
Evolution of Bose–Einstein
condensate systems beyond the
Gross–Pitaevskii equation

Yuli Lyanda-Geller1,2*
1Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States,
2Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, United States

Whilemany phenomena in cold atoms and other Bose–Einstein condensate (BEC)
systems are often described using the mean-field approaches, understanding the
kinetics of BECs requires the inclusion of particle scattering via the collision
integral of the quantum Boltzmann equation. A rigorous approach for many
problems in the dynamics of the BEC, such as the nucleation of the
condensate or the decay of the persistent current, requires, in the presence of
factors making a symmetry breaking possible, considering collisions with thermal
atoms via the collision integral. These collisions permit the emergence of vorticity
or other signatures of long-range order in the nucleation of the BEC or the transfer
of angular momentum to thermal atoms in the decay of persistent current, due to
corresponding terms in system Hamiltonians. Here, we also discuss the kinetics of
spin–orbit-coupled BEC. The kinetic equation for the particle spin densitymatrix is
derived. Numerical simulations demonstrate significant effects of the collision
integral on the dynamics of the spin–orbit-coupled BEC upon quenching of the
Raman coupling that generates synthetic electric and magnetic fields.
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1 Introduction

Bose–Einstein condensation [1–3] was observed for atoms cooled in magnetic traps to
low temperatures [4, 5]. Many phenomena in condensed matter physics, e.g., in superfluid
He [6, 7], in exciton systems in semiconductors [8–13], in bilayer quantum Hall effect
systems [14–16], and in superconductors with preformed Cooper pairs [17–22], are directly
related to Bose–Einstein condensation. Atomic BECs have also been formed in other
systems, such as microelectronic chips [23], and they may play a role in quantum
information processing [24].

Mean-field theory provides a framework for understanding the main features of
condensation and the role of interactions between particles [25]. The mean-field
approach, in which the total Bose system field is divided into the condensate field and
the field of excitations, was suggested by Bogoliubov [26]. When the field of excitations is
small compared with the condensate field, the latter is described by Gross–Pitaevskii
equations for the wavefunction of the BEC [27, 28]. However, over the years, it has been
understood that in many problems, the mean-field Gross–Pitaevskii equation for BEC
wavefunction is insufficient for understanding the whole spectrum of the properties of BEC
systems and that excitations themselves and correlations beyond the Gross–Pitaevskii
equation must be included.
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In this paper, after a brief review of examples of BEC systems
and properties requiring approaches beyond the mean-field
approximation, the author discusses the kinetic equation
approach to an investigation of the relaxation of the spin current
and other transport properties of the spin–orbit-coupled
Bose–Einstein condensates. A kinetic equation for the particle
spin density matrix is derived using an approach similar to that
of [29], extending it to non-uniform atomic BECs with spin–orbit
interactions. Then, a symmetry-based approach will be used for the
qualitative discussion of the relaxation of various modes in the
condensate, as well as the relaxation of its excitations. Numerical
calculation in a 1Dmodel system shows that collision integral due to
particle–particle interactions leads to a significant effect on
relaxation in the spin–orbit BEC.

This article is partly a review and partly a report of the original
results on the quantum Boltzmann equation for the spin density
matrix of a spin–orbit-coupled Bose–Einstein condensate. Due to
the limited size of the article, it does not provide a comprehensive
overview of many of the important recent developments. I present
my sincere apology for the inevitable omission of key contributions
in the field.

2 Beyond the mean-field approach to
BEC systems

While many properties of BEC systems have been successfully
predicted and explained by using the Bogoliubov mean-field
approach, in particular, the Gross–Pitaevskii equations for the
Bose condensate wavefunction, the investigation of many BEC
systems and properties requires going beyond mean-field studies.
In this section, we will review two such examples: (1) nucleation of
Bose–Einstein condensates and (2) decay of the current-carrying
state.

2.1 Kinetics of Bose–Einstein condensation

The kinetics of Bose–Einstein condensation and nucleation of
the condensate, in which the initial state does not contain the
condensate itself, is an obvious example of the necessity to
consider the BEC beyond mean-field approaches. In [29], it was
observed that the whole process of BEC can be separated into three
stages: restructuring of the Bose system before condensation,
nucleation of the condensate itself or a phase transition stage,
and then the growth of the emerged condensate. The first and
the third stages can be approached using the kinetic Boltzmann-like
equation, which includes real fluctuations and collisions. In the first
stage, the energy relaxation in thermally populated Bose gas is
needed to populate the ground state. Energy relation, e.g., in a
uniform Bose system, can be treated using the Boltzmann
equation [30].

The phase transition stage was studied in the 1980s [31–34]. The
attempts to apply the Boltzmann-like equation via the inclusion of
scattering of particles or coupling to a thermal bath to this stage led
to the conclusion that the condensate density can only increase if the
condensate already exists [35]. The important observation made in
this latter work is that merely populating the ground state with Bose

particles does not lead to an actual phase transition that requires
coherence of the condensate faction. To address this question, the
Keldysh approach to Green’s function of the Bose system combined
with the path integral approach was developed in [35]. However, the
conclusion that the nucleation of coherent condensate occurs on a
time scale much smaller than the lifetime of the sample defined by
interactions and that a quantum phase transition is needed to create
coherence in the condensate was criticized, e.g., in [36]. Many
authors attempted to treat this phase transition stage using the
Gross–Pitaevskii equations, often applying them to local Bose fields
[36–40]. Efforts beyond the regime of applicability of the GPE
equations in the high-density limit were undertaken in [41].
Quantum corrections to the mean-field approximation were
studied in [42]. A full kinetic equation approach beyond the
Gross–Pitaevskii equation was undertaken in a series of papers
[43–47]. Similarly, a quantum master equation was used in [48,
49]. In [50], the dynamics of condensation in a bimodal trap,
consisting of a large reservoir region and a dimple, were
modeled. The depth of the “dimple” can be controlled, and
experimental investigations, see, e.g., [51, 52] have shown that
such traps provide an efficient means of achieving condensation.
It was shown that it is important for kinetic equations to include
both two- and three-body processes.

In [53], a four-stage process was suggested for BEC kinetics. In
this scenario, the phase transition stage is divided into two substages.
The first corresponds to the creation of the local quasicondensates,
with domain structure and without long-range order. Each domain
has a specific phase, but phase correlation between different
domains is absent. The second substage of the phase transition is
the actual Bose condensation, accompanied by the emergence of a
vorticity structure. It was suggested in [40] that the numerical
solution of the non-linear Schrodinger equations, essentially a
version of the Gross–Pitaevskii equation for classical Bose fields,
shows the emergence of vorticity. However, the emergence of
vorticity requires the presence of circulation, or its higher-order
correlators, in such a final condensed phase, containing, e.g., a vortex
ring. These correlators or vorticity are not present on the first
substage of incoherent local condensate domains and must
somehow be generated. The non-dissipative Schrodinger
equations do not provide mechanisms to generate these
vorticities. Hence, numerical simulations in [40] must have
introduced some relaxation mechanisms on the second substage.

It was suggested in [36] that, generally, symmetry breaking can
occur only as a result of introducing a small term of the Hamiltonian
violating the conservation of particles. The most likely source of the
term allowing the relaxation of vorticity is the interaction that would
make non-condensed atoms serve as a reservoir for vorticity and
energies. All quantum simulations of the Bose system have to be
treated rigorously via the equations for the correlator (the order
parameter) describing such vorticity. A quantum approach to BEC
kinetics beyond the Gross-Pitaevskii equation was undertaken in
[54]. The approach was based on associating the quantum-field
density matrix in the coherent state representation with a correlator
of a pair of classical fields, whose evolution is governed by a system
of two coupled non-linear equations with stochastic terms. The
Hamiltonian used in [54] included a localized absorber that
removed the neutral atoms via collisions with foreign atoms.
Such an absorber term designs a reservoir of non-condensed
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atoms, which can potentially absorb vorticity. The presence of vortex
states in [54] was analyzed on the basis of angular momentum states,
and the angular momentum distribution was calculated. Still, in
order to generate average angular momentum or its correlators in
the BEC ground state, the absorber term ought to design the
reservoir for angular momentum via coupling of the condensate
with the non-condensed gas. Thus, consideration beyond the mean-
field equations or their analogs, exclusively in terms of the
condensate variables, is required for analysis of the BEC
nucleation stage, when Bose particles occupying the ground state
acquire coherence and long-range order.

In the final stage of the Bose–Einstein condensation, the growth
of the condensate can be described by the Boltzmann equation [55,
56]. The collision integral in such an equation can possibly include
both the two-body and three-body processes, coupling the emerged
Bose condensate faction with all other particles, including particle-
and phonon-like excitations [57].

2.2 Decay of the current-carrying states

In systems with a complex (vectorial) order parameter, the
ground state in a superfluid sample can have a non-zero
persistent current [58, 59]. However, even for an ordinary
scalar order parameter, superfluids can carry metastable
currents. The ability to support current-carrying states in
multiply-connected settings is one of the prime signatures of
superfluidity and superconductivity. Such states in trapped Bose
condensed alkali gases were investigated theoretically in [60]. Of
particular interest are the kinetics of such a state and the rate at
which persistent currents decay via thermal fluctuations. While
the current-carrying states are not truly eternal, they can have
extraordinarily long lifetimes. Their decay requires the
occurrence of certain relatively infrequent but nevertheless
topologically accessible (quantum or thermal) collective
fluctuations [61–63].

For the condensate to be able to undergo the free-energy (and
angular-momentum) changing fluctuation necessary for current
dissipation, the condensate must not be isolated. In order to
achieve this, the condensate in [60] was studied at temperatures
not far below the critical temperature Tc, in which case, the non-
condensed atoms can serve to provide an energy and angular
momentum reservoir.

To find the decay rate, one needs to analyze the events in which
the system decays from some metastable current-carrying states
(which is a local minimum of the free energy) to a lower-energy (and
typically more stable) state via a thermal fluctuation. The current
decays through a dissipative process during which the condensate
density decreases in magnitude over a region whose length is
comparable to healing length ξ, which depends on the maximal
density of particles and the strength of interactions.

In [60], the toroidal sample was assumed to have a
circumference much larger than ξ, which leads to the
possibility of locally stable current-carrying states. The healing
length was also assumed larger than the radius of the torus cross-
section, which results in suppression of the complex relaxation
processes, such as the nucleation of vortex rings [64], and leads to
simpler relaxation mechanisms, such as angular momentum

relaxation. Dynamically, this process occurs via the passage of
a vortex across the sample. For this event, a free-energy barrier
must be overcome. The height of this barrier δF is given by the
difference between the free energy of the metastable state Ψm and
that of the transition state Ψt, i.e., the lowest possible free-energy
high point en route through configuration space between the
initial and final metastable states. This thermally activated
process should occur at a rate of ω0e

−δF/kT. The energies of
both metastable and transition states are determined using the
Gross–Pitaevskii equation, and so is the barrier height for
transition between these states. However, for BECs undergoing
a transition between those states, the term that permits an
increase or decrease in the angular momentum of the system
must be present in the system’s Hamiltonian. The attempt
frequency and kinetics of this process must be defined by
collisions between the condensate and thermal atoms and the
solution of the Boltzmann equation, which defines microscopic
relaxation times.

Experimentally, relaxation processes in a BEC system with the
persistent current in a toroidal sample were investigated in [65, 66],
where phase slips are observed between quantized persistent current
states around a toroidal atomic 23Na Bose–Einstein condensate.
However, these phase slips are induced by a weak link (a
localized region of reduced superfluid density) rotated slowly
around the ring. This is analogous to the behavior of a
superconducting loop with a weak link in the presence of an
external magnetic field. When the weak link is rotated rapidly,
well-defined phase slips do not occur, and vortices enter into the
bulk of the condensate. The presence of artificially created weak
links changes the dynamics compared to the case ofpersistent
currents flowing around a uniform torus. Nevertheless, the
principles of relaxation remain the same: it is necessary to
implement a mechanism by which the angular momentum of the
persistent flow will be transferred to a bath of non-condensate atoms
when the current changes. This is relevant both to the phase slip
mechanism and the mechanism due to the production of vortices.
Therefore, theoretical modeling of these effects must include
coupling to non-condensate atoms within the quantum kinetics
equation and cannot be solely restricted to the consideration of the
condensate wavefunction within the Gross–Pitaevskii formalism.

Ring-shaped BEC samples carrying persistent currents were
experimentally probed in the time-of-flight evolution experiments
in [67]. However, the evolution time was sufficiently small and decay
most probably did not occur in these experiments. In the
experiment, the initial condensate was stirred to generate an
angular momentum that leads to circulation. The experiment for
observation of the decay of persistent current can be set with the
generation of angular momentum 1, which produces a hole in the
released condensate, and observation of the disappearance of that
hole when there is a sufficient window of observation in the time-of-
flight evolution experiments.

Recently, it was proposed that using linear and
Laguerre–Gaussian Raman beams, which have been used to
create spin–momentum coupling [68] and spin–angular
momentum coupling [69], it is possible to realize a synthetic
torus penetrated by a net effective magnetic flux [70]. It will be
of considerable interest to investigate current-carrying states and
their dynamics and decay in such configurations.
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3 Kinetic approach to transport in
Bose–Einstein condensate systems

The transport properties of Bose–Einstein condensates
requiring an approach beyond the Gross–Pitaevskii equations can
be discussed in terms of the kinetic equation. The kinetic approach
has historically already been applied to superfluid He-4 by Landau
and Khalatnikov [71, 72]. In the early work on kinetic equations in
Bose systems, two fluid hydrodynamic non-linear equations for the
condensate and normal fluid were derived using the distribution
function method, starting from the Liouville equation and leading to
a kinetic equation for the distribution function of quasiparticles in a
dilute spatially inhomogeneous Bose gas below the helium λ point.
Such a kinetic equation describes a state close to a local equilibrium
state. Hohenberg and Martin [73] used the time-correlation
function approach and considered a relaxation of a fluctuation
about an equilibrium state. They obtained linearized two-fluid
equations and Kubo-type equations for transport coefficients. As
discussed in [55], the results obtained by these two methods for
transport coefficients are identical. In [55, 56], the solution of the
kinetic equation, as well as the distribution functions of
quasiparticles, was used to derive the equations of motion for
superfluid velocity.

The derivation of kinetic equations for quasiparticles is most
convenient in the reference frame where the superfluid is at rest,
allowing the separation of the condensate part of the Bose field
operators and the application of the Bogoliubov transformation
[74], which leads to a description of the system in terms of
quasiparticles. In a system with a single-spin ground state, or a
singlet-order parameter, a rigorous description includes both
consideration of the condensate and quasiparticle densities and
inclusion of the off-diagonal terms due to the presence of
anomalous Green’s functions [72]. For usual singlet
superconductors, the kinetic equation approach was developed by
Betbeder–Matibet and Nozieres [75] and by Aronov and co-
authors [76].

The matrix kinetic equation for a system with a spin-triplet
order parameter, superfluid 3-He, which is an anisotropic Fermi
superfluid, was developed by Wolfle [77, 78]. Using the matrix
equation, one can determine deviations from equilibrium for
particle number density, spin, and superfluid and normal
currents. The collision integral for Bogoliubov quasiparticles and
their relaxation rates in this case were derived in [79]. Furthermore,
the kinetic equation can be used to determine the spin diffusion and
intrinsic spin relaxation times. In the case of the anisotropic He3-A
phase, anisotropic viscosity and orbital relaxation were also
calculated [7]. A hydrodynamic description of the spin systems
in A-phases can involve three fluids, and superfluid velocities are
defined for the total phase and a difference of phases for the two spin
components. Due to the presence of spin, and as a result of the
presence of anomalous averages, a full kinetic description of the He-
3 spin system involves a 4 × 4 matrix equation.

In much the same way as for superfluid He-3 with orbital
angular momentum and spin vector order parameters, for spin-1
Bose–Einstein systems, the full kinetic equation generally constitutes
the equation for a 6 × 6 density (Green’s function) matrix. For
Raman beam-induced spin–orbit-coupled Bose–Einstein
condensates with a state for one of the spin projections much

higher in energy than the two lower spin projection states, thus
becoming effectively a spin 1/2 system, the kinetic equation for
quasiparticles should be an equation for a 4 × 4 matrix.

The question emerges as to whether a simpler approach is
possible. Indeed, even for regular superconductors, the 2 × 2
matrix kinetic equation for quasiparticles with non-zero off-
diagonal elements is rather intricate, and still, is not capable of
describing many of the potential phenomena of interest [80].
However, for Bardeen–Cooper–Schrieffer (BCS) superconductors,
such a kinetic equation is likely the simplest microscopic model
allowing the treatment of transport phenomena. The nature of the
BCS superconducting transition is superconducting pairing, i.e., the
creation of bosons in a fermion system. The important aspect is the
role of the off-diagonal Green’s function

iFα,β X1, X2( ) � 〈N|TΨ̂α X1( )Ψ̂β X2( )‖N + 2〉, (1)

where N is the number of particles, Ψ̂(Xj) is the field operator for
the j − th particle, Xj = (rj, tj) is the 4-coordinate that includes spatial
and time components, and indices α and β denote spins, which is
somewhat different for Bose–Einstein systems and conventional
superconductors. For superconductors, Fα,β(t, r1; t, r1) can be
considered the wavefunction of particles bound into Cooper
pairs. The condensate of the Cooper pairs itself appears as a
result of weak interactions and includes a small fraction of
particles of the system but is responsible for the entire
superconducting properties. Therefore, without considering the
off-diagonal averages, no description of superconducting
phenomena, and transport phenomena in particular, is possible,
especially those emerging close to transition temperature. Thus,
even in the simplest case, anomalous averages must necessarily be
included in the description of kinetic effects, triggering the 2 × 2
matrix equation. However, for the Bose–Einstein condensate of a
weakly non-ideal gas, almost all particles are in the condensate. The
non-condensed particles emerge due to weak interactions, and their
number is relatively small. The non-zero anomalous averages
emerge and exist because of processes of scattering between
condensed and non-condensed parts of the Bose gas particles.
However, these transitions also affect the properties and define
the relaxation/broadening of the “usual” Green’s function.

Therefore, for the Bose–Einstein condensates, a simpler
approach to kinetic phenomena appears to be possible [29, 81].
In these works, a simpler kinetic equation, a kinetic equation for
particles only, was derived. In this approach, particles are divided
into condensate particles and excited particles, and corresponding
distribution functions and particle densities are evaluated. While
quasiparticles are not introduced, many of the scattering processes
between the condensate particles and excited particles are taken into
account by the collision integral of the kinetic equation. It was
shown in [29, 81] that if the characteristic energy of excited particles
~ p2/m exceeds the characteristic energy from the interaction ~ gn,
then the results of the simplified approach coincide with the results
of [55] that have included all quasiparticle effects. On the intuitive
level, when excitations are primarily particle-like, one can use the
description in terms of particles. However, for phonon-like
collective excitations, quasiparticle description must be applied [57].

Furthermore, we are interested in comparing the mean-field
consideration of interactions, and their effect on the system via
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fluctuations and dissipative processes, introduced as scattering
accounted by the collision integral in the kinetic equation. We
will apply a simple kinetic equation for particles to illustrate that
collision integral consideration strongly affects the dynamics of the
spin–orbit Bose–Einstein condensates.

4 Spin–orbit-coupled BEC
condensates

Cold atomic gases provide a clean and highly controllable [82]
platform for simulating and exploring many condensed matter
phenomena [83], in particular those associated with spin [84].
Spin, an internal quantum degree of freedom of particles, is
central to many condensed matter phenomena such as
topological insulators and superconductors [85] and technological
applications such as spintronics [86, 87] and spin-based quantum
computation [88].

The generation of synthetic electric [89] and magnetic [90]
fields, artificial gauge fields in general [91], makes neutral atoms
behave like charged particles. The synthetic magnetic and spin-
dependent magnetic fields have been realized to demonstrate,
respectively, the superfluid Hall [92] and spin Hall effects [93]
in BECs.

Spin–orbit-coupled Bose–Einstein condensates (BECs) offer a
unique experimental system. The creation of spin–orbit-coupled
synthetic BECs in systems of bosonic [68] and fermionic [94] atoms
further paves the way to explore diverse phenomena such as
topological states [95] and exotic condensates and superfluids
[96] Using counter-propagating Raman beams, an effective two-
level system can be set up using the atoms’ internal degrees of
freedom, thus creating a spin–orbit-coupled spin-1/2 BEC. By
controlling the Raman beam coupling strength, Ω, the BEC can
be driven between a miscible phase, where the two spin states are
mixed in momentum space, and an immiscible phase, where the two
spin states are well-separated in momentum space.

In [97], experiments were performed exploring how the BEC
responds to non-adiabatic shifts in Ω. The effects of one-
dimensional synthetic spin–orbit coupling on the spin relaxation
in a disorder-free atomic BEC were explored using a condensate

collider, in which the spin dipole mode of two BECs of different spin
states constitutes an alternating spin current. The spin dipole mode
[98] is initiated by applying a spin-dependent synthetic electric field
to the BEC. This is done via quenching, i.e., non-adiabatically
changing the Raman coupling Ω, which generates the spin–orbit-
coupled band structure. It should be noted that interactions in 87Rb
have a repulsive characteristic so that collapse phenomena [99] do
not emerge in such spin–orbit-coupled BECs.

The shifts inΩmake the BEC oscillate inmomentum space, with
the oscillations being dependent upon the size of the shift, Figure 1.
Theoretically, these oscillations can be reproduced using the
Gross–Pitaevskii equation [97]. The Gross–Pitaevskii equation
was used also for consideration of a spin–orbit BEC in a moving
trap [100]. However, oscillations of the spin–orbit BEC due to
quenching of the Raman coupling are associated with a change
in the ground state and reconstruction of a new BEC state and,
therefore, require interactions of the condensate and thermal atoms,
i.e., dissipative in nature. The mean-field theory, like the
Gross–Pitaevskii equation, lacks dissipative processes; therefore,
an accurate description of these oscillations must go beyond
mean-field theory. Here, we explore the oscillations of the BEC
caused by non-adiabatic shifts in Ω using a kinetic equation that
includes a collision integral for a trapped one-dimensional BEC. As
discussed in the previous section, we will use a simplified scheme
with the kinetic equations for particles. In the following section, we
derive the quantum Boltzmann equation for a 2 × 2 particle spin
density matrix in a spin–orbit-coupled BEC and qualitatively
analyze the relaxation processes. We, then, will make a numerical
comparison of the dynamics of the 1D BEC under quenching of Ω
between cases where the atoms are non-interacting, where only
mean-field terms are included, as well as when the collision integral
effects are considered. We will see that the mean-field effects are
either less or similar in importance compared to the effect of
collision integral terms. Thus, a mean-field theory is incapable of
describing the evolution of the spin–orbit-coupled BEC after such a
non-adiabatic quenching, and it is necessary to include correlations
via the collision integral in the kinetic equation.

4.1 Spectra and the spin density matrix of the
spin–orbit BEC

The BEC in [97] is contained in a three-dimensional anisotropic
harmonic trap with frequencies ωi, i = x, y, z, with the trap potential

Utrap r( ) � m

2
ω2
xx

2 + ω2
yy

2 + ω2
zz

2( ). (2)

Counter-propagating Raman beams are coupled to the system with a
strength Ω, detuning δ, and recoil momentum kr and generate
synthetic spin–orbit interaction. The single-particle Hamiltonian
is given as follows:

H1 � Z2k2⊥
2m

+ Z2 kx − krσz( )2
2m

+ Utrap r( ) + δ

2
σz + Ω

2
σx, (3)

where x is the direction of Raman-induced one-dimensional
spin–orbit coupling, equivalent to the case of equal Rashba and
Dresselhaus couplings of the two-dimensional electron gas in III–V
semiconductor heterostructures [101], k⊥ = (ky, kz), and the σi are

FIGURE 1
Adopted from [97]. Relative momentum oscillations in a spin-
dipole mode. Solid lines are fits for damped sinusoidal oscillations.
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the Pauli 2 × 2 spin matrices on the basis of spin states of projections
mF = 0, − 1 of the total spin F = 1 in the BEC. The third state is shifted
out of resonance by a quadratic Zeemann splitting. At δ = 0, the
single particle eigenenergies are given by the following equation
[68, 102].

E0 k( ) � Z2

2m
k2 + k2r( ) ± ���������������

Z2

m
kxkr( )2

+Ω2/4√√
. (4)

Depending on magnitudes of Er � Z2k2r/2m and Ω, the single-
particle spectrum of the ground band has either two or one
minima, Figure 2. For Ω ≥ 4Er, there is a single minimum, and
at Ω < 4Er, there is a double-minima structure, with two minima at

p± � kr 1 ±

����������
1 − Ω

4Er
( )2

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

The quantity

Aσ � A± � ± kr

����������
1 − Ω

4Er
( )2

√√
(6)

constitutes the effective vector potential acting on BEC particles in
the double-minima structure atΩ < 4Er. Changing Ω in time results
in the time-dependent electric field. This form of the effective
spin–orbit vector potential is specific for the spin–orbit
interaction of a one-dimensional type and is different from the
spin–orbit effects in two dimensions [103–105]. Furthermore, non-
Abelian effects of the spin–orbit-induced effective vector potential
can emerge when the BECs with a higher angular momentum (or
spin) are studied, similarly to the charge carrier hole system in [106].

Introducing interactions, we restrict collisions to two-body
collisions in our system and use a spin-dependent contact
potential of the

Hint � 1
2
∑
i≠j

Vi,jδ ri − rj( )δ ti − tj( ), (7)

where Vi,j is a matrix of the form

Vi,j � c0 + 3
c2
4

( )σ i( )
0 σ

j( )
0 − c2

4
σ i( )
z σ

j( )
z

−c2
4
σ i( )
z I j( ) − c2

4
I i( )σ

j( )
z

(8)

with c0 and c2 parametrizing the interaction, while σ(i)0 and σ(i)z are
the identity and z spin operators for the ith particle, respectively.
Combining Eq. 3 and Eq. 7, we have the complete Hamiltonian.

We now study how this system evolves when Ω suddenly
changes, going beyond mean-field corrections. This is done by
using the Hamiltonian (3) and a standard Keldysh diagrammatic
technique. Starting from the Keldysh matrix Green’s function G(r1,
r2, t1, t2), the equations are derived for the 2 × 2 one-particle spin
density matrix describing the distribution of particles, ρ(p, r, ϵ, t),
where r = (r1 + r2)/2 are the center of mass coordinates, time t = (t1 +
t2)/2, and p and ϵ are the kinematic momentum and energy arising
in the Fourier transforms over the differences of coordinates and
times, correspondingly. The equation for the particle density matrix
is as follows:

∂ρ

∂t
+ V, ∂rρ{ } + F, ∂kρ{ } + i

Z
Hs, ρ[ ] � Ic ρ( ), (9)

where V = ∂H1/∂p is the spin-dependent velocity operator and curly
brackets denote the anticommutator of operators A and
B, A, B{ } � (AB + BA)/2,

Hs � Z2kxkr
2M

σz + Zδ

2
σz + ZΩ

2
σz + Sint (10)

is the spin-dependent part of the single-particle Hamiltonian,
leading to spin precession of the Bose particles. Rectangular
brackets [A, B] = AB − BA denote the commutator of operators
A and B, which describes the spin precession. Sint includes both a
spin-independent contribution and a spin operator component that
defines the precession caused by the mean field of polarized bosons,

Sint r1( ) � ∑
r2

Tr2 Hint r1, r2( )ρ2 r2( )[ ], (11)

where the Trace is taken over the spin indices of the particle colliding
with another particle. Here, Hint is the interaction Hamiltonian of
the system given by Eq. 7. Furthermore, the second term in Eq. 9
containing a spatial derivative describes the effects of the BEC
quantum pressure in terms of the evolution of the spin density
matrix. Moreover, F is the force acting on bosons. For atomic gases
in traps, the force has two sources:

F � −∇rUtrap r( ) − ∇rSint, (12)
where Utrap(r) is the oscillator potential of the trap and Sint is
determined by the sum of interactions of a single boson with all
other bosons. The quantity Sint depends on the single-particle
density matrix and is a Boltzmann equation counterpart of the
interaction term in the Gross–Pitaevskii equation. Finally, Ic(ρ

(1)) is
the collision integral given by the following equation:

FIGURE 2
Adopted from [97]. The ground band (solid lines) of the synthetic
spin–orbit-coupled condensate calculated for several Ω at δ = 0. A
higher band calculated for Ω = 1.3Er is shown as dashed lines. The
colors indicate the spin compositions, with red for |↑〉 and blue
for |↓〉. The ground band minima in quasimomentum marked by dots
are identifiedwith the spin-dependent vector potentials Aσ, which shift
the minima in opposite directions as Ω is lowered into the double
minima band. This generates spin-dependent synthetic electric fields
Eσ = dAσ/dt and thus excites the spin-dipole mode and an alternating
spin current along the direction of the spin–orbit vector potential in a
trapped BEC. The upper (lower) dashed circle represents the region
around qy = 0 in the double minima band, from which the two
(dressed) spin components of the BEC roll down toward the
corresponding band minima in response to the application of the spin
electric field.
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Ic � Tr2 ∑
p′,k,k′

δ H0 p( ) +H0 p′( ) −H0 k( ) −H0 k′( )( )
× δ p + p′ − k − k′( ) P σ0 + ρ 1( )

p( ) σ0 + ρ 2( )
p′( )Pρ 1( )

k ρ 2( )
k′[

+ ρ 1( )
k ρ 2( )

k′ P σ0 + ρ 1( )
p( ) σ0 + ρ 2( )

p′( )P
− Pρ 1( )

p ρ 2( )
p′ P σ0 + ρ 1( )

k( ) σ0 + ρ 2( )
k′( )

− σ0 + ρ 1( )
k( ) σ0 + ρ 2( )

k′( )Pρ 1( )
p ρ 2( )

p′ P],
(13)

where indices p and p′ of ρ(1) and k and k′ of ρ(2) correspond tomomenta
before and after scattering for two interacting particles, respectively, and
the direct product of spin matrices P is defined by the Fourier
components of the spin-dependent scattering Hamiltonian H(r1, r2):

P � H r1, r2( )p,p′;k,k′ � ∫ dr1( ) dr2( )H r1, r2( )
× exp i p − p′( ) · r1 + k − k′( ) · r2[ ]( ). (14)

Hamiltonian H0 in the expression for collision integral defines the
energy of particles and corresponding equilibrium density matrices
that make the collision integral 0. H0 in the density matrix equation
includes kinetic energy, potential energy, spin–orbit coupling, and
other effective magnetic field spin precession terms, as well as the
mean-field interaction energy.

While we restricted our consideration of the relaxation of the BEC to
two-body collision processes, three-body interactions can introducemany
important effects. It was recently discussed, for example, that in addition
to density losses, three-body interactions may result in internal pressure,
resulting in repulsive potential [107]. A rigorous treatment of three-body
interactions must account for both coherent effects, such as forces and
spin precession, and fluctuation and relaxation effects via collision
integral. The collision integral (14) takes into account only part of the
contributions associatedwith the effect of oscillations of the trap, via the δ-
function describing the conservation of energy. To fully include the trap
effects on the collision of particles, a procedure similar to that used for
considering the effects of disorder andmagnetic field on electron collision
integral in [108] must be implemented.

In electron systems, the quantum kinetic Boltzmann equation for
the spin-dependent 2 × 2 density matrix was derived in [109–111]. For
cold Fermi-gases, the collision integral in simulations of spin–orbit
dynamics was introduced phenomenologically in [112]. Amajor feature
of Eq. 9 for bosons is that it is written for particles, like in [29]. The
density matrix in this case, as will be discussed in the next subsection,
will include both the condensate and thermal parts. Excitations included
in the collision integral for particles represent particle-like excitations
and do not account for phonon-like excitations appearing in a
quasiparticle description. However, spin current relaxation, as we
consider in the next sections, is primarily due to elastic processes in
the presence of the effective magnetic field due to spin–orbit
interactions and precession field stemming from Raman beam
coupling. Therefore, the approach in terms of particles largely
captures the spin current relaxation effects.

4.2 Qualitative analysis of the evolution of
the spin density matrix

The time-dependent evolution of the density matrix depends on
the evolution of the parameters of the system. We are interested in
the evolution of the BEC system due to the change in Rabi frequency

Ω from ΩI to ΩF. The initial particle density matrix is ρi(r, p, t), and
the final particle density matrix ρf(r, p, t) depends on the structure of
the condensate at Ωi and ΩF, correspondingly. It has been shown
[102, 113]that the interaction of particles dictates that below Ω ~
0.2Er, the condensate occupies both spectral minima of the single-
particle spectrum, and above that, the condensate occupies only one
of the two spectral minima (provided Ω < 4Er and results in two
minima). Therefore, for small Ω, the condensate part of the density
matrix has a two-minima structure. This results in two Gaussians in
diagonal representation. At Ω ≥ 0.2Er, there is one Gaussian in
diagonal representation. However, in this case, experiments can be
interpreted as two projected Gaussians comprised in terms of bare
spin states.

Our goal is to attempt to understand the relaxation of the
spin–orbit-coupled BEC system starting from the initial state. To
do this, we will first use symmetry considerations. The BEC system
in a harmonic trap is a finite system, in which particle states are
localized. Density matrix equations are usually applied to infinite
systems, in which particles’ momenta are good quantum numbers.
However, scattering in the considered BEC system is rather strong
and occurs on a spatial scale less than the characteristic harmonic
trap size. Therefore, in order to understand the symmetry properties
and which components of the density matrix are subject to
relaxation, it is sufficient to consider the particles’ momenta,
treating the trap as an external force. In this case, the initial
density matrix is given by the following equation:

ρi r, p( ) � 2πZ( )3nicδ p( ) σ0 − σx( ) + fiB ϵ( ), (15)
and final state density matrices at small Ω (for two different cases
depending on whether Ω ≥ 0.2Er or Ω < 0.2Er) are approximately
given by the following expression:

ρf r, p( ) � 2πZ( )3n1fδ p − p0( ) σ0 − σx( ) + ffB1 ϵ( ) (16)

for Ω ≥ 0.2Er and

ρf r, p( ) � ffB2 ϵ( ) + 2πZ( )3n2f
× δ p − p0( ) σ0 − σz( ) + δ p + p0( ) σ0 + σz( )( ) (17)

for Ω < 0.2Er, where ±p0 are the momenta at the energy dispersion
minima, and where fBs are the Bose matrix distribution function for
thermal excitations.

The evolution of the system naturally depends on how fast Ω is
being switched between initial and final values. In the case of
adiabatic switching, the system in the first approximation
gradually evolves between states described by density matrices in
the initial and final states. Matrices in initial and final states are at
equilibrium, and when they are substituted into the collision
integral, it vanishes. In fact, for adiabatic switching, all
intermediate states of the system (and the corresponding
condensates) lead to vanishing collision integrals, which is a
consequence of the energy conservation law described by the δ-
function of energy. If the density matrix is a function of energy only,
it cannot lead to currents or spin currents. As a result, no spin
current arises or exists in the initial, intermediate, and final states of
the BEC system for adiabatic switching.

In the case of abrupt switching between the initial and final state,
after switching, the initial density matrix is no longer at equilibrium
and is subject to relaxation, a symmetry consideration allows us to
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determine which components of this density matrix relax. The
number of particles in the condensate decreases because of
collisions with non-condensate particles and due to the effects of
the fields corresponding to a new equilibrium. In addition to the
variation in the equilibrium (Bose–Einstein) non-condensate part,
non-equilibrium components of the density matrix also arise due to
fields. The primary scattering mechanism is spin-independent
(characterized by c0). Spin-dependent effects, however, arise
because of particle spin precession in Hs fields.

It is important to recognize that the collision integral vanishes
for the density matrix components describing the current (flux) of
particles. This term represents the first excited ‘sloshing’ dipole
mode and is described by the first Legendre polynomial. The
collision term vanishes because of momentum conservation in
binary collisions between particles of the same spin, which is
described by the δ-function of momenta in the expression for
collision integrals. Let us assume that the component of a non-
equilibrium density matrix has the form

δρ1 r, p( ) � κ1 H0( )pi, (18)
where pi is the projection of the particle momentum, and the
dependence of the coefficient κ1 characterizing the distribution,
which depends on equilibrium Hamiltonian H0, indicates that the
symmetry of this non-equilibrium density matrix component is
determined by the momentum vector. We then observe that due to
the δ-function of momenta in the collision integral, the collision
integral vanishes, manifesting the well-known property of BECs that
dipole moment and flux of particles are conserved in binary
collisions.

However, binary collisions do result in the decay of a breathing
mode. Consider, e.g., the momentum distribution

δρ2 r, p( ) � κ2 H0( ) p2
i − P2/3( ). (19)

For a harmonic trap, this density matrix component, characterized
by the second Legendre polynomial in particle momentum, can be
used for analyzing the breathing mode. By inserting δρ2 into the
collision integral, we observe that energy and momentum
conservation does not make the collisional integral vanish, so the
decay of this mode is governed by spin-independent scattering
constant c0 and is significant.

Furthermore, we observe that the spin current also decays due to
binary collisions between atoms with different spins. The
corresponding density matrix component is characterized by the
product of one of the spin Pauli operators and the first Legendre
polynomial in momentum. Expanding the density matrices in the
collision integral, we obtain that spin current relaxation is defined by
the quantity

Δ � p 1( )
y σ 1( )

z + p 2( )
y σ 2( )

z − p
1′( )

y σ 1( )
z − p

2′( )
y σ 2( )

z , (20)

where σ(1)z and σ(2)z are projections of the spin polarization matrix on
states in their appropriate energy minima. We now observe that if
colliding particles belong to the same minima (states 1 and
2 coincide), the corresponding expression is exactly the same as
the quantity defining the relaxation of momenta of Bose particles,
and it again vanishes due to the law of conservation of momentum.
However, if projections of σ(1)z and σ(2)z have opposite signs,
i.e., particles from different minima collide, spin current, in

contrast to momentum, is subject to relaxation. The spin current
decay is governed by the spin-independent scattering constant c0
and is significant.

We further observe that spin polarization decays due to binary
collisions despite no spin-flipping terms being present in the
scattering matrix (once the original spin 1 scattering operator is
projected onto 0 and –1 projections manifold). However, due to
spin-current decay, spin polarization is damped via spin–orbital
precession in the presence of the effective magnetic field due to
Raman beam coupling. This mechanism is analogous to the
Dyakonov–Perel spin relaxation mechanism in non-
centrosymmetric conductors [114] and can also be interpreted as
dephasing in the presence of a random spin–orbit-induced vector
potential [115].

4.3 Numerical simulations in the 1D case

The full numerical simulation of the 3D atomic BEC is outside
the scope of the present work, but we present a simulation of a 1D
case in order to demonstrate the importance of including a collision
integral term [116]. Here, we assume and define the harmonic
oscillator frequency by ωx = ω = 2.5kHz so that Zω = 0.1Er,
where the recoil energy Er = 25 × 10−24 erg and Zkr = 10–22 g cm/
s is the recoil momentum of the Raman beams. Similar to the
experiments studying the quench of spin–orbit-coupled BECs
through non-adiabatic changes in Ω, we start with large Ω =
10Er. For these initial conditions, the two bare spin states of the
BEC are equally populated and are in a miscible state. Assuming T =
0, the atoms of the BEC are all then in the lowest state of the
harmonic trap. This then gives us the starting Wigner distribution.

FIGURE 3
Evolution of (A) n11(p, t) and (B) n22(p, t) afterΩ = 10Er →Ω = 0 for
non-interacting particles. The change in Ω shifts the ground state
minima from ~p � 0 to ~p � ± 1 described by Gaussians in terms of
eigenstates, or from p = ∓1 p = 0 in terms of bare states, causing
oscillations of the BEC in momentum space. Even in this non-
interacting case, the oscillations appear damped and the BEC begins
to spread in momentum space.
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ρ11 p, x, t � 0( ) � ρ22 p, x, t � 0( )
� exp −mωx2/Z − p2/Zmω( ); (21)

ρ12 p, x, t � 0( ) � ρ21 p, x, t � 0( ) � 0. (22)
On the basis of the bare spin states, the Wigner distribution of each
spin state has its maximum in momentum space shifted away from
p = 0 in opposite directions.

In the first case under consideration, the condensate is quenched
by shiftingΩ = 10→Ω = 0. The final state in the case of this quench
has a singular property among all possible final states: if the system is
infinite, the gauge potential Aσ would be removed by a gauge
transformation, so that the ground state of the condensate is p =
0 for both bare spin projections. In a finite system with finite
confinement, this transformation leaves spin–orbit interaction
acting near the boundary of the condensate, due to changes in
boundary conditions. In the numerical study, similarly to the
experimentally investigated three-dimensional case, this quench
gives rise to large oscillations in momentum space, where the
two spin states oscillate around their equilibrium positions as
shown in Figure 3. As the oscillations continue to evolve, the
BEC begins to spread out in momentum space, with an
increasing number of particles remaining at the equilibrium
position.

To visualize the effects of the interaction, we look at differences
in the calculated BEC density with different corrections added. To
simplify our analysis of these differences, we will introduce the
following notation: for the case when there are no interactions
included, the density in momentum space will be n(0)ij (p, t). Adding
the mean-field contributions, we then have n(1)ij (p, t), while those
which include mean-field terms and the collision integral
corrections are given by n(2)ij .

We first consider the effects of the mean-field and collision
integral corrections in the case Ω = 10Er → Ω = 0. In Figure 4A, we
look at the effects of the mean-field corrections denoted by
n(0)11 − n(1)11 . We see that the motion is largely unchanged, with the
effect of the interactions being minor. Overall, the mean-field
corrections cause the BEC to resist the motion, acting to dampen
the motion, as is illustrated by an increased density at larger p.
Including the collision integral, we look at n11(p, t)(1) − n(2)11 (p, t) in
Figure 4B and see largely the same phenomenon at work. The
collision integral correction, however, has a significantly larger effect
than that of the mean-field terms in this process.

Let us now consider the case Ω = 10Er → Ω = 1, as shown in
Figure 5. The gauge (Galilean) transformation can also be
applied in this case, making p = 0 the location of minima in
transformed momentum space; however, this transformation
generates a new precessional term due to the presence of Ω = Er
in the final state. Here, the simulation shows that the shift in the
Raman coupling causes small oscillations in the BEC about the
initial equilibrium state. These oscillations, however, begin to
quickly lose cohesion as particles begin to move toward the new
equilibrium at p = 0.

Next, let us consider the effects of the interaction corrections,
which are shown in Figure 6. First, the mean-field corrections now
have a substantially larger effect, acting to push the BEC toward
equilibrium, as can be seen from the n(0)11 (p, t) − n(1)11 (p, t)
information shown in Figure 6A. We recall, however, that the
mean-field effect of collisions is coherent, rather than a
dissipative effect on dynamics. When we include the collision
integral contribution, we see that the collision integral leads to
the damping of all coherent effects, including effects of interactions,
preventing the breakup of the BEC, seemingly caused by the mean-
field terms as shown in Figure 6B. Thus, the mean-field and the
collision integral contribution to the kinetics are in contrast to each

FIGURE 4
(A) n(0)

11 (p, t) − n(1)
11 (p, t) and (B) n(1)

11 (p, t) − n(2)
11 (p, t) after Ω = 10Er

→ Ω = 0. The mean-field and collision integral corrections cause the
atomic gas to begin spreading slightly away from the minimum of the
potential, with the collision integral causing amuch stronger shift
than just the mean-field corrections.

FIGURE 5
Evolution of (A) n11(p, t) and (B) n22(p, t) afterΩ = 10Er→Ω = Er for
non-interacting particles. The shift excites small oscillations about
p = ±1, which are quickly weakened as the density peak disintegrates
as particles move toward the new equilibrium position.
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other, leading to an overall weaker effect that oscillates between
assisting and restricting the expansion of the BEC. Looking at
n(0)11 (p, t) − n(2)11 (p, t) in Figure 6, we observe that the mean field
and collision integral together lead to only a slight oscillating shift
from the single-particle results. These small shifts can be seen to be
out of phase with the single-particle oscillations of the BEC and thus
act to dampen the oscillations.

Interestingly, oscillations between assisting and restricting the
expansion of the BEC are reminiscent of effective localization that
emerged in the hydrodynamic simulation of spin–orbit-coupled
BEC released from harmonic trap [117]. However, the effect in
our simulations of the quenching of Raman coupling in spin–orbit
BEC emerges from the competition of the mean-field and collision
integral contribution to the kinetics of BEC, while the approach of
[117] to the dynamics of the condensate released from the trap is
based on Gross–Pitaevskii equations and considers only the mean-
field interaction effects. We note that in [118], it was shown that
localization effects in 1D BEC can lead to fluid-to-insulator
transition. Consideration of such transitions involves analysis of
thermal excitations of quasiparticles and understanding the

diffusion coefficient of a cloud of atoms and requires going
beyond the mean-field approximations.

5 Conclusion

While the mean-field approaches and the Gross–Pitaevskii
equation are capable of explaining many experimental
observations in atomic BEC and other BEC systems, the
quantum Boltzmann equation for the density matrix is required
to fully understand the kinetics of the evolution of the Bose–Einstein
condensates. Nucleation of the Bose–-Einstein condensates and the
decay of persistent currents are among the problems where the
kinetic approach is necessary for full understanding. There is an
important common symmetry principle characterizing these two
phenomena. In order to describe the nucleation of the Bose–Einstein
condensates, the Hamiltonian of the system has to include
interactions, possibly small, capable of non-conserving the
particles and resulting in generation (relaxation) of the vorticity.
In the decay of persistent currents, the kinetics must take into
account interactions capable of transferring angular momentum
from the condensate to thermal atoms. Recently, the decay of spin
currents was studied in spin–orbit-coupled Bose–Einstein
condensates. While the time-dependent Gross–Pitaevskii
approach allows for explaining certain features of experimental
data, a full understanding of dissipative processes requires an
account of interactions via the collision integral in the Boltzmann
equation. We derived the quantum Boltzmann equation for the spin
density matrix in a spin–orbit-coupled BEC and examined the
evolution of the spin–orbit BEC removed from equilibrium. We
used a simplified approach of the kinetic equation for particles that
leads to a 2 × 2 matrix kinetic equation. The effects of the mean field
and the collision integral terms on the dynamics of the condensate
are strongly influenced by how the Raman coupling is changed. This
correlates with different evolutions of the BEC depending on the
characteristics of change in the Raman coupling in the experiment.
Two types of behavior are observed in 1D simulation. In one kind,
the mean-field and collision integral contribution may have similar
effects, acting to dampen the oscillations by causing the spread of the
cold atoms away from the minimum energy. The collision integral-
induced relaxation, however, is observed to have a stronger effect
than the mean-field contributions. Another type of behavior is
collision integral contribution, which dampens the effects of all
of the coherent forces, including the mean-field interaction effect, so
that the mean-field interactions and collision integral acting together
lead to an overall small effect that oscillates between supporting and
restricting the expansion of the BEC, with oscillations gradually
damping. It is of interest to see if these patterns of behavior will also
emerge in full 3D treatment. However, as already observed from the
present results, it is clear that the non-equilibrium dynamics of the
BEC are strongly influenced by the collision integral relaxation
effects. Thus, proper treatment of these systems requires going
beyond the mean-field approach.
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FIGURE 6
(A) n(0)

11 (p, t) − n(1)
11 (p, t), (B) n(1)

11 (p, t) − n(2)
11 (p, t), and (C)

n(0)
11 (p, t) − n(2)

11 (p, t) after Ω = 10Er → Ω = Er. Unlike the case when Ω =
10Er → Ω = 0, the mean-field corrections and the collision integral
corrections are of roughly equal strength. When both corrections
are combined, the collision integral dampens the effects of all
coherent forces and all coherent precessions, including those due to
mean-field scattering effects, so that the net result is a weak damping
of the oscillations.
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