rℵ). By the Banach theorem, FM-
FIDM (Eq. 28) has a unique fixed point, ß ∈R(℘,Rℵ) or Ƥß � ß.
Thereafter, considering (Eq. 36), one obtains

ß ͷ( ) � Ɯ + ∫ͷ

0

Γw+1
ƻ1−v  ƻ, ζ ƻ( )( )dƻ

+ ∫ͷ

0

Γw+1
ƻ1−v ∫ƻ

0
 ƻ, x, ζ x( )( )dx( )dƻ. (38)

Furthermore, differentiate (Eq. 38) and substitute ͷ � 0 to gain
the FM-FIDM (Eq. 28). So, any fuzzy M-solution of Eq. 30 must
satisfy (Eq. 36), and conversely. ■

6 New characterization theorem

Herein, the characterization theorem suggests a general approach
for solving FM-FIDM—we can convert it into a couple of CM-FIDMs,
which have extensively studied solution techniques. By solving the crisp
system, we can obtain solutions for the original FM-FIDM. Therefore,
there is no need to rewrite the algorithms in a fuzzy setting; instead, they
can be directly applied to the acquired coupled crisp equations.

An : ℘ × R2 → R is equicontinuous if ∀ϵ> 0 and
∀(ͷ, x, y) ∈ ℘ × R2; |(ͷ, x, y)| − |((ͷ, x1, y1))|< ϵ whenever
‖(ͷ, x1, y1) − (ͷ, x, y)‖< δ and exhibit uniform boundedness
over every bounded set. Similarly, for : ℘2 × R2 → R.

Theorem 11. Consider FM-FIDM (33), where : ℘ × Rℵ → Rℵ
and : ℘2 × Rℵ → Rℵ are such that

i. 1,2(θ) and 1,2(θ) exhibit both equicontinuity and uniform
boundedness over every bounded set.

ii. ∃L1, L2 > 0 as
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1,2 θ( ) ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( ) − 1,2 θ( ) ͷ,Ɣ1 θ( ) ͷ( ),Ɣ2 θ( ) ͷ( )( )∣∣∣∣∣ ∣∣∣∣∣
≤L1 max ß1 θ( ) ͷ( ) − Ɣ1 θ( ) ͷ( )

∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) ͷ( ) − Ɣ2 θ( ) ͷ( )
∣∣∣∣∣ ∣∣∣∣∣{ },

1,2 θ( ) ͷ, x, ß1 θ( ) x( ), ß2 θ( ) x( )( ) − 1,2 θ( ) ͷ, x, ß1 θ( ) x( ), ß2 θ( ) x( )( )∣∣∣∣∣ ∣∣∣∣∣
≤ ≤L2 max ß1 θ( ) ͷ( ) − Ɣ1 θ( ) ͷ( )

∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) ͷ( ) − Ɣ2 θ( ) ͷ( )
∣∣∣∣∣ ∣∣∣∣∣{ }.

(39)
Then,

i. For v(1),w{ }-fuzzy FM-D, FM-FIDM (Eq. 28) and the coupled
CM-FIDMs (Eq. 30) are equivalent.

ii. For v(2),w{ }-fuzzy FM-D, FM-FIDM (Eq. 28) and the coupled
CM-FIDMs (Eq. 31) are equivalent.

Proof. Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). However, it is assumed
that ß is v(1),w{ }-fuzzy FM-D. The equicontinuity of 1,2(θ) and
1,2(θ) implies the continuity of  and , sequentially. The
Lipschitzian in (ii) ensures that  and  are Lipschitzian,
concerning (Rℵ, d∞) as

d∞  ͷ, ß ͷ( )( ), ͷ,Ɣ ͷ( )( )( )
� sup

θ∈I
dH  ͷ, ß ͷ( )( )[ ]θ ,  ͷ,Ɣ ͷ( )( )[ ]θ( )

� sup
θ∈I

max 1 θ( ) ͷ, ß ͷ( )( ) −1 θ( ) ͷ,Ɣ ͷ( )( )∣∣∣∣ ∣∣∣∣,{
2 θ( ) ͷ, ß ͷ( )( ) −2 θ( ) ͷ,Ɣ ͷ( )( )∣∣∣∣ ∣∣∣∣}

� sup
θ∈I

max{ 1 θ( ) ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( )∣∣∣∣∣
−1 θ( ) ͷ,Ɣ1 θ( ) ͷ( ),Ɣ2 θ( ) ͷ( )( )|,
2 θ( ) ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( )∣∣∣∣∣
−2 θ( ) ͷ,Ɣ1 θ( ) ͷ( ),Ɣ2 θ( ) ͷ( )( )|}

≤ L1 sup
θ∈I

max ß1 θ( ) ͷ( ) − Ɣ1 θ( ) ͷ( )
∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) ͷ( ) − Ɣ2 θ( ) ͷ( )

∣∣∣∣∣ ∣∣∣∣∣{ }
� L1 sup

θ∈I
dH ß ͷ( )[ ]θ , Ɣ ͷ( )[ ]θ( ) � L1d∞ ß ͷ( ),Ɣ ͷ( )( ). (40)

Similarly, one obtains

d∞  ͷ, x, ß x( )( ), ͷ, x,Ɣ x( )( )( )≤L2d∞ ß x( ),Ɣ x( )( ). (41)

The continuity of  and , the Lipschitzian in Eqs 39, 40, and
the property (i) show that FM-FIDM (Eq. 28) owns a unique
solution. However, the fuzzy M-solution of Eq. 30 is
v(1),w{ }-fuzzy FM-D; so, by phase (i) in Theorem 5; ß1(θ) and
ß2(θ) are v,w{ }-differentiable. Thereafter, (ß1(θ)(ͷ), ß2(θ)(ͷ)) is a
crisp solution for the coupled CM-FIDMs (Eq. 30).

Conversely, presume that (ß1(θ)(ͷ), ß2(θ)(ͷ)) with θ ∈ I is fixed
is a (1)-fuzzy M-solution of Eq. 28 [The property (ii) guarantees the
existence of this solution, as can be seen by inspection]. The
Lipschitzian in Eqs 40, 41 imply the existence-uniqueness of the
(1)-fuzzy M-solution ~ß(ͷ). Seeing as ~x is v(1),w{ }-fuzzy FM-D, so
the ~ß1(θ)(ͷ) and ~ß2(θ)(ͷ) endpoints of [~ß(ͷ)]θ are a solution for

CM-FIDMs (Eq. 30). However, the solution of CM-FIDMs (Eq. 30)
is unique, so [~ß(ͷ)]θ � [~ß 1(θ)(ͷ), ~ß2(θ) (ͷ)]θ � [ß1(θ)(ͷ), ß2(θ)
(ͷ)]θ � [ß(ͷ)]θ , or FM-FIDM (Eq. 28) and the coupled CM-
FIDMs (Eq. 30) are equivalent. ■

The aim of the following results is not to significantly enhance
Theorem 11 but instead to provide alternative criteria that establish
the equivalence between FM-FIDM (Eq. 28) and the corresponding
coupled CM-FIDMs (Eq. 30) and (Eq. 31).

Corollary 1. Consider FM-FIDM (Eq. 28), where
: ℘ × Rℵ → Rℵ and : ℘2 × Rℵ → Rℵ. If ∃L1, L2 > 0 is

1,2 θ( ) ͷ1,ß1 θ( ) ͷ1( ),ß2 θ( ) ͷ1( )( )−1,2 θ( ) ͷ2,Ɣ1 θ( ) ͷ2( ),Ɣ2 θ( ) ͷ2( )( )∣∣∣∣∣ ∣∣∣∣∣
≤L1max ͷ2 −ͷ1| |, ß1 θ( ) ͷ1( )−Ɣ1 θ( ) ͷ2( )

∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) ͷ1( )−Ɣ2 θ( ) ͷ2( )
∣∣∣∣∣ ∣∣∣∣∣{ },

1,2 θ( ) ͷ1,x1,ß1 θ( ) x1( ),ß2 θ( ) x1( )( )−1,2 θ( ) ͷ2,x2,Ɣ1 θ( ) x2( ),Ɣ2 θ( ) x2( )( )∣∣∣∣∣ ∣∣∣∣∣
≤L2max ͷ1 −ͷ2| |, x1 −x2| |, ß1 θ( ) x1( )−Ɣ1 θ( ) x2( )

∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) x1( )−Ɣ2 θ( ) x2( )
∣∣∣∣∣ ∣∣∣∣∣{ },

(42)

then,

i. For v(1),w{ }-fuzzy FM-D, FM-FIDM (Eq. 28) and the coupled
CM-FIDMs (Eq. 30) are equivalent.

ii. For v(2),w{ }-fuzzy FM-D, FM-FIDM (Eq. 28) and the coupled
CM-FIDMs (Eq. 31) are equivalent.

Proof. Here, our attention will be directed toward (i), while a
comparable proof can be utilized for (ii). To achieve this objective,
let us presume the hypothesis of Corollary 1. Thus, condition (ii) of
Theorem 11 is valid. To prove (i) in Theorem 11, fix ϵ> 0, let δ � ϵ/L,
and set ‖(ͷ, ß1(θ)(ͷ), ß2(θ)(ͷ)) − (ͷ1,Ɣ1(θ)(ͷ1),Ɣ2(θ)(ͷ1))‖< δ.
Then,

1,2 θ( ) ͷ1, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( ) − 1,2 θ( ) ͷ2,Ɣ1 θ( ) ͷ1( ),Ɣ2 θ( ) ͷ1( )( )∣∣∣∣∣ ∣∣∣∣∣
≤L1 max ͷ − ͷ1| |, ß1 θ( ) ͷ( ) − Ɣ1 θ( ) ͷ1( )

∣∣∣∣∣ ∣∣∣∣∣, ß2 θ( ) ͷ( ) − Ɣ2 θ( ) ͷ1( )
∣∣∣∣∣ ∣∣∣∣∣{ }

≤L1 ͷ, ß1 θ( ) ͷ( ), ß2 θ( ) ͷ( )( ) − ͷ1,Ɣ1 θ( ) ͷ1( ),Ɣ2 θ( ) ͷ1( )( )&&&&& &&&&&
≤ L1δ � ϵ. (43)
The claim is to show 1,2(θ) exhibits both equicontinuity and

uniform boundedness over every bounded set. To accomplish this, let
S ⊂ ℘ × R2 be any bounded subset. Then, ∃x1, y1, x2, y2 ∈ R as if
w � (ͷ, x(ͷ), y(ͷ)) ∈ S, then ͷ ∈ ℘, x(ͷ) ∈ [x1, x2], and
y(ͷ) ∈ [y1, y2]. Now, fix θ* ∈ I, w* ∈ S, let K � max
1, |x2 − x1|, |y2 − y1|{ }, and C � L1K + supp(w*). Then,
|1(θ)(w) −1(θ)(w*)|≤L1 max 1, |x2 − x1|, |y2 − y1|{ } � L1K and

1 θ( ) w( ) −1 θ*( ) w*( )∣∣∣∣ ∣∣∣∣
� 1 θ( ) w( ) −1 θ( ) w*( ) +1 θ( ) w*( ) −1 θ*( ) w*( )∣∣∣∣ ∣∣∣∣
≤ 1 θ( ) w( ) − 1 θ( ) w*( )∣∣∣∣ ∣∣∣∣ + 1 θ( ) w*( ) −1 θ*( ) w*( )∣∣∣∣ ∣∣∣∣
� L1K + suppf w*( ) � C. (44)

Since |1(θ)(w)| − |1(θ*)(w*)|≤ |1(θ)(w) − 1(θ*)(w*)|≤C or
|1(θ)(w)|≤C + |1(θ*)(w*)|, then 1(θ) is uniformly bounded on S
and similarly2(θ)þ. The same procedure can apply for1,2(θ) as well.■
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7 HRKA: structures and tools

Although the tools of HRKA have been widely studied and
operated in assorted areas of engineering and sciences [10–22], the
principle of reproducing kernels continues to be extensively
researched. Nonetheless, HRKA has proven to be a beneficial
scheme for solving a broad range of stochastics and nonlinear
equations in a fractional sense and provides a generic numerical
scheme for handling solution performances.

7.1 Principles and requirements

Given the ε Hilbert space on ℘, a kernel Ψ ∈ C(℘2,R) is
reproducing for ε when it meets the following: first,
∀ͷ ∈ Λ: Ψ(·,ͷ) ∈ ε. Second, ∀ψ ∈ ε and ∀ͷ ∈ ℘: 〈ψ(·),
Ψ(·,ͷ)〉ε � ψ(ͷ). Here, |C|(℘) ∈ |C|(℘,R), (ͷ, θ) ∈ (℘, I),
[ß(ͷ)]θ � (ß1(θ)(ͷ),ß2(θ)(ͷ)), and [Ɣ(ͷ)]θ � (Ɣ1(θ)(ͷ),Ɣ2(θ)(ͷ)).
On account of this, [ß(ͷ)]θ � [ß1(θ)(ͷ),ß2(θ)(ͷ)]
and [Ɣ(ͷ)]θ � [Ɣ1(θ)(ͷ),Ɣ2(θ)(ͷ)],

the following requirements are essential to apply the HRKA
steps:

W ℘( ) � ß ͷ( )[ ]Tθ : ß1,2 θ( ) ∈ C| | ℘( ), ß1,2 θ( )″ ∈ L2 ℘( ), and ß1,2 θ( ) 0( ) � 0{ }
〈 ß ͷ( )[ ]θ , Ɣ ͷ( )[ ]θ〉W � ∑2

�1
ß θ( ) 0( )Ɣ θ( ) 0( ) + ß θ( )′ 0( )Ɣ θ( )′ 0( ) + ∫

℘

ß θ( )″ ͷ( )Ɣ θ( )″ ͷ( )dͷ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
ß ͷ( )[ ]θ&&&& &&&&W �

-----------------
〈 ß ͷ( )[ ]θ , ß ͷ( )[ ]θ〉W√

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
,

(45)

V ℘( )� ß ͷ( )[ ]Tθ : ß1,2 θ( ) ∈ C| | ℘( ),ß1,2 θ( )′ ∈L2 ℘( ){ }
〈 ß ͷ( )[ ]θ , Ɣ ͷ( )[ ]θ〉V �∑2

�1
∫
℘

ß θ( ) ͷ( )Ɣ θ( ) ͷ( )dͷ+∫
℘

ß θ( )′ ͷ( )Ɣ θ( )′ ͷ( )dͷ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
ß ͷ( )[ ]θ&&&& &&&&V � -----------------

〈 ß ͷ( )[ ]θ , ß ͷ( )[ ]θ〉V√
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
,

(46)

Ʒͷ ƻ( ) �
1
6
ƻ −ƻ2 + 3ͷ 2 + ƻ( )( ), ƻ≤ͷ,

1
6
ͷ −ͷ2 + 3ƻ 2 + ͷ( )( ),ƻ>ͷ.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (47)

εͷ ƻ( ) � 1
2 sinh 1( ) cosh ͷ + ƻ − 1( ) + cosh ͷ − ƻ| | − 1( )( ). (48)

Fundamentally, W(℘) andV(℘){ } are completely reproducing
kernel with corresponding kernel functions
�Ʒͷ(ƻ): � (Ʒͷ(ƻ),Ʒͷ(ƻ)), �εͷ(ƻ): � (εͷ(ƻ), εͷ(ƻ)){ }.

To apply HRKA, we partition ℘ upon uniform subintervals. We
assume that ͷ{ }∞�1 is dense in A, which is a reasonable assumption
given that compactness is similar to finiteness. It is worth noting that
compactness is often associated with smallness in some sense. Our
goal is to cover the entire set ℘ with a finite number of subintervals
and to achieve a good approximation of ℘ using a finite number of
steps.

Theorem 12. �Ʒͷ
(ƻ){ }∞�1 in W(℘) is linearly independent.

Proof. We aim to exhibit �Ʒͷ
(ƻ){ }m�1 as linearly independent

∀m≥ 1. If σ{ }m�1 is selected as ∑m

�1σ
�Ʒͷ

(ƻ) � 0 and taking
h(ƻ) ∈ W(℘) with h(ƻ) � δ,, ∀ � 1, 2,/, m, one possesses
for  � 1, 2,/, m that

0 � 〈h ƻ( ),∑m
�1

σ �Ʒͷ ƻ( )〉W

� ∑m
�1

σ〈h ƻ( ), �Ʒͷ ƻ( )〉W

� ∑m
�1

σh ƻ( ) � σ.

(49)

7.2 Illustration of the FM-FIDM solution

The HRKA methodology comprises a variety of essential
elements, such as constructing Hilbert spaces that are suitable for
the problem at hand, creating kernels, identifying linear operators
that are appropriate, and employing Mathematica solvers. During
the forthcoming, we expound on how the HRKA approach can be
employed to create numerical solutions that are highly efficient for
tackling FM-FIDM problems.

In our formalism, we will exclusively focus on v(1),w{ }-fuzzy
FM-D, concerning FM-FIDM. However, a similar formalism can be
applied to v(2),w{ }-fuzzy FM-D as well. Before we proceed, we
require a transformation to appropriately fix the solutions inW(℘).
To determine this, apply ß(ͷ): → ß(ͷ) ⊖ Ɯ to (Eq. 35). However,
the transformed solution is still denoted by ß(ͷ) as

R v 1( ),w{ }
M ß ͷ( ) �  ͷ, ß ͷ( )( ) + ∫ͷ

0
 ͷ, x, ß x( )( )dx,

ß 0( ) � 0.
{ (50)

Set [Eß](ͷ) � ∫ͷ
0
(ͷ, x, ß(x))dx, D(ͷ, ß(ͷ), [Ex](ͷ)) �

(ͷ, ß(ͷ)) + ∫ͷ
0
(ͷ, x, ß(x))dx, and O: W(℘) → V(℘) with

Oß(ͷ) � Rw(1)ß(ͷ). Using this, we can transform (Eq. 50) into

Oß ͷ( ) � D ͷ, ß ͷ( ), Ex[ ] ͷ( )( ),
ß ͷ0( ) � 0.

{ (51)

Herein, substitute [Oß(ͷ)]θ � [Rw(1)ß(ͷ)]θ, which implies
O1ß1(θ)(ͷ) � R v,w{ }

M ß1(θ)(ͷ)(ͷ) and O2ß2(θ)(ͷ) � R v,w{ }
M ß2(θ)(ͷ).

To arrange and build a system of orthogonal functions, substitute
S(ͷ) � εͷ

(ͷ)e and U(ͷ) � O*S(ͷ),
 � 1, 2, 3, ..., � 1, 2, and O* � diag(O1

*,O2
*). Next, Algorithm 2

derives �U(ͷ){ }(∞,2)
(,)�(1,1), assuming the Gram–Schmidt scheme.

Phase 1: For  � 1,2, . . .,  � 1,2, . . . ,,  � 1,2,3, . . ., and

 � 1,2, set

ω
 �

1
U11‖ ‖W, �  � 1,

1------------------------------
U

&&&& &&&&2W −∑−1
p�1 〈U ͷ( ), �U ͷ( )〉2W

√ , �  ≠ 1,

− ∑−1
p� 〈U ͷ( ), �U ͷ( )〉Wω

p------------------------------
U

&&&& &&&&2W −∑−1
p�1 〈U ͷ( ), �U ͷ( )〉2W

√ ,>.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(52)

Phase 2: For  � 1,2,3,... and  � 1,2, set

�U ͷ( ) � ∑
�1

∑
�1

ω
U ͷ( ). (53)

Algorithm 2. Generating orthogonalization coefficients ωuv
xy and

orthonormal functions (U�uvͷ)( ∞ ,2)
(u,v)�(1,1) .
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Theorem 13. U(ͷ){ }(∞,2)
(,)�(1,1) is complete and U(ͷ) �

OƻƷͷ(ƻ)|ƻ�ͷ
.

Proof. If 〈[ß(ͷ)]Tθ ,U(ͷ)〉W � 0,  � 1, 2, ..., and  � 1, 2,
then

〈 ß ͷ( )[ ]Tθ ,U ͷ( )〉W � 〈 ß ͷ( )[ ]Tθ ,O*S ͷ( )〉W
� 〈O ß ͷ( )[ ]Tθ ,S ͷ( )〉V
� O ͷ( )
� 0.

(54)

Since

[ß(ͷ)]Tθ � ∑2

�1ß(θ)(ͷ)e � ∑2

�1〈[ß(·)]Tθ , Gͷ(·)e〉We, so

O[ß(ͷ)]Tθ � ∑2

�1〈O[ß(ͷ)]Tθ ,S(ͷ)〉We � 0. Utilizing the

density of ͷ{ }∞�1, one possesses O[ß(ͷ)]Tθ � 0. The existence of
O−1 gives [ß(ͷ)]Tθ � 0. Afterward, U(ͷ){ }(∞,2)

(,)�(1,1) is complete in
W(℘). To complete, clearly

U ͷ( ) � O*S ͷ( )
� 〈O*S ƻ( ), Gͷ ƻ( )〉W
� 〈S ƻ( ),OƻGͷ ƻ( )〉V
�OƻƷͷ ƻ( )|ƻ�ͷ.■

(55)

Call the term on the right of Eq. 51 and refer to it henceforth as

D ͷ, ß ͷ( ), Eß[ ] ͷ( )( )[ ]θ � D1 θ( ) ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( ),(
D2 θ( ) ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( )). (56)

Theorem 14. Whenever n → ∞, the solution of Eq. 51 satisfies
well

ß ͷ( )[ ]Tθ � ∑∞
�1

∑2
�1

∑
�1

∑
�1

ω
D θ( ) ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( ) �U ͷ( ).

(57)
Proof. Initially, 〈[ß(ͷ)]Tθ ,S(ͷ)〉W � ß(θ)(ͷ), and

∑∞
�1∑2

�1〈[ß(ͷ)]Tθ , �U(ͷ)〉W �U(ͷ) is the Fourier around

�U(ͷ){ }(∞,2)
(,)�(1,1). Thereafter, it is convergent in ‖ · ‖W and

ß ͷ( )[ ]Tθ
�∑∞

�1
∑2
�1

〈 ß ͷ( )[ ]Tθ , �U ͷ( )〉W �U ͷ( )

�∑∞
�1

∑2
�1

〈 ß ͷ( )[ ]Tθ ,∑
�1

∑
�1

ω
U ͷ( )〉W �U ͷ( )

�∑∞
�1

∑2
�1

∑
�1

∑
�1

ω
〈 ß ͷ( )[ ]Tθ ,O*S ͷ( )〉W �U ͷ( )

�∑∞
�1

∑2
�1

∑
�1

∑
�1

ω
〈O ß ͷ( )[ ]Tθ ,S ͷ( )〉ε �U ͷ( )

�∑∞
�1

∑2
�1

∑
�1

∑
�1

ω
〈D θ( ) ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( ),S ͷ( )〉ε �U ͷ( )

�∑∞
�1

∑2
�1

∑
�1

∑
�1

ω
D θ( ) ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( ) �U ͷ( ).■

(58)

Remark 1. To perform numerical computations, we truncated (Eq.
57) and generated an n-term solution of [ß(ͷ)]Tθ from

ßn ͷ( )[ ]Tθ � ∑n
�1

∑2
�1

∑
�1

∑
�1

ω
D θ( )

ͷ, ß ͷ( )[ ]Tθ , Eß[ ] ͷ( )[ ]Tθ( ) �U ͷ( ).
(59)

7.3 Mathematical analysis: error and
convergence

To analyze the habits of the HRKA solution, we derive
convergence analyses and error estimates in W(℘). Specifically,
‖[ßn−1]Tθ ‖W is bounded as n → ∞, and ͷ{ }∞�1 is dense on ℘. So, we
can demonstrate the uniqueness of [ß(ͷ)]Tθ in ℘.

Theorem 15. Let [D(ͷ, [ß(ͷ)]Tθ , [[Eß](ͷ)]Tθ )] ∈ C(℘ × R4,R). If
‖[ßn−1]Tθ − [ß]Tθ ‖W → 0, ͷn → ƻ as n → ∞, then [D(ͷn, [ßn−1
(ͷn)]Tθ ), [[Eßn−1] (ͷn)]Tθ ]θ → [D(ƻ, [ßn−1(ƻ)]Tθ ), [[Eßn−1](ƻ)]Tθ ]θ
as n → ∞.

Proof. First, we will demonstrate that [ßn−1(ͷn)]Tθ → [ß(ƻ)]Tθ .
Clearly,

ßn−1 ͷn( )[ ]T
θ
− ß ƻ( )[ ]Tθ∣∣∣∣∣∣ ∣∣∣∣∣∣ � ßn−1 ͷn( )[ ]T

θ
− ßn−1 ƻ( )[ ]T

θ
+ ßn−1 ƻ( )[ ]T

θ

∣∣∣∣∣∣
− ß ƻ( )[ ]Tθ |≤ ßn−1 ͷn( )[ ]T

θ
− ßn−1 ƻ( )[ ]T

θ

∣∣∣∣∣∣ ∣∣∣∣∣∣
+ ßn−1 ƻ( )[ ]T

θ
− ß ƻ( )[ ]Tθ∣∣∣∣∣∣ ∣∣∣∣∣∣

≤ ßn−1 ξ( )[ ]T
θ

( )′∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ͷn − ƻ| |

+ ßn−1 ƻ( )[ ]T
θ
− ß ƻ( )[ ]Tθ∣∣∣∣∣∣ ∣∣∣∣∣∣,

(60)
where ξ ∈ (min ͷn,ƻ{ },max ͷn,ƻ{ }). So, |[ßn−1(ͷn)]Tθ −[ß(s)]Tθ |→ 0
as n→∞. Employing [(ͷ,[ß(ͷ)]Tθ )] ∈C(℘×R2,R) and
[(ͷ,x,[ß(ͷ)]Tθ )] ∈C(℘2 ×R2,R) will imply the demand. ■

Afterward, symbolize Bn(θ) � ∑n
�1

∑
�1

ω
D(θ)(ͷ,[ß(ͷ)]Tθ ,

[[Eß](ͷ)]Tθ ). Thus,

ßn ͷ( )[ ]Tθ � ∑n
�1

∑2
�1

B θ( ) �U ͷ( ). (61)

Theorem 16. For (61), one obtains [ßn(ͷ)]Tθ → [ß(ͷ)]Tθ as
n → ∞.

Proof. Clearly, [ßn+1(ͷ)]Tθ � [ßn(ͷ)]Tθ +∑2
�1

B(n+1)(θ) �U(n+1)(ͷ).
The orthogonality of �U(ͷ){ }(∞,2)

(,)�(1,1) leads to

ßn+1[ ]T
θ

&&&&& &&&&&2W � ßn[ ]Tθ&&&& &&&&2W +∑2
�1

B2
n+1( ) θ( )

� ßn−1[ ]T
θ

&&&&& &&&&&2W +∑2
�1

B2
n θ( ) +∑2

�1
B2

n+1( ) θ( )

� ..
.

� ß0[ ]T
θ

&&&&& &&&&&2W + ∑n+1
�1

∑2
�1

B2
 θ( ).

(62)
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So, ‖[ßn+1]Tθ ‖W ≥ ‖[ßn]Tθ ‖W and ∃γ ∈ R with ∑∞
�1

∑2
�1

B2
(θ) � γ,

which entails ∑2
�1

B2
(θ){ }∞

�1
∈ 2. Indeed,

ßm ͷ( )[ ]Tθ − ßm−1 ͷ( )[ ]T
θ
⊥ ßm−1 ͷ( )[ ]T

θ

− ßm−2 ͷ( )[ ]T
θ
⊥ . . .⊥ ßn+1 ͷ( )[ ]T

θ
− ßn ͷ( )[ ]Tθ . (63)

Thus, for m> n, one obtains

ßm[ ]Tθ − ßn[ ]Tθ&&&& &&&&2W � ßm[ ]Tθ − ßm−1[ ]T
θ
+ ßm−1[ ]T

θ
− . . . + ßn+1[ ]T

θ
− ßn[ ]Tθ&&&&& &&&&&2W

� ßm[ ]Tθ − ßm−1[ ]T
θ

&&&&& &&&&&2W + ßm−1[ ]T
θ
− ßm−2[ ]T

θ

&&&&& &&&&&2W
+ ... + ßn+1[ ]T

θ
− ßn[ ]Tθ&&&&& &&&&&2W .

(64)

Because ‖[ßm]Tθ − [ßm−1]Tθ ‖
2

W � ∑2
�1

B2
m(θ), so, as n,m → ∞, one

obtains ‖[ßm]Tθ − [ßn]Tθ ‖
2

W � ∑m

�n+1∑2

�1B
2
(θ) → 0. By the

completeness ∃[ßn(ͷ)]Tθ ∈ W(℘) with [ßn(ͷ)]Tθ → [ß(ͷ)]Tθ as
n → ∞ in ‖ · ‖W . ■

Theorem 17. For (61), [ß(ͷ)]Tθ � ∑∞
�1∑2

�1B(θ) �U(ͷ) as
n → ∞.

Proof. Taking lim
n→∞(·) on Eq. 61, one gets

[ß(ͷ)]Tθ � ∑∞
�1∑2

�1B(θ) �U(ͷ). Whilst O[ß(ͷ)]Tθ � ∑∞
�1∑2

�1B(θ)O �U(ͷ), so

O ß ͷ( )[ ]Tθ � ∑∞
�1

∑2
�1

B θ( )〈O �U ͷ( ),S ͷ( )〉V

� ∑∞
�1

∑2
�1

B θ( )〈 �U ͷ( ),O*S ͷ( )〉W

� ∑∞
�1

∑2
�1

B θ( )〈 �U ͷ( ),U ͷ( )〉W.

(65)

∑
′�1

∑
′�1

ω

′′O′ ß ͷ( )[ ]Tθ ͷ′( )

� ∑∞
�1

∑2
�1

B θ( )〈 �U ͷ( ), ∑
′�1

∑
′�1

ω

′′U′′ ͷ( )〉W

� ∑∞
�1

∑2
�1

B θ( )〈 �U ͷ( ), �U′′ ͷ( )〉W � B θ( ).

(66)

If  � 1, then O[ß(ͷ1)]Tθ � D(θ)(ͷ1, [ß0(ͷ1)]Tθ ,
[[Eß0](ͷ1)]Tθ ) or O[ß(ͷ1)]Tθ � [D(ͷ1, ß0(ͷ1), [Eß0](ͷ1))]θ. If
 � 2, then O[ß(ͷ2)]Tθ � D(θ)(ͷ2, [ß1(ͷ2)]Tθ , [[Eß1](ͷ2)]Tθ ) or
O[ß(ͷ2)]Tθ � [D(ͷ2, ß

1 (ͷ2), [Eß1](ͷ2))]θ. Similarly, the form of
the modality is O[ß(ͷn)]Tθ � [D(ͷn, ß

n−1(ͷn), [Eßn−1](ͷn))]θ. The
density gives ∀ƻ ∈ ℘; ∃ ͷnq{ }∞

q�1 such that ͷnq → ƻ as q → ∞ or
O[ß(ͷnq)]Tθ � [D(ͷnq, ß

nq−1(ͷnq), [Eßnq−1](ͷnq))]θ. Let  → ∞, by
Theorem 15, one obtainsO[ß(ƻ)]Tθ � [D(ƻ, ß(ƻ), [Eß](ƻ))]θ. Since
�U(ͷ) ∈ W(℘), then [ß(ͷ)]Tθ satisfies (51). ■

Theorem 18. If En � ‖[ß]Tθ − [ßn]Tθ ‖W , then En{ }∞n�1 decreases in
W(℘) and En → 0 as n → ∞.

Proof. From [ß(ͷ)]Tθ and [ßn(ͷ)]Tθ utilized in Eqs 57, 59, one
obtains

E2
n � ∑∞

�n+1
∑2
�1

〈 ß ͷ( )[ ]Tθ , �U ͷ( )〉W �U ͷ( )
&&&&&&&&

&&&&&&&&
2

W

� ∑∞
�n+1

∑2
�1

〈 ß ͷ( )[ ]Tθ , �U ͷ( )〉2W

≤∑∞
�n

∑2
�1

〈 ß ͷ( )[ ]Tθ , �U ͷ( )〉2W

� ∑∞
�n

∑2
�1

〈 ß ͷ( )[ ]Tθ , �U ͷ( )〉W �U ͷ( )
&&&&&&&&

&&&&&&&&
2

W
� E2

n−1.

(67)

Using ∑∞
�1∑2

�1〈[ß(ͷ)]Tθ , �U(ͷ)〉W �U(ͷ)<∞ yields that
E2
n → 0 as n → ∞. ■

8 Numerical implementations and
computed results

The analytical formalism we have developed is not only useful
for verifying the principles of HRKA but also for comparing
[ßn(ͷ)]Tθ , concerning [ß(ͷ)]Tθ and confirming the productivity of
the approach used. To demonstrate a high level of accuracy and
reliability, we conducted several numerical experiments on two
geometries.

8.1 Steps of HRKA and applications

Promoting software packages is a crucial aspect of
computational analysis in fields such as applied stochastics and
nonlinear engineering. Herein, we will now discuss two applications
that can be used to present our constructions. The first application is
related to electrical engineering and focuses on the fuzzy IRCC. The
second application incorporates a fuzzy forcing term in its
nonhomogeneous part.

In Algorithm 3, we have set the number n to 20 for all
computational results, tables, and graphics. To perform these
computations, we used Mathematics 11.

Phase I: Fix ͷ, ƻ in ℘ and perform

• Set ͷ � 1
n at  � 0,1, . . . ,n;

• Set θη � η
m at η � 0,1, . . . ,m;

• Set U(ͷ) � OƻƷͷ(ƻ)|ƻ�ͷ
at  � 1,2, . . . ,n and  � 1,2;

Output: U(ͷ).
Phase II: For  � 1,2, . . . and  � 1,2, . . . , perform

Algorithm 2;

Output: ω
.

Phase III: Set �U(ͷ) � ∑

�1∑

�1ω

U(ͷ) at  � 1,2, . . . ,n

and  � 1,2;

Output: �U(ͷ).
Phase IV: Set [ß0(ͷ1)]Tθ � 0 and at  � 1,2, . . . ,n perform

• Set [ß(ͷ)]Tθ � [ß−1(ͷ)]Tθ;
• Set B(θ) � ∑

�1
∑
�1

ω
D(θ)(ͷ, [ß(ͷ)]Tθ , [[Eß](ͷ)]Tθ );

• Set [ß(ͷ)]Tθ � ∑
�1

∑2
�1

B(θ) �U(ͷ);
Output: [ßn(ͷ)]Tθ of [ß(ͷ)]Tθ.

Algorithm 3 Steps of HRKA for handling FM-FIDM in the case of
(v1),w-fuzzy FM-D.
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To elaborate further, let us start by demonstrating that CM-
FIDM can be naturally modeled as FM-FIDM. As evidence, we
consider the crisp IRCC ′(ͷ) � −R

L(ͷ) − 1
LC∫ͷ0 (x)dx + v(ͷ),

0≤ͷ ≤ 1 concerning (0) � > 0. Here, (R, L, C, v) represents
(resistance, inductance of the solenoid, capacitance, and voltage).
However, environmental factors, inaccuracies in element modeling,
electrical noise, leakage, and other parameters can introduce
uncertainty into the model. We provide the flowchart of the crisp
IRCC in Figure 1.

By considering the ambiance fuzzy setting, we can obtain more
realistic results and better detect unknown conditions in circuit
analysis, as utilized in Application 1.

Application 1. We examine the fuzzy IRCC circuit concerning an
AC creator:

R v,w{ }
M  ͷ( ) � −R

L
 ͷ( ) + v ͷ( ) − 1

LC
∫ͷ

0
 x( )dx, x<ͷ ∈ ℘,

 0( ) � Ɯ,

⎧⎪⎪⎨⎪⎪⎩
(68)

concerning precise Ɯ ƻ( ) � 25ƻ − 24, 0.96≤ ƻ≤ 1,
−100ƻ + 101, 1≤ ƻ≤ 1.01,

{ and
Ɯ(ƻ) � 0 elsewhere.

Herein, [Ɯ]θ � [2425 + 1
25 θ,

101
100 − 1

100 θ] and [[E](ͷ)]θ �
[− 1

LC∫ͷ0 2(θ)(x),− 1
LC∫ͷ0 1(θ)(x)]. Here, assuming (R, L, C) �

(1Ohm, 1Henry, 1 Farad) and v(ͷ) � sin(ͷ). For finding the
(1)- and (2)-fuzzy M-HRKA solutions of Eq. 68, which is
commensurate to its parameterization, we have a couple of phases:

Phase 1. The coupled equation concerning v(1),w{ }-fuzzy FM-D is

R v,w{ }
M 1 θ( ) ͷ( ) � −2 θ( ) ͷ( ) − ∫ͷ

0
2 θ( ) x( )dx + sin ͷ( ),

R v,w{ }
M 2 θ( ) ͷ( ) � −1 θ( ) ͷ( ) − ∫ͷ

0
1 θ( ) x( )dx + sin ͷ( ),

1 θ( ) 0( ) � 24
25

+ 1
25
θ,

2 θ( ) 0( ) � 101
100

− 1
100

θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(69)

The exact (1)-fuzzy M-solution concerning Phase 1 is

1 θ( ) ͷ( ) � p1 θ( )e 1
2−
-
5

√
2( )ͷ + p2 θ( )e 1

2+
-
5

√
2( )ͷ + e−

1
2ͷ p3 θ( ) cos

-
3

√
2

ͷ( ) + p4 θ( ) sin
-
3

√
2

ͷ( )( ) + sin ͷ( ),

2 θ( ) ͷ( ) � −p1 θ( )e 1
2−
-
5

√
2( )ͷ − p2 θ( )e 1

2+
-
5

√
2( )ͷ + e−

1
2ͷ p3 θ( ) cos

-
3

√
2

ͷ( ) + p4 θ( ) sin
-
3

√
2

ͷ( )( ) + sin ͷ( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(70)

Herein, p1,2,3,4 are p1(θ) � 5− -
5

√
20 (Ɯ1(θ) −Ɯ2(θ)),

p2(θ) � 5+ -
5

√
20 (Ɯ1(θ) −Ɯ2(θ)), p3(θ) � 1

2 (Ɯ1(θ) +Ɯ2(θ)), and
p4(θ) �

-
3

√
6 (−Ɯ2(θ) −Ɯ1(θ) − 4).

Phase 2. The coupled equation concerning v(2),w{ }-fuzzy FM-
D is

R v,w{ }
M 1 θ( ) ͷ( ) � −1θ ͷ( ) − ∫ͷ

0
1 θ( ) x( )dx + sin ͷ( ),

R v,w{ }
M 2 θ( ) ͷ( ) � −2θ ͷ( ) − ∫ͷ

0
2 θ( ) x( )dx + sin ͷ( ),

1 θ( ) 0( ) � 24
25

+ 1
25

θ,

2 θ( ) 0( ) � 101
100

− 1
100

θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(71)

The exact (2)-fuzzy M-solution concerning Phase 2 is

1 θ( ) ͷ( ) � sin ͷ( ) + 24
25

+ 1
25

θ( )e−1
2ͷ cos

-
3

√
2

ͷ( ) + e−
1
2ͷ sin

-
3

√
2

ͷ( ) − 2-
3

√ − 1-
3

√ 24
25

+ 1
25

θ( )( ),
2 θ( ) ͷ( ) � sin ͷ( ) + 101

100
− 1
100

θ( )e−1
2 ͷ cos

-
3

√
2

ͷ( ) + e−
1
2 ͷ sin

-
3

√
2

ͷ( ) − 2-
3

√ − 1-
3

√ 101
100

− 1
100

θ( )( ).
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(72)

Application 2. We examine how FM-FIDM incorporates a fuzzy
forcing term in its nonhomogeneous component:

R v,w{ }
M ß ͷ( ) �F ͷ( )Ɯ⊖ 2eͷß ͷ( )+∫ͷ

0
ͷß x( )dx,x<ͷ ∈℘,

ß 0( ) �Ɯ,

⎧⎪⎨⎪⎩ (73)

concerning precise F(ͷ) � sinh(ͷ)(1 − ͷ) + e2ͷ + 1 and Ɯ(ƻ) �
max(0, 1 − ƻ2), s ∈ R.

Herein, [Ɯ]θ � [− ----
1 − θ

√
,

----
1 − θ

√ ] and
[[E](ͷ)]θ � [∫ͷ

0
ͷß1θ(x)dx,∫ͷ0 ͷß2θ(x)dx]. For finding the (1)-

and (2)-fuzzyM-HRKA solutions of Eq. 73, we have a couple of phases:
Phase 1 The coupled equation concerning v(1),w{ }-fuzzy FM-

D is

D v,w{ }
M ß1 θ( ) ͷ( ) � −F ͷ( ) ----

1 − θ
√ − 2eͷß1 θ( ) ͷ( ) + ∫ͷ

0
ͷß1 θ( ) x( )dx,

D v,w{ }
M ß2 θ( ) ͷ( ) � F ͷ( ) ----

1 − θ
√ − 2eͷß2 θ( ) ͷ( ) + ∫ͷ

0
ͷß2 θ( ) x( )dx,

ß1 θ( ) 0( ) � − ----
1 − θ

√
,

ß1 θ( ) 0( ) � ----
1 − θ

√
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(74)

The exact (1)-fuzzy M-solution concerning Phase 1 is

ß1 θ( ) ͷ( ) � − ----
1 − θ

√
cosh ͷ( ),

ß2 θ( ) ͷ( ) � ----
1 − θ

√
cosh ͷ( ).{ (75)

Phase 2 The coupled equation concerning v(2),w{ }-fuzzy FM-
D is

D v,w{ }
M ß1 θ( ) ͷ( ) + 2eͷß2 θ( ) ͷ( ) � F ͷ( ) ----

1 − θ
√ + ∫ͷ

0
ͷß2 θ( ) x( )dx,

D v,w{ }
M ß2 θ( ) ͷ( ) + 2eͷß1 θ( ) ͷ( ) � −F ͷ( ) ----

1 − θ
√ + ∫ͷ

0
ͷß1 θ( ) x( )dx,

ß1 θ( ) 0( ) � − ----
1 − θ

√
,

ß2 θ( ) 0( ) � ----
1 − θ

√
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(76)

The exact series (1)-fuzzy M-solution concerning Phase 2 is

ß1 θ( ) ͷ( ) � − ----
1 − θ

√ [1 + 21996379091399
25681904547644

− 88921857024000
237557617065707

1 + 1
e

( )( )ͷ
+ 9155426817577

25681904547644
− 88921857024000
237557617065707

1 + 1
e

( )( )ͷ2

+ . . . + 156045941495845980212393
16791784149188346794496000
(

− 3814938928760
237557617065707

1 + 1
e

( ))ͷ15 + . . . ],
ß1 θ( ) ͷ( ) � ----

1 − θ
√ [1 + 21996379091399

25681904547644
− 88921857024000
237557617065707

1 + 1
e

( )( )ͷ
+ 9155426817577

25681904547644
− 88921857024000
237557617065707

1 + 1
e

( )( )ͷ2

+ . . . + 156045941495845980212393
16791784149188346794496000
(

− 3814938928760
237557617065707

1 + 1
e

( ))ͷ15 + . . . ]. (77)
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8.2 Findings and analysis

For computations concerning [n(ͷ)]Tθη([ßn(ͷ)]Tθη ): ͷ � 
n

at  � 0, 1, . . . , n � 21 in ℘ and θη � η
m at η � 0, 1, 3, m � 4 in I. By

executing Algorithm 3, a set of numerical outcomes is generated and
displayed in a tabular format, accompanied by a variety of graphical
illustrations. Additionally, we employ HRKA to analyze the previous
two applications at ͷ ∈ ℘, v ∈ D, w> 0, and θ ∈ I in v(1),w{ }- and
v(2),w{ }-fuzzy FM-Ds. Next, ȹn(ͷ, θη) determines the errors in
[n(ͷ)]Tθη([ßn(ͷ)]Tθη ).

The key goal is to exemplify the uncertain behaviors of the
HRKA (1)- and (2)-fuzzy M-solutions at dissimilar nodes; Tables 1,
2 show ȹn(ͷ, θη) in numerically approximating [n(ͷ)]θ of
[(ͷ)]θ concerning Phase 1 and Phase 2, sequentially in
Application 1. Tables 3, 4 show ȹn(ͷ, θη) in numerically
approximating [ßn(ͷ)]θ of [ß(ͷ)]θ throughout the HRKA (1)-
and (2)-fuzzy M-solutions concerning Phase 1 and Phase 2,
sequentially in Application 2.

As is evident from the tabulated digits in Tables 1–4,
n

1(θη)(ͷ)(ßn1(θη)(ͷ)) and n
2(θη)(ͷ)(ßn2(θη)(ͷ)) correspond

to the HRKA solutions 1θ(ͷ)(ß1θ(ͷ)) and 2θ(ͷ)(ß2θ(ͷ)) and
are harmonized and approximately similar in their behavior. The
tabulated digits in Tables 3, 4 satisfy the property that ßn1θ(ͷ) �
−ßn2θ(ͷ) for each θ and ͷ in the two phases to agree the natural
constraint appears in Eq. 74 as [Ɯ]θ � [− ----

1 − θ
√

,
----
1 − θ

√ ].
Altogether, the HRKA aligns well with the numerical results,
indicating a high level of agreement between them.

Our research focuses on exploring the HRKA’s vibrant and
structural characteristics, and remembrance and heritage features.
In pursuit of this, we provide geometric certifications for ͷ and θη
at v ∈ D, w> 0, and θ ∈ I. Figures 2, 3 display the HRKA (1)- and
(2)-fuzzy M-solutions in the phase of v(1),w{ } and v(2),w{ }-fuzzy
FM-D concerning Application 1. Likewise, Figures 4, 5 exhibit
similar computations concerning Application 2.

Ultimately, we provide ȹn(ͷ, θη) geometric certifications for
ͷ and θη at v ∈ D, w> 0, and θ ∈ I as visualized in Figure 6 for
targeted cases and applications concerning the HRKA (1)- and
(2)-fuzzy M-solutions in the phase of v(1),w{ } and v(2),w{ }-fuzzy
FM-D.

Based on the obtained plots, it is evident that the graphs
demonstrate close agreement and similar behaviors, especially
when analyzing the classical derivative. It is important to take
note that the model profiles can exhibit unusual behaviors when
the value of v,w{ } deviates from the classical value as fuzzy FM-D
can have a significant impact on the results.

9 Key points and summary

In this exploration research, FM-D, FM-I, and FM-FIDM are
examined and analyzed for the first time. Alongside, the existence-
uniqueness of fuzzy two M-solutions jointly with the
characterization theorem is employed as pioneering results as
well. Indeed, triplet-simulated pseudocodes related to
characterizing (1)- and (2)-fuzzy M-solutions are given in
terms of algorithms. In this approach, the iterative HRKA in a

new perspective is fitted and built to attain a series approximation
of (1)- and (2)-fuzzy M-solutions for a couple of noninteger
uncertain real-world models to ratify and attest to the new
scheme as pioneering results as well. Thereafter, computational
convergence and error analysis together with the series
symbolization of fuzzy two M-solutions are inferred. In
conclusion, the obtained novel theories and data outcomes
demonstrate the fidelity and productivity of our proposed
adaptation. This approach can be potently used as a preference
scheme in handling assorted types of fractional M-models
manifesting in applied physics and nonlinear engineering. Our
manuscript provides a valuable contribution to the field and opens
up new avenues for future studies. Our future article will talk about
the fractional M-models where vϵ(1, 2] and w> 0.
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