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The Transmission Control Protocol usually involves incomplete and imperfect
network states for which sophisticated analysis is needed. Fuzzy logic could be
more helpful for the analysis of network statemore accurately. The interval-valued
picture fuzzy set being the most generalized form of fuzzy set has more capacity
to analyze the network state more intelligently. In this manuscript, we present the
concepts of interval-valued picture fuzzy graphs (IVPFGs) as an extension of
interval-valued fuzzy graphs and picture fuzzy graphs. Since interval-valued
picture fuzzy sets are the most advanced form of fuzzy sets, IVPFGs would be
a more efficient tool for handling data containing uncertainties. First, basic
concepts such as degree, order, and size are discussed, followed by operations
such as union, intersection, Cartesian product, composition, and the ring sum of
IVPFGs. Then, we provide a few relationships between the ring sum and edge
deletion of IVPFGs. Special types of IVPFGs including complete IVPFGs, regular
IVPFGs, complement IVPFGs, and strong IVPFGs are introduced. Concepts such as
the strength of arcs, path sequence, strength of the path, and connectedness are
explored in IVPFGs. Different types of strengths of connectedness are discussed
based on specific types of arcs. We also provide a few structural properties of
IVPFGs through these arcs. Finally, we give a clue about the potential
implementation of IVPFGs, an extension of the fuzzy logic-based Transmission
Control Protocol and toward social networking.
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1 Introduction

L. A. Zadeh [1] initiated the concept of fuzzy sets (FSs) which have been effectively
applied to solve daily life problems containing uncertainties. We know that the classical
(crisp) set comprises exactly two truth values: “True (1)” and “False (0),”which are incapable
of dealing with data containing uncertainties. An FS is the generalized form of the classical
(crisp) set in which the elements of the set are allocated different membership values from [0,
1]. Since giving a fixed value to any observation related to daily life problems is very limiting,
allocating an interval instead of a number would be more practical. Consequently, the notion
of interval-valued fuzzy sets (IVFSs) was initiated in [2]. In IVFSs, we mention the degrees of
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memberships of an entity with “intervals of numbers.” IVFSs
become more effective than FSs when dealing with problems
containing uncertainties. Different types of norms were defined
on IVFSs [3]. Applications of IVFSs toward approximate reasoning
and inferences were explored in [4, 5]. Intuitionistic fuzzy sets (IFSs)
were another generalization of FSs initiated in [6] and consist of one
extra membership degree named “hesitation margin.” Hence, IFSs
become more successful in dealing with uncertain circumstances
because of having an additional margin, i.e., “hesitation margin.”
Consequently, IFSs are applied more efficiently in different fields
such as decision making [7] and image processing [8]. Afterward,
IFSs was further generalized as interval-valued intuitionistic fuzzy
sets (IVIFSs) [9]. In IVIFSs, the membership and non-membership
values consist of suitable subintervals of [0, 1]. Moreover, in the
theory of IFSs, the term “neutrality degree” was not considered.
However, the neutrality degree has its own importance in various
real-life situations such as democratic election. Human beings
usually give their opinions containing more replies of the form:
yes, no, abstain, and refusal. If we utilize IFSs to handle such
circumstances, then the information of voting for non-candidates
(refusal) may be ignored. To overcome such types of hurdles, Cuong
[10] introduced the notion of picture fuzzy sets (PFSs) which are the
utmost generalization of FSs. Basically, PFSs include the idea of
degrees of positive, neutral, and negative memberships of each
member. Different operations and relations on PFSs were
introduced in [11]. Many operators of FSs were shifted toward
PFSs in [12]. Several aggregation operators of PFSs were explored in
[13]. The application of picture fuzzy Dombi Hamy mean operator
toward MADM was explored in [14]. Kumar et al. [15] introduced
some novel point operators on PFSs and applied them toward
decision-making theory. Interval-valued picture fuzzy sets
(IVPFSs) were initiated in [16], several operations on IVPFSs
were introduced, and numerous characterizations of IVPFSs were
discussed. Khan et al. [17] added different types of bipolar picture
fuzzy sets and relations.

Fuzzy graphs (FGs) were first proposed by Rosenfeld [18].
Afterward, FGs become a useful tool in modeling different types
of problems lying in various fields. FGs were proven as more efficient
tools to interpret numerous real-world problems as compared to
classic graphs [19]. The concept of a complement of FGs was
initiated which was further elaborated in [20]. Complex
Pythagorean fuzzy graphs were discussed in [21]. Generalized
fuzzy graphs were introduced in [22]. Some categorical
applications of BPGs were explored in [23]. Different categories
of polar graphs have been discussed in [24, 25]. Interval-valued fuzzy
graphs (IVFGs) were initiated in [26]. The term highly irregular
BPFGs was discussed in [27]. Recently, the application of fuzzy
incidence graphs toward optimizing business trade has been
explored in [28]. In [29], further generalization of FGs termed
intuitionistic fuzzy graphs (IFGs) was initiated. IFGs were further
elaborated in [30]. Various operations on IFGs were explored in
[31], and some applications of IFGs were presented in [32].
Moreover, in [23], different operations such as union,
intersection, composition on IFGs, and different types of
products were defined. We refer to [33–35] for further details on
IFGs. The generalization of IFGs termed interval-valued
intuitionistic (S, T)-fuzzy graphs was introduced in [36].
Different forms of interval-valued intuitionistic (S, T)-fuzzy

graphs such as regular and totally regular were also explored.
Concepts of busy vertices and free vertices of interval-valued
intuitionistic (S, T)-fuzzy graphs were also introduced in [36].
Some new concepts of IVIFGs were defined in [37]. Interval-
valued intuitionistic fuzzy competition graphs were described in
[38]. Recently, Zuo et al. [39] commenced with the concepts of
picture fuzzy graphs (PFGs), a generalization of both FGs and IFGs.
Afterward, various generalizations of PFGs such as the picture fuzzy
multigraph (PFMG) [40] and picture fuzzy competition graphs
(PFCGs) [41] were introduced. Currently, Khan et al. added
several terms in the theory of PFGs such as bipolar picture fuzzy
graphs (BPPFGs) [42], dominations in BPPFGs [43], Cayley picture
fuzzy graphs, and their application toward interconnected networks
[44]. Chen et al. [45] introduced the concepts of picture fuzzy line
graphs with application in data analysis. Arif et al. [46] introduced
the term interval-valued picture (S, T)-fuzzy graphs with application
toward MADM.

In this manuscript, we initiate the term interval-valued picture
fuzzy graphs (IVPFGs) which is the further generalized form of
PFGs. It has been observed that uncertainties are well demonstrated
by IVPFSs which is the most developed form of PFFs. IVPFGs would
become an outstanding tool for modeling problems involving
uncertainties. Our study also fills the gap in the theory of
extension of fuzzy graphs.

The organization of this article is as follows.
Section 2 consists of some important and useful terminologies.

In Section 3, we introduce the notion of IVPFGs based on the
interval-valued picture fuzzy relation and discuss some basic terms
related to IVPFGs. We also define some basic operations on IVPFGs
and introduce different types of products on IVPFGs. In addition,
we discuss complete IVPFGs, regular IVPFGs, complement IVPFGs,
and strong IVPFGs. In Section 4, we provide a detailed discussion
related to the connectivity of IVPFGs. In Section 5, based on
IVPFGs, we offer a clue about the extension of the models of
Transmission Control Protocol (TCP) presented in [47, 48] based
on FSs. In Section 6, we also describe the social networking through
IVPFGs. Finally, Section 7 consists of conclusive remarks about the
presented work. Throughout our discussions, we furnish our results
with illustrative examples.

2 Preliminaries

Definition 1. [1] An FS can be described by the pair (χ, X), where X
is a non-empty set and χ: X → [0, 1] is a membership function.

Definition 2. [6] An IFS S defined on any set X can be described as

S � w, χS w( ),ωS w( ): w ∈ X( ){ },
where χS(w) ∈ [0, 1] is the membership degree of w in S, ωS(w) ∈
[0, 1] is the non-membership degree of w in S, and χS and ωS satisfy
(∀w ∈ X)(χS(w) + ωS(w) ≤ 1).

Definition 3. [10] A PF S on U is an object that can be expressed as
S = {(w, χS(w), ψS(w), ωS(w)): w ∈ U}, where χs(w) ∈ [0, 1] represents
the positive membership degree ofw in S, ψS(w) ∈ [0, 1] is the neutral
membership degree ofw in S, and ωS(w) ∈ [0, 1] denotes the negative
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membership degree of w in S, and χS, ψS, and ωS satisfy (∀w ∈
X)(χS(w) + ψS(w) + ωS(w) ≤ 1). Here, we may call (1 − (χS(w) +
ψS(w) + ωS(w)) the degree of refusal membership of w in S.

Definition 4. [16] An IVPFS S on U is the object S � (w{ ,
[χSL(w), χSU(w)], [ψSL(w), ψSU(w)], [ωSL(w), and ωSU(w)]) :
w ∈ U}, where

χS: U → int([0, 1]), χS(w) = [χSL(w), χSU(w)] ∈ int([0, 1]),
ψS: U → int([0, 1]), ψS(w) = [ψSL(w), ψSU(w)] ∈ int([0, 1]),
ωS: U → int([0, 1]), ωS(w) = [ωSL(w), ωSU(w)] ∈ int([0, 1]), and
for all w ∈ U, χSU(w) + ψSU(w) + ωSU(w) ≤ 1.

Definition 5. [18] Let V be a non-empty and finite set of vertices.
Then, the FG G on V can be described with an ordered pair of
functions χC and χD i.e.,G = (χC, χD), where χC is the fuzzy subset ofV
and χD is a symmetric fuzzy relation onV ×V, i.e., χC:V→ [0, 1] and
χD: V × V → [0, 1] with χD(w, x) ≤ χC(w) ∧ χC(x), ∀w, ∀x ∈ V.

Definition 6. [26] An IVFG defined on set of vertices V is the fuzzy
graph G = (χC, χD), where χC = [χCL, χCU] is the fuzzy interval-valued
fuzzy subset ofV and χD = [χDL, χDU] is a symmetric fuzzy relation on
V × V, i.e., χC: V→ D[0, 1] and χD: V × V→ D[0, 1] with χD(w, x) ≤
χC(w) ∧ χC(x), ∀w, ∀x ∈ V.

Definition 7. [39] A graph H = (U, V) is a PFG on H* = (A, B),
where U = (χU, ψU, ωU) is a PFS on A and V = (χV, ψV, ωV) is a PFS
over B ⊆ A × A. For every edge wx ∈ B,

χV w, x( )≤min χU w( ), χU x( )( ), ψV w, x( )≤min ψU w( ),ψU x( )( ),
ωV w, x( )≥max ωU w( ),ωU x( )( ).

We refer [39] for further discussions on PFGs.

3 Interval-valued picture fuzzy graphs

A PFS is a more efficient mathematical model for solving
problems containing uncertainties, where a FS and IFS may fail to
provide satisfactory results. The PFS is an extended form of the
classical FS and IFS, capable of working effectively in vague scenarios
with multiple answers such as yes, no, abstain, and refusal. The IVPFS
further extends the PFS and enhances its capability to handle
uncertainties. These motivations led us to introduce the concepts
of IVPFGs based on interval-valued picture fuzzy relations. The
structural properties of IVPFGs reflect their efficiency compared to
other extended forms of fuzzy graphs such as intuitionistic fuzzy
graphs, interval-valued fuzzy graphs, and picture fuzzy graphs. In this
section, we first apply basic operations such as intersection, union, and
complement to IVPFGs. Then, different types of IVPFGs, including
complete and regular, are introduced. The cartesian product, ring
sum, and composition of two IVPFGs are also described.

Throughout our discussions, the mappings χ, ψ, and ω are
defined from specific sets to D[0, 1], the set of all closed
subintervals of [0, 1].

Definition 8.A pairG′ = (C,D) is an IVPFG defined on a graphG =
(V, E), where C = ([χCL, χCU], [ψCL, ψCU], [ωCL,ωCU]) is an IVPFS
on V, and D = (χD, ψD, ωD) is an IVPFS on E ⊆ V × V such that for

each edge uv ∈ E, χDL(u, v) ≤ min(χCL(u), χCL(v)), χDU(u, v) ≤
min(χCU(u), χCU(v)) ψDL(u, v) ≤ min(ψCL(u), ψCL(v)), ψDU(u, v) ≤
min(ψCU(u), ψCU(v)) ωDL(u, v) ≥ max(ωCL(u), ωCL(v)), and ωDU(u,
v) ≥ max(ωCU(u), ωCU(v)).

Example 1. It is easy to check if the graphs shown in Figures 1A, B
are IVPFGs.

Definition 9. Let G = (C, D) be an IVPFG. Then, the degree(open
degree) of a vertex u of G is d(u) � ([dχL(u), dχU(u)], [dψL

(u),
dψU

(u)], [dωL(u), and dωU(u)]), where

dχL
u( ) � ∑

u≠v
χDL uv( ), dχU

u( ) � ∑
u≠v

χDU uv( ), dψL
u( ) � ∑

u≠v
ψDL uv( ),

dψU
u( ) � ∑

u≠v
ψDU uv( ), dωL u( ) � ∑

u≠v
ωDL uv( ), dωU u( ) � ∑

u≠v
ωDU uv( ).

If dχL(u) � k1, dχU(u) � k2, dψL
(u) � k3, dψU

(u) � k4, and
dωL(u) � k5, dωU(u) � k6 for all u ∈ V, k1, k2, k3, k4, k5, k6 are six
real numbers, then the graph is said to be a [k1, k2], [k3, k4], [k5, k6]-
regular IVPFG.

Definition 10. Let G = (C, D) be an IVPFG. Then, the total
degree(close degree) of a vertex u is td(u) � ([tdχL(u), tdχU(u)],
[tdψL

(u), tdψU
(u)], [tdωL(u), and tdωU(u)]), where

tdχL
u( ) � ∑

u≠v
χDL uv( ) + χCL u( ), tdχU

u( ) � ∑
u≠v

χDU uv( ) + χCU u( ),

tdψL
u( ) � ∑

u≠v
ψDL uv( ) + ψCL u( ), tdψU

u( ) � ∑
u≠v

ψDU uv( ) + ψCU u( ),

tdωL u( ) � ∑
u≠v

ωDL uv( ) + ωCL u( ), tdωU u( ) � ∑
u≠v

ωDU uv( ) + ωCU u( ).

Definition 11.Given an IVPFGG = (C,D), the order ofG is defined
by O(G) � ([OχL(G), OχU(G)], [OψL

(G), OψU
(G)], [OωC(G), and

OωU(G)]), where

OχL
G( ) � ∑

u∈V
χCL u( ), OχU

G( ) � ∑
u∈V

χCU u( ), OψL
G( ) � ∑

u∈V
ψCL u( ),

OψU
G( ) � ∑

u∈V
ψCU u( ), OωL G( ) � ∑

u∈V
ωCL u( ), OωU G( ) � ∑

u∈V
ωCU u( ).

Definition 12. Given an IVPFG G = (C, D), the size of G is
S(G) � ([SχL(G), SχU(G)], [SψL

(G), SψU
(G)], [SωL(G), and

SωU(G)]), where

SχL G( ) � ∑
uv∈E,
u≠v

χDL uv( ), SχU G( ) � ∑
uv∈E,
u≠v

χDU uv( ), SψL
G( )

� ∑
uv∈E,
u≠v

ψDL uv( ),

SψU
G( ) � ∑

uv∈E,
u≠v

ψDU uv( ), SωL G( ) � ∑
uv∈E,
u≠v

ωDL uv( ), SωU G( )

� ∑
uv∈E,
u≠v

ωDU uv( ).
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Example 2.Degrees of all vertices of an IVPFG shown in Figure 1A
are as follows:

d(u1) � ([0.3, 0.4], [0.4, 0.6], [0.5, 0.8])
d(v1) � ([0.2, 0.4], [0.5, 0.7], [0.6, 0.7])
d(w1) � ([0.3, 0.4], [0.3, 0.6], [0.6, 0.8]).
The total degrees of all vertices of the same IVPFG are given by
td(u1) � ([0.6, 0.8], [0.6, 1.0], [0.6, 1.0]),
td(v1) � ([0.3, 0.7], [0.8, 1.1], [0.9, 1.0]), and
dt(w1) � ([0.6, 0.7], [0.5, 1.0], [0.7, 1.1]).
Hence, the order of G is O(G) � ([0.7, 1.0], [0.7, 1.2], and [0.5,

0.8]), and the size of G is S(G) � ([0.4, 0.6], [0.5, 0.9], and
[0.9, 1.2]).

Definition 13. For every two IVPFGsG = (C1,D1) andH = (C2,D2),
the union and intersection can be defined as follows.

(1) Union:
G ∪ H � C1 ∪ C2, D1 ∪ D2{ },

where C1 � {w, ([χC1L
(w), χC1U

(w)], [ψC1L
(w),ψC1U

(w)], [ωC1L

(w),ωC1U(w)]): w ∈ V1}, C2 � {w, ([χC2L
(w), χC2U

(w)], [ψC2L

(w),ψC2U
(w)], [ωC2L(w),ωC2U(w)]): w ∈ V2}, D1 � {(wx), ([χD1

L(wx), χD1U
(wx)], [ψD1L

(wx),ψD1U
(wx)], [ωD1L(wx),ωD1U(wx)

]): (wx) ∈ E1}, and D2 � {(wx), ([χD2L
(wx), χD2U

(wx)],
[ψD2L

(wx),ψD2
U(wx)], [ωD2L(wx),ωD2U(wx)]): (wx) ∈ E2}.

Then, we have the following.
C1 ∪ C2 � w{ , ([χC1L∪C2L

(w), χC1U∪C2U
(w)], [ψC1L∪C2L

(w),
ψC1U∪C2U

(w)], [ωC1L∪C2L(w), and ωC1U∪C2U(w)]): w ∈ V1 ∪ V2},
where

χC1L∪C2L
(w) �

χC1L
(w), if w ∈ V1

χC2L
(w), if w ∈ V2

χC1L
(w) ∨ χC2L

(w), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩

χC1U∪C2U
(w) �

χC1U
(w), if w ∈ V1

χC2U
(w), if w ∈ V2

χC1U
(w) ∨ χC2U

(w), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩

ψC1L∪C2L
(w) �

ψC1L
(w), if w ∈ V1

ψC2L
(w), if w ∈ V2

ψC1L
(w) ∧ χC2L

(w), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩

ψC1U∪C2U
(w) �

ψC1U
(w), if w ∈ V1

ψC2U
(w), if w ∈ V2

ψC1U
(w) ∧ χC2U

(w), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩

ωC1L∪C2L(w) �
ωC1L(w), if w ∈ V1

ωC2L(w), if w ∈ V2

ωC1L(w) ∧ χC2L
(w), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩

ωC1U∪C2U(w) �
ωC1U(w), if w ∈ V1

ωC2U(w), if w ∈ V2

ωC1U(w) ∧ χC2U
(w), if w ∈ V1 ∩ V2.

⎧⎪⎨⎪⎩
and

D1 ∪ D2 � (wx), ([χD1L∪D2L
(wx),{ χD1U∪D2U

(wx)], [ψD1L∪D2L

(wx),ψD1U∪D2U
(wx)], [ωD1L∪D2L(wx), and ωD1U∪D2U(wx)]):

(wx) ∈ E1 ∪ E2}, where

χD1L∪D2L
(wx) �

χD1L
(wx), if wx ∈ E1

χD2L
(wx), if wx ∈ E2

χD1L
(wx) ∨ χD2L

(wx), if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩

χD1U∪D2U
(wx) �

χD1U
(wx), if wx ∈ E1

χD2U
(wx), if wx ∈ E2

χD1U
(wx) ∨ χD2U

(wx), if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩

ψD1L∪D2L
(wx) �

ψD1L
(wx), if wx ∈ E1

ψD2L
(wx), if wx ∈ E2

ψD1L
(wx) ∧ ψD2L

(wx), if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩

ψD1U∪D2U
(wx) �

ψD1U
(wx), if wx ∈ E1

ψD2U
(wx), if wx ∈ E2

ψD1U
(wx) ∧ ψD2U

(wx), if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩
ωD1L∪D2L(wx) �

ωD1L(wx), if wx ∈ E1

ωD2L(wx), if wx ∈ E2

ωD1L(wx) ∧ ωD2L(wx), if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩
ωD1U∪D2U(wx) �

ωD1U(wx), if wx ∈ E1

ωD2U(wx), if wx ∈ E2

ωD1U(wx) ∧ ωD2U(wx), if wx ∈ E1 ∩ E2.

⎧⎪⎨⎪⎩

Proposition 1. The union of two IVPFGsG = (C1,D1) andH = (C2,
D2) is an IVPFG.

Proof. Let wx ∈ E1 ∩ E2. Then,

(1)

χD1L
∪ χD2L

( ) wx( ) ≤min χD1L
wx( ), χD2L

wx( )( )
≤min min χC1L

w( ), χC1L
x( )( ), min χC2L

w( ), χC2L
x( )( )( )

≤min min χC1L
w( ), χC2L

w( )( ), min χC1L
x( ), χC2L

x( )( )( )
≤min χC1L

∪ χC2L
( ) w( ), χC1L

∪ χC2L
( ) x( )( ),

χD1U
∪ χD2U

( ) wx( ) ≤min χD1U
wx( ), χD2U

wx( )( )
≤min min χC1U

w( ), χC1U
x( )( ), min χC2U

w( ), χC2U
x( )( )( )

≤min min χC1U
w( ), χC2U

w( )( ), min χC1U
x( ), χC2U

x( )( )( )
≤min χC1U

∪ χC2U
( ) w( ), χC1U

∪ χC2U
( ) x( )( ).

(2)

ψD1L
∪ ψD2L

( ) wx( ) ≤min ψD1L
wx( ),ψD2L

wx( )( )
≤min min ψC1L

w( ),ψC1L
x( )( ), min ψC2L

w( ),ψC2L
x( )( )( )

≤min min ψC1L
w( ),ψC2L

w( )( ), min ψC1L
x( ),ψC2L

x( )( )( )
≤min ψC1L

∪ ψC2L
( ) w( ), ψC1L

∪ ψC2L
( ) x( )( ),

ψD1U
∪ ψD2U

( ) wx( ) ≤min ψD1U
wx( ),ψD2U

wx( )( )
≤min min ψC1U

w( ),ψC1U
x( )( ), min ψC2U

w( ),ψC2U
x( )( )( )

≤min min ψC1U
w( ),ψC2U

w( )( ), min ψC1U
x( ),ψC2U

x( )( )( )
≤min ψC1U

∪ ψC2U
( ) w( ), ψC1U

∪ ψC2U
( ) x( )( ).

(3)

ωD1L ∪ ωD2L( ) wx( ) ≥max ωD1L wx( ),ωD2L wx( )( )
≥max max ωC1L w( ),ωC1L x( )( ), max ωC2L w( ),ωC2L x( )( )( )
≥max max ωC1L w( ),ωC2L w( )( ), max ωC1L x( ),ωC2L x( )( )( )
≥max ωC1L ∪ ωC2L( ) w( ), ωC1L ∪ ωC2L( ) x( )( ),

ωD1U ∪ ωD2U( ) wx( ) ≥max ωD1U wx( ),ωD2U wx( )( )
≥max max ωC1U w( ),ωC1U x( )( ), max ωC2U w( ),ωC2U x( )( )( )
≥max max ωC1U w( ),ωC2U w( )( ), max ωC1U x( ),ωC2U x( )( )( )
≥max ωC1U ∪ ωC2U( ) w( ), ωC1U ∪ ωC2U( ) x( )( ).

Similarly, if wx ∈ E1 and wx ∈ E2 or wx ∈ E2 and wx ∈ E1, then we
have
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χD1L
∪ χD2L

( ) wx( ) ≤min χC1L
∪ χC2L

( ) w( ), χC1L
∪ χC2L

( ) x( )( )
χD1U

∪ χD2U
( ) wx( ) ≤min χC1U

∪ χC2U
( ) w( ), χC1U

∪ χC2U
( ) x( )( )

ψD1L
∪ ψD2L

( ) wx( ) ≤min ψC1L
∪ ψC2L

( ) w( ), ψC1L
∪ ψC2L

( ) x( )( )
ψD1U

∪ ψD2U
( ) wx( ) ≤min ψC1U

∪ ψC2U
( ) w( ), ψC1U

∪ ψC2U
( ) x( )( )

ωD1L ∪ ωD2L( ) wx( ) ≥max ωC1L ∪ ωC2L( ) w( ), ωC1L ∪ ωC2L( ) x( )( )
ωD1U ∪ ωD2U( ) wx( ) ≥max ωC1U ∪ ωC2U( ) w( ), ωC1U ∪ ωC2U( ) x( )( ).

Definition 14. The complement of an IVPFG H = (C, D) is an
IVPFG Hc = (Cc, Dc) if and only if it obeys

χCcL(x) � χCL(x), χCcU(x) � χCU(x),ψCcL(x) � ψCL(x),
ψCcU(x) � ψCU(x),ωCcL(x) � ωCL(x),ωCcU(x) � ωCU(x),

for all x ∈ V. In addition, for all wx ∈ E,
χDcL(wx) � χCL(w) ∧ χCL(x) − χDL(wx),
χDcU(wx) � χCU(w) ∧ χCU(x) − χDU(wx),
ψDcL(w, x) � ψCL(w) ∧ ψCL(x) − ψDL(wx),
ψDcU(w, x) � ψCU(w) ∧ ψCU(x) − ψDU(wx),
ωDcL(w, x) � ωDL(wx) − ωCL(w) ∨ ωCL(x), and
ωDcU(wx) � ωDU(wx) − ωCU(w) ∨ ωCU(x).

Example 3. Graphs shown in Figure 2 are the complement of each
other.

Definition 15. Let G* = (C, D) be an IVPFG on G = (V, E), where C
= ([χCL, χCU], [ψCL, ψCU], [ωCL,ωCU]) and D = ([χDL, χDU], [ψDL,
ψDU], [ωDL,ωDU]). Let S = (H, I) ⊆G*, whereH = ([χHL, χHU], [ψHL,
ψHU], [ωHL,ωHU]) and I = ([χIL, χIU], [ψIL, ψIU], [ωIL,ωIU]). Then S
is an interval-valued picture fuzzy subgraph of G, if

χIL(w, x)≤min(χHL(w), χHL(x)), χIU(w, x)≤min(χHU(w), χHU(x))
ψIL(w, x)≤min(ψHL(w),ψHL(x)),ψIU(w, x)≤min(ψHU(w),ψHU(x))
ωIL(w, x)≥max(ωHL(w),ωHL(x)),ωIU(w, x)≥max(ωHU(w),ωHU(x))

where χIL(w, x) ≤ χDL(w, x), χIU(w, x) ≤ χDU(w, x), ψIL(w, x) ≤
ψDL(w, x), ψIU(w, x) ≤ ψDU(w, x), ωIL(w, x) ≥ ωDL(w, x), ωIU(w, x) ≥
ωDU(w, x).

Definition 16. An IVPFG H = (C, D) is a regular IVPFG, if

∑w, w≠xχDL(w, x) = constant, ∑w, w≠xχDU(w, x) = constant∑w, w≠xψDL(w, x) = constant, ∑w, w≠xψDU(w, x) = constant∑w, w≠xωDL(w, x) = constant, and ∑w, w≠xωDU(w, x) = constant.

Example 4. It is easy to conclude that the graph given in Figure 3 is
a regular IVPFG.

Definition 17. An IVPFG H = (C, D), where
C � ([χCL, χCU], [ψCL,ψCU], [ωCL, ωCU]), and D = ([χDL, χDU],
[ψDL, ψDU], [ωDL, ωDU]) is defined as a strong IVPFG, if H
satisfies

χDL w, x( ) � χCL w( ) ∧ χCL x( ), χDU w, x( ) � χCU w( ) ∧ χCU x( ),
ψDL w, x( ) � ψCL w( ) ∧ ψCL x( ), ψDU w, x( ) � ψCU w( ) ∧ ψCU x( ),
ωDL w, x( ) � ωCL w( ) ∨ ωCL x( );ωDU w, x( ) � ωCU w( ) ∨ ωCU x( )

∀ (w, x) ∈ E.

Definition 18. An IVPFG H = (C, D), where C = ([χCL, χCU], [ψCL,
ψCU], [ωCL, ωCU]) and D = ([χDL, χDU], [ψDL, ψDU], [ωDL, ωDU]) is
said to be a complete IVPFG if H satisfies

χDL w, x( ) � χCL w( ) ∧ χCL x( ), χDU w, x( ) � χCU w( ) ∧ χCU x( ),
ψDL w, x( ) � ψCL w( ) ∧ ψCL x( ),ψDU w, x( ) � ψCU w( ) ∧ ψCU x( ),
ωDL w, x( ) � ωCL w( ) ∨ ωCL x( ); ωDU w, x( ) � ωCU w( ) ∨ ωCU x( )

∀ w, x ∈ V.

Example 5. The graph shown in Figure 4 is a complete IVPFG.

Remark 1. Every complete IVPFG is a strong IVPFG, but the
converse is not true, in general.

Definition 19. Let E1 be an IVPFR on (V1 × V1) and E2 be an
IVPFR on (V2 × V2). Then, the max–min composed relation
(IVPCR) is an IVPFR on (V1 × V2) and is described as IVPCR �
((w1, y2): χDL(w1, y2), χDU(w1, y2),ψ{ DL(w1, y2),ψDU(w1, y2),
ωDL (w1, y2)),ωDU (w1, y2)), w1 ∈ V1, y2 ∈ V2}, where for all
(w1, y2) ∈ V1 × V2, we have

χDL(w1, y2) � ∨x1 ,x2{χC1L
(w1, x1) ∧ χC1L

(x2, y2)},
χDU(w1, y2) � ∨x1 ,x2{χC1U

(w1, x1) ∧ χC1U
(x2, y2)},

ψDL(w1, y2) � ∧x1 ,x2{ψC1L
(w1, x1) ∧ ψC1L

(x2, y2)},
ψDU(w1, y2) � ∧x1 ,x2{ψC1U

(w1, x1) ∧ ψC1U
(x2, y2)},

ωDL(w1, y2) � ∧x1 ,x2{ωC1L(w1, x1) ∨ ωC1L(x2, y2)},
ωDU(w1, y2) � ∧x1 ,x2{ωC1U(w1, x1) ∨ ωC1U(x2, y2)}.

Definition 20. The composition G[H] = (C1◦C2, D1◦D2) of two
IVPFGs G = (C1, D1) and H = (C2, D2) is defined as follows:

1.
(χC1L

◦χC2L
)(x1, x2) � min(χC1L

(x1), χC2L
(x2))

(χC1U
◦χC2U

)(x1, x2) � min(χC1U
(x1), χC2U

(x2)){
∀(x1, x2) ∈ V × V

2.
(χD1L

◦χD2L
)((x, x2)(x, y2)) � min(χC1L

(x), χD2L
(x2y2))

(χD1U
◦χD2U

)((x, x2)(x, y2)) � min(χC1U
(x), χD2U

(x2y2)){
for all x ∈ V1 and x2y2 ∈ E2

3.
(χD1L

◦χD2L
)((x1, z)(y1, z)) � min(χD1L

(x1y1), χC2L
(z))

(χD1U
◦χD2U

)((x1, z)(y1, z)) � min(χD1U
(x1y1), χC2U

(z)){
for all z ∈ V2 and x1y1 ∈ E1

4.
(χD1L

◦χD2L
)((x1, x2)(y1, y2)) � min(χC2L

(x2), χC2L
(y2), χD1L

(x1y1))
(χD1U

◦χD2U
)((x1, x2)(y1, y2)) � min(χC2U

(x2), χC2U
(y2), χD1U

(x1y1)){
for all x2y2 ∈ V2, x2 ≠ y2 and ∀(x1y1) ∈ E1

5.
(ψC1L

◦ψC2L
)(x1, x2) � min(ψC1L

(x1),ψC2L
(x2))

(ψC1U
◦ψC2U

)(x1, x2) � min(ψC1U
(x1),ψC2U

(x2)){
∀(x1, x2) ∈ V × V

6.
(ψD1L

◦ψD2L
)((x, x2)(x, y2)) � min(ψC1L

(x),ψD2L
(x2y2))

(ψD1U
◦ψD2U

)((x, x2)(x, y2)) � min(ψC1U
(x),ψD2U

(x2y2)){
for all x ∈ V1 and x2y2 ∈ E2

7.
(ψD1L

◦ψD2L
)((x1, z)(y1, z)) � min(ψD1L

(x1y1),ψC2L
(z))

(ψD1U
◦ψD2U

)((x1, z)(y1, z)) � min(ψD1U
(x1y1),ψC2U

(z)){
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for all z ∈ V2 and x1y1 ∈ E1

8. (ψD1L
◦ψD2L

)((x1 , x2)(y1 , y2)) � min(ψC2L
(x2),ψC2L

(y2),ψD1L
(x1y1))

(ψD1U
◦ψD2U

)((x1 , x2)(y1 , y2)) � min(ψC2U
(x2),ψC2U

(y2),ψD1U
(x1y1)){

for all x2y2 ∈ V2, x2 ≠ y2 and ∀(x1y1) ∈ E1

9. (ωC1L◦ωC2L)(x1, x2) � max(ωC1L(x1),ωC2L(x2))
(ωC1U◦ωC2U)(x1, x2) � max(ωC1U(x1),ωC2U(x2)){ ∀(x1, x2) ∈ V × V

10.
(ωD1L◦ωD2L)((x, x2)(x, y2)) � max(ωC1L(x),ωD2L(x2y2))
(ωD1U◦ωD2U)((x, x2)(x, y2)) � max(ωC1U(x),ωD2U(x2y2)){

for all x ∈ V1 and x2y2 ∈ E2

11.
(ωD1L◦ωD2L)((x1, z)(y1, z)) � max(ωD1L(x1y1),ωC2L(z))
(ωD1U◦ωD2U)((x1, z)(y1, z)) � max(ωD1U(x1y1),ωC2U(z)){

for all z ∈ V2 and x1y1 ∈ E1

12. (ωD1L◦ωD2L)((x1 , x2)(y1 , y2)) � max(ωC2L(x2),ωC2L(y2),ωD1L(x1y1))
(ωD1U◦ωD2U)((x1 , x2)(y1 , y2)) � max(ωC2U(x2),ωC2U(y2),ωD1U(x1y1)){

for all x2y2 ∈ V2, x2 ≠ y2 and ∀(x1y1) ∈ E1

Proposition 2. Let G and H be two IVPFGs defined on G* and H*,
respectively. Then, their composition is an IVPFG on G*[H*].

Proof. The proof is similar to that of Proposition 1; we only
prove the condition for D1◦D2. In the case w1 ∈ V1, w2v2 ∈ E2, by
Proposition 1 (ii)], we have

(A)

(χD1L
◦χD2L

)((w1, w2)(w1, x2))
� min χC1L

w1( ), χD2L
w2x2( )( )

≤min χC1L
w1( ), min χC2L

w2( ), χC2L
x2( )( )( )

� min min χC1L
w1, χC2L

w2( )( ), min χC1L
w1( ), χC2L

x2( )( )( )
� min χC1L

◦χC2L
( ) w1, w2( ), χC1L

◦χC2L
( ) w1, x2( ).

(χD1U
◦χD2U

)((w1, w2)(w1, x2))
� min χC1U

w1( ), χD2U
w2x2( )( )

≤min χC1U
w1( ), min χC2U

w2( ), χC2U
x2( )( )( )

� min min χC1U
w1, χC2U

w2( )( ), min χC1U
w1( ), χC2U

x2( )( )( )
� min χC1U

◦χC2U
( ) w1, w2( ), χC1U

◦χC2U
( ) w1, x2( ).

Again, for all y2 ∈ V2 and w1x1 ∈ E1, we have

(χD1L
◦χD2L

)((w1, y2)(x1, y2))
� min χD1L

w1, x1( ), χC2L
y2( )( )

≤min min χC1L
w1( ), χC1L

x1( )( ), χC2L
y2( )( )

� min min χC1L
w1, χC2L

y2( )( ), min χC1L
x1( ), χC2L

y2( )( )( )( )
� min χC1L

◦χC2L
( ) w1, y2( ), χC1L

◦χC2L
( ) x1, y2( )( ).

(χD1U
◦χD2U

)((w1, y2)(x1, y2))
� min χD1U

w1, x1( ), χC2U
y2( )( )

≤min min χC1U
w1( ), χC1U

x1( )( ), χC2U
y2( )( )

� min min χC1U
w1, χC2U

y2( )( ), min χC1U
x1( ), χC2U

y2( )( )( )( )
� min χC1U

◦χC2U
( ) w1, y2( ), χC1U

◦χC2U
( ) x1, y2( )( ).

(B)

(ψD1L
◦ψD2L

)((w1, w2)(w1, x2))
� min ψC1L

w1( ),ψD2L
w2x2( )( )

≤min ψC1L
w1( ), min ψC2L

w2( ),ψC2L
x2( )( )( )

� min min ψC1L
w1,ψC2L

w2( )( ), min ψC1L
w1( ),ψC2L

x2( )( )( )
� min ψC1L

◦ψC2L
( ) w1, w2( ), ψC1L

◦ψC2L
( ) w1, x2( ).

(ψD1U
◦ψD2U

)((w1, w2)(w1, x2))
� min ψC1U

w1( ),ψD2U
w2x2( )( )

≤min ψC1U
w1( ), min ψC2U

w2( ),ψC2U
x2( )( )( )

� min min ψC1U
w1,ψC2U

w2( )( ), min ψC1U
w1( ),ψC2U

x2( )( )( )
� min ψC1U

◦ψC2U
( ) w1, w2( ), ψC1U

◦ψC2U
( ) w1, x2( ).

Similarly, for all y2 ∈ V2 and w1x1 ∈ E1, we have

(ψD1L
◦ψD2L

)((w1, y2)(x1, y2))
� min ψD1L

w1, x1( ),ψC2L
y2( )( )

≤min min ψC1L
w1( ),ψC1L

x1( )( ),ψC2L
y2( )( )

� min min ψC1L
w1,ψC2L

y2( )( ), min ψC1L
x1( ),ψC2L

y2( )( )( )
� min ψC1L

◦ψC2L
( ) w1, y2( ), ψC1L

◦ψC2L
( ) x1, y2( )( ).

(ψD1U
◦ψD2U

)((w1, y2)(x1, y2))
� min ψD1U

w1, x1( ),ψC2U
y2( )( )

≤min min ψC1U
w1( ),ψC1U

x1( )( ),ψC2U
y2( )( )

� min min ψC1U
w1,ψC2U

y2( )( ), min ψC1U
x1( ),ψC2U

y2( )( )( )
� min ψC1U

◦ψC2U
( ) w1, y2( ), ψC1U

◦ψC2U
( ) x1, y2( )( ).

(C)

(ωD1L◦ωD2L)((w1, w2)(w1, x2))
� max ωC1L w1( ),ωD2L w2x2( )( )
≥max ωC1L w1( ), max ωC2L w2( ),ωC2L x2( )( )( )
� max max ωC1L w1( ),ωC2L w2( )( ), max ωC1L w1( ),ωC2L x2( )( )( )
� max ωC1L◦ωC2L( ) w1, w2( ), ωC1L◦ωC2L( ) w1, x2( ).

(ωD1U◦ωD2U)((w1, w2)(w1, x2))
� max ωC1U w1( ),ωD2U w2x2( )( )
≥max ωC1U w1( ), max ωC2U w2( ),ωC2U x2( )( )( )
� max max ωC1U w1( ),ωC2U w2( )( ), max ωC1U w1( ),ωC2U x2( )( )( )
� max ωC1U◦ωC2U( ) w1, w2( ), ωC1U◦ωC2U( ) w1, x2( ).

Similarly, for all y2 ∈ V2 and w1x1 ∈ E1, we have

(ωD1L◦ωD2L)((w1, y2)(x1, y2))
� max ωD1L w1, x1( ),ωC2L y2( )( )
≥max max ωC1L w1( ),ωC1L x1( )( ),ωC2L y2( )( )
� max max ωC1Lw1,ωC2L y2( )( ), max ωC1L x1( ),ωC2L y2( )( )( )
� max ωC1L◦ωC2L( ) w1, y2( ), ωC1L◦ωC2L( ) x1, y2( )( ).

(ωD1U◦ωD2U)((w1, y2)(x1, y2))
� max ωD1U w1, x1( ),ωC2U y2( )( )
≥max max ωC1U w1( ),ωC1U x1( )( ),ωC2U y2( )( )
� max max ωC1Uw1,ωC2U y2( )( ), max ωC1U x1( ),ωC2U y2( )( )( )
� max ωC1U◦ωC2U( ) w1, y2( ), ωC1U◦ωC2U( ) x1, y2( )( ).

Definition 21. Let G � (C1, D1), and H = (C2, D2) be two IVPFGs
of G* � (V1, E1), and H* = (V2, E2), respectively. Then, their
Cartesian product G × H is the pair (C1 × C2 and D1 × D2)
satisfying

(A)
(i) (χC1L

× χC2L
)(w1, w2) �min (χC1L

(w1), χC2L
(w2)) ∀ (w1 ∈

V1 and w2 ∈ V2),
(χC1U

× χC2U
)(w1,w2) � min (χC1U

(w1),χC2U
(w2)) ∀ (w1 ∈V1

and w2 ∈V2),
(ii) (χD1L

×χD2L
)((w1,w2)(w1,x2))� min (χC1L

(w1) and χD2L

(w2x2)) ∀ w1 ∈V1,(w2x2) ∈E2,
(χD1U

× χD2U
)((w1, w2)(w1, x2)) � min (χC1U

(w1) and χD2U

(w2x2)) ∀ w1 ∈ V1, (w2x2) ∈ E2,
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(iii) (χD1L
× χD2L

)((w1, y2)(x1, y2)) � min (χD1L
(w1x1) and

χC2L
(y2)) ∀ y2 ∈ V2, (w1x1) ∈ E1, and
(χD1U

×χD2U
)((w1,y2)(x1,y2))�min (χD1U

(w1x1) and χC2

(y2))∀ y2 ∈V2,(w1x1)∈E1 .
(B)
(i) (ψC1L

×ψC2L
)(w1,w2) �min (ψC1L

(w1),ψC2L
(w2))∀w1 ∈V1

and w2 ∈ V2,
(ψC1U

× ψC2U
)(w1, w2) � min (ψC1L

(w1),ψC2L
(w2)) ∀ w1 ∈ V1 and

w2 ∈ V2,

(ii) (ψD1L
× ψD2L

)((w1, w2)(w1, x2)) = min (ψC1L
(w1) and

ψD2L
(w2x2)) ∀ w1 ∈ V1, (w2x2) ∈ E2,

(ψD1U
× ψD2U

)((w1, w2)(w1, x2)) = min (ψC1U
(w1) and

ψD2U
(w2x2)) ∀ w1 ∈ V1, (w2x2) ∈ E2,

(iii) (ψD1L
× ψD2L

)((w1, y2)(x1, y2)) = min (ψD1L
(w1x1) and

ψC2L
(y2)) ∀ y2 ∈ V2, (w1x1) ∈ E1, and

(ψD1U
× ψD2U

)((w1, y2)(x1, y2)) = min (ψD1U
(w1x1) and ψC2U

(y2)) ∀ y2 ∈ V2, (w1x1) ∈ E1.
(C)
(i) (ωC1L × ωC2L)(w1, w2) = max (ωC1L(w1),ωC2L(w2)) ∀ w1

∈ V1 and w2 ∈ V2,
(ωC1U × ωC2U)(w1, w2) = max (ωC1U(w1),ωC2U(w2)) ∀ w1

∈ V1 and w2 ∈ V2,
(ii) (ωD1L × ωD2L)((w1, w2)(w1, x2)) � max (ωC1L(w1) and

ωD2L(w2v2)) ∀ w1 ∈ V1, (w2x2) ∈ E2,
(ωD1U × ωD2U)((w1, w2)(w1, x2)) � max (ωC1U(w1) and ωD2U

(w2v2)) ∀ w1 ∈ V1, (w2x2) ∈ E2,
(iii) (ωD1L × ωD2L)((w1, y2)(x1, y2)) � max (ωD1L(w1x1) and

ωC2L(y2)) ∀ y2 ∈ V2, (w1x1) ∈ E1, and
(ωD1U×ωD2U)((w1,y2)(x1,y2)) � max (ωD1U(w1x1) and ωC2U

(y2)) ∀ y2 ∈V2,(w1x1) ∈E1 .

Proposition 3. Let G � (C1,D1), and H = (C2, D2) be two IVPFGs
on G* � (V1, E1), and H* = (V2, E2), respectively. Then, their
Cartesian product G × H = (C1 × C2, D1 × D2) is an IVPFG of
G* × H*.

Proof. We only provide the proof about D1 × D2, and the
condition for C1 × C2 is evident. Let w1 ∈ V1, w2x2 ∈ E2. Then,

(a)
(χD1L

× χD2L
)((w1, w2)(w1, x2))

� min χC1L
w1( ), χD2L

w2x2( )( )
≤min χC1L

w1( ), min χC2L
w2( ), χC2L

x2( )( )( )
� min min χC1L

w1( ), χC2L
w2( )( ), min χC1L

w1( ), χC2L
v2( )( )( )

� min χC1L
× χC2L

( ) w1, w2( ), χC1L
× χC2L

( ) w1, x2( )( ).
(χD1U

× χD2U
)((w1, w2)(w1, x2))

� min χC1U
w1( ), χD2U

w2x2( )( )
≤min χC1U

w1( ), min χC2U
w2( ), χC2U

x2( )( )( )
� min min χC1U

w1( ), χC2U
w2( )( ), min χC1U

w1( ), χC2U
v2( )( )( )

� min χC1U
× χC2U

( ) w1, w2( ), χC1U
× χC2U

( ) w1, x2( )( ).
Similarly, for all y2 ∈ V2 and w1x1 ∈ E1, we have

(χD1L
× χD2L

)((w1, y2)(x1, y2))
� min χD1L

w1, x1( ), χC2L
y2( )( )

≤min min χC1L
w1( ), χC1L

x1( )( ), χC2L
y2( )( )

� min min χC1L
w1( ), χC2L

y2( )( ), min χC1L
x1( ), χC2L

y2( )( )( )
� min χC1L

× χC2L
( ) w1, y2( ), χC1L

× χC2L
( ) x1, y2( )( ).

(χD1U
× χD2U

)((w1, y2)(x1, y2))
� min χD1U

w1, x1( ), χC2U
y2( )( )

≤min min χC1U
w1( ), χC1U

x1( )( ), χC2U
y2( )( )

� min min χC1U
w1( ), χC2U

y2( )( ), min χC1U
x1( ), χC2U

y2( )( )( )
� min χC1U

× χC2U
( ) w1, y2( ), χC1U

× χC2U
( ) x1, y2( )( ).

(b)
(ψD1L

× ψD2L
)((w1, w2)(w1, x2))

� min ψC1L
w1( ),ψD2L

w2x2( )( )
≤min ψC1L

w1( ), min ψC2L
w2( ),ψC2L

x2( )( )( )
� min min ψC1L

w1( ),ψC2L
w2( )( ), min ψC1L

w1( ),ψC2L
x2( )( )( )

� min ψC1L
× ψC2L

( ) w1, w2( ), ψC1L
× ψC2L

( ) w1, x2( )( ).
(ψD1U

× ψD2U
)((w1, w2)(w1, x2))

� min ψC1U
w1( ),ψD2U

w2x2( )( )
≤min ψC1U

w1( ), min ψC2U
w2( ),ψC2U

x2( )( )( )
� min min ψC1U

w1( ),ψC2U
w2( )( ), min ψC1U

w1( ),ψC2U
x2( )( )( )

� min ψC1U
× ψC2U

( ) w1, w2( ), ψC1U
× ψC2U

( ) w1, x2( )( ).
Similarly, for all y2 ∈ V2 and w1x1 ∈ E1, we have
(ψD1L

× ψD2L
)((w1, y2)(x1, y2))

� min ψD1L
w1, x1( ),ψC2L

y2( )( )
≤min min ψC1L

w1( ),ψC1L
x1( )( ),ψC2L

y2( )( )
� min min ψC1L

w1( ),ψC2L
y2( )( ), min ψC1L

x1( ),ψC2L
y2( )( )( )

� min ψC1L
× ψC2L

( ) w1, y2( ), ψC1L
× ψC2L

( ) x1, y2( )( ).
(ψD1U

× ψD2U
)((w1, y2)(x1, y2))

� min ψD1U
w1, x1( ),ψC2

y2( )( )
≤min min ψC1U

w1( ),ψC1U
x1( )( ),ψC2U

y2( )( )
� min min ψC1U

w1( ),ψC2U
y2( )( ), min ψC1U

x1( ),ψC2U
y2( )( )( )

� min ψC1U
× ψC2U

( ) w1, y2( ), ψC1U
× ψC2U

( ) x1, y2( )( ).
(c)
(ωD1L × ωD2L)((w1, w2)(w1, x2))
� max ωC1L w1( ),ωD2L w2x2( )( )
≥max ωC1L w1( ), max ωC2L w2( ),ωC2L x2( )( )( )
� max max ωC1L w1( ),ωC2L w2( )( ), max ωC1L w1( ),ωC2L x2( )( )( )
� max ωC1L × ωC2L( ) w1, w2( ), ωC1L × ωC2L( ) w1, x2( )( ).

(ωD1U × ωD2U)((w1, w2)(w1, x2))
� max ωC1U w1( ),ωD2U w2x2( )( )
≥max ωC1U w1( ), max ωC2U w2( ),ωC2U x2( )( )( )
� max max ωC1U w1( ),ωC2U w2( )( ), max ωC1U w1( ),ωC2U x2( )( )( )
� max ωC1U × ωC2U( ) w1, w2( ), ωC1U × ωC2U( ) w1, x2( )( ).

Similarly, for all y2 ∈ V2 and w1x1 ∈ E1, we have
(ωD1L × ωD2L)((w1, y2)(x1, y2))
� max ωD1L w1, x1( ),ωC2L y2( )( )
≥max max ωC1L w1( ),ωC1L x1( )( ),ωC2L y2( )( )
� max max ωC1L w1( ),ωC2L y2( )( ), max ωC1L x1( ),ωC2L y2( )( )( )
� max ωC1L × ωC2L( ) w1, y2( ), ωC1L × ωC2L( ) x1, y2( )( ).

(ωD1U × ωD2U)((w1, y2)(x1, y2))
� max ωD1U w1, x1( ),ωC2U y2( )( )
≥max max ωC1U w1( ),ωC1U x1( )( ),ωC2U y2( )( )
� max max ωC1U w1( ),ωC2U y2( )( ), max ωC1U x1( ),ωC2U y2( )( )( )
� max ωC1U × ωC2U( ) w1, y2( ), ωC1U × ωC2U( ) x1, y2( )( ).

Definition 22. Let G* = (C1, D1) and G** � (C2, D2) be the two
IVPFGs of G1 = (V1, E1) and G2 = (V2, E2), respectively. Then, the
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ring sum of IVPFGs ofG* andG** onG1 ⊕G2 = (V1 ∪V2, (E1 ∪ E2) −
(E1 ∩ E2)) is the graph G = (C, D), where C = ([χCL, χCU], [ψCL, ψCU],
[ωCL, ωCU]) is an IVPFS on V = V1 ∪ V2 and D = ([χDL, χDU], [ψDL,
ψDU], [ωDL, ωDU]) is an IVPFS on E = E1 ∪ E2 − (E1 ∩ E2) satisfying

(A)

χCL w( ) �
χC1L

w( ), if w ∈ V1

χC2L
w( ), if w ∈ V2

χC1L
w( ) ∧ χC2L

w( ), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (1)

χCU w( ) �
χC1U

w( ), if w ∈ V1

χC2U
w( ), if w ∈ V2

χC1U
w( ) ∧ χC2U

w( ), if w ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (2)

and

χDL w, x( ) �
χD1L

wx( ), if wx ∈ E1 − E2

χD2L
wx( ), if wx ∈ E2 − E1

0, ifwx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩ (3)

χDU w, x( ) �
χD1U

wx( ), if wx ∈ E1 − E2

χD2U
wx( ), if wx ∈ E2 − E1

0, ifwx ∈ E1 ∩ E2.

⎧⎪⎨⎪⎩ (4)

(B)

ψCL w( ) �
ψC1L

w( ), if w ∈ V1

ψC2L
w( ), if w ∈ V2

ψC1L
w( ) ∧ ψC2L

w( ), ifw ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (5)

ψCU w( ) �
ψC1U

w( ), if w ∈ V1

ψC2U
w( ), if w ∈ V2

ψC1U
w( ) ∧ ψC2U

w( ), ifw ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (6)

and

ψDL w, x( ) �
ψD1L

wx( ), if wx ∈ E1 − E2

psiD2L wx( ), if wx ∈ E2 − E1

0, ifwx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩ (7)

ψDU w, x( ) �
ψD1U

wx( ), if wx ∈ E1 − E2

ψD2U
wx( ), if wx ∈ E2 − E1

0, ifwx ∈ E1 ∩ E2.

⎧⎪⎨⎪⎩ (8)

(C)

ωCL w( ) �
ωC1L w( ), if w ∈ V1

ωC2L w( ), if w ∈ V2

ωC1L w( ) ∨ ωC2L w( ), ifw ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (9)

ωCU w( ) �
ωC1U w( ), if w ∈ V1

ωC2U w( ), if w ∈ V2

ωC1U w( ) ∨ ωC2U w( ), ifw ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩ (10)

and

ωDU w, x( ) �
ωD1U wx( ), if wx ∈ E1 − E2

ωD2U wx( ), if wx ∈ E2 − E1

0, if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩ (11)

ωDL w, x( ) �
ωD1L wx( ), if wx ∈ E1 − E2

ωD2L wx( ), if wx ∈ E2 − E1

0, if wx ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩ (12)

where wx is the edge between the vertices w and x, and E1, and E2 are
the edges sets of the graphs G* and G**, respectively.

Theorem 1. Ring sum of any two IVPFGs is an IVPFG.
We provide Example 7 in support of Theorem 1.

Example 6. From Figure 5, it is easy to check that G* ⊕ G** is an
IVPFG.

Remark 2. Let G* = (C1, D1) and G** = (C2, D2), where C1 =
([χC1L

, χC1U
], [ψC1L

, ψC1U
], [ωC1L, ωC1U]), C2 = ([χC2L

, χC2U
], [ψC2L

,
ψC2U

], [ωC2L,ωC2U]),D1 = ([χD1L
, χD1U

], [ψD1L
, ψD1U

], [ωD1L, ωD1U]),
and D2 = ([χD2L

, χD2U
], [ψD2L

, ψD2U
], [ωD2L, ωD2U]) be the two edge

disjoint IVPFGs. Then, G* ∩ G** is an interval-valued picture fuzzy
null graph and G* ⊕ G** = G* ∪ G**.

Theorem 2. Let H = (C, D), where C � ([χCL, χCU], [ψCL, ψCU],
[ωCL,ωCU]) and D � ([χDL, χDU], [ψDL, ψDU], [ωDL,ωDU]) is an
IVPFG. Then, H ∪ H = H ∩ H = H and H ⊕ H = ∅ are IVPFGs.

Proof. Results follow from the definitions of the union,
intersection, and ring sum of IVPFGs.

Definition 23. Let e � χD(wi, xi),ψD(wi, xi){ , ωD(wi, xi)} for all
(wi, xi) be an edge in an IVPFG H = (C, D), where C = ([χCL, χCU],
[ψCL, ψCU], [ωCL, ωCU]) and D = (χD, ψD, ωD). Then, we delete an
edge e fromH, i.e., H − e is a subgraph of the IVPFGH which is also
an IVPFG.

Example 7. By deleting an edge e = u1w1 = ([0.2, 0.2], [0.2, 0.3],
[0.2, 0.4]) from the graph shown in Figure 1A = H, we obtain a
subgraph shown in Figure 6, which implies H − e = H ⊕ e.

4 Connectedness and different types
of strengths of the edges of IVPFGs

Definition 24. A path p in an IVPFG G is the sequence of
different vertices w0, w1, w2, . . ., wk satisfying (χDL(wi−1, wi),
(χDU(wi−1, wi), ψDL(wi−1, wi), ψDU(wi−1, wi), ωDL(wi−1, wi))
ωDU(wi−1, wi)) ≥ 0; i = 1, 2, 3, . . ., k, where k is the length
of the path in an IVPFG G.

Definition 25. LetH = (C,D) be an IVPFG. Let us consider that the
two vertices w and x are connected by a path of length k in H like p:
w0, w1, w2, . . .wk−1, wk. Then, χkDL(w, x), χkDU(w, x), ψk

DL(w, x),
ψk
DU(w, x), and ωk

DL(w, x), ωk
DU(w, x) are described as

χkDL w, x( ) � χDL w, w1( ) ∧ χDL w1, w2( ) ∧ χDL w2, w3( ) ∧ . . .∧ χDL wk−1, x( )
χkDU w, x( ) � χDU w, w1( ) ∧ χDU w1, w2( ) ∧ χDU w2, w3( ) ∧ . . .∧ χDU wk−1, x( )
ψk
DL w, x( ) � ψDL w,w1( ) ∧ ψDL w1, w2( ) ∧ ψDL w2, u3( ) ∧ . . .∧ ψDL wk−1, x( )

ψk
DU w, x( ) � ψDU w,w1( ) ∧ ψDU w1, w2( ) ∧ ψDU w2, u3( ) ∧ . . .∧ ψDU wk−1, x( )

ωk
DL w, x( ) � ωDL w,w1( ) ∨ ωDL w1, w2( ) ∨ ωDL w2, w3( ) ∨ . . .∨ ωDL wk−1, x( )

ωk
DU w, x( ) � ωDU w, w1( ) ∨ ωDU w1, w2( ) ∨ ωDU w2, w3( ) ∨ . . .∨ ωDU wk−1, x( )

Let ([χ∞DL(w,x),χ∞DU(w,x)],[ψ∞
DL(w,x),ψ∞

DU(w,x)],[ω∞
DL(w,x),

ω∞
DU(w,x)]) be the strength of connectedness between the two

vertices w and x of an IVPFG G. Then, ([χ∞DL(w,x), χ∞DU(w,x)],
[ψ∞

DL(w,x), ψ∞
DU(w,x)], and [ω∞

DL(w,x),ω∞
DU(w,x)]) are defined as

follows:

(χ∞DL(w, x)) � max{(χkDL(w, x)); k � 1, 2, 3, . . .}
(χ∞DU(w, x)) � max{(χkDU(w, x)); k � 1, 2, 3, . . .}
(ψ∞

DL(w, x)) � max{(ψk
DL(w, x)); k � 1, 2, 3, . . .}
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FIGURE 1
Interval-valued picture fuzzy graphs. Sets (A) and (B).

FIGURE 2
Complement of an interval-valued picture fuzzy graph.

FIGURE 3
Regular interval-valued picture fuzzy graph.
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(ψ∞
DU(w, x)) � max{(ψk

DU(w, x)); k � 1, 2, 3, . . .}
(ω∞

DL(w, x)) � min{(ωk
DL(w, x)); k � 1, 2, 3, . . .}

(ω∞
DU(w, x)) � min{(ωk

DU(w, x)); k � 1, 2, 3, . . .}.

Definition 26. We call an IVPFG G = (C, D).

1. A semi χ − strong if χDL(wiwj) = min (χCL(wi), χCL(wj)) and
χDU(wiwj) = min (χCU(wi), χCU(wj)), for each i and j

2. A semi ψ − strong if ψDL(wiwj) = min (ψCL(wi), ψCL(wj)) and
ψDU(wiwj) = min (ψCU(wi), ψCU(wj)) for each i and j

3. A semi ω − strong if ωDL(wiwj) = max (ωCL(wi), ωCL(wj)) and
ωDU(wiwj) = max (ωCU(wi), ωCU(wj)), for each i and j

4. Strong, if it is semi χ-strong, semi ψ-strong, and semi ω-strong
5. Complete χ − strong if χDL(wiwj) = min (χCL(wi), χCL(wj)),

χDU(wiwj) = min (χCU(wi), χCU(wj)), ψCL(wiwj) < min (ψCL(wi),

ψCL(wj)), ψCU(wiwj) <min (ψCU(wi), ψCU(wj)), andωDL(wiwj) >max
(ωCL(wi),ωCL(wj)),ωDU(wiwj) >max (ωCU(wi),ωCU(wj)), ∀wi,wj ∈V

6. Complete ψ − strong if χDL(wiwj) < min (χCL(wi), χCL(wj)),
χDU(wiwj) <min (χCU(wi), χCU(wj)), ψCL(wiwj) = min (ψCL(wi),
ψCL(wj)), ψCU(wiwj) = min (ψCU(wi), ψCU(wj)), and ωDL(wiwj) >
max (ωCL(wi), ωCL(wj)), ωDU(wiwj) > max (ωCU(wi), ωCU(wj)),
∀wi, wj ∈ V

7. Complete ω − strong if χDL(wiwj) < min (χCL(wi), χCL(wj)),
χDU(wiwj) <min (χCU(wi), χCU(wj)), ψCL(wiwj) <min (ψCL(wi),
ψCL(wj)), ψCU(wiwj) < min (ψCU(wi), ψCU(wj)), and ωDL(wiwj) =
max (ωCL(wi), ωCL(wj)), ωDU(wiwj) = max (ωCU(wi), ωCU(wj)),
∀wi, wj ∈ V

8. Complete if χDL(wiwj) = min (χCL(wi), χCL(wj)), χDU(wiwj) =
min (χCU(wi), χCU(wj)), ψDL(wiwj) = min (ψCL(wi),
psiCL(wj)), ψDU(wiwj) = min (ψCU(wi), ψCU(wj)), and

FIGURE 4
Complete interval-valued picture fuzzy graph.

FIGURE 5
Ring sum of two interval-valued picture fuzzy graphs.
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ωDL(wiwj) = max (ωCL(wi), ωCL(wj)), ωDU(wiwj) = max
(ωCU(wi), ωCU(wj)), for every i and j, for all wi, wj ∈ V.

Example 8. In Figure 7, the edges (u, v), (v, x), (x, w), and (w, u)
are semi χ-strong, semi ψ-strong, and semi ω-strong edges.
Consequently, edges (u, v), (v, x), (x, w), and (w, u) are the
strong edges.

Example 9. In Figure 8, the edge (u, w) is complete χ-strong, the
edge (w, x) is complete ψ-strong, the edge (u, v) is complete ω −
strong, and the edge (v, x) is a complete edge.

Theorem 3. A path P′ in an IVPFG G is the sequence of distinct
vertices w1, w2, . . ., wn such that either one of the following
conditions is satisfied:

(i) χDL(wiwj) > 0, χDU(wiwj) > 0, ψDL(wiwj) = 0, ψDU(wiwj) = 0
and ωDL(wiwj) = 0, ωDU(wiwj) = 0 for some i and j,

(ii) χDL(wiwj) = 0, χDU(wiwj) = 0, ψDL(wiwj) > 0, ψDU(wiwj) > 0
and ωDL(wiwj) = 0, ωDU(wiwj) = 0 for some i and j,

(iii) χDL(wiwj) = 0, χDU(wiwj) = 0, ψDL(wiwj) = 0, ψDU(wiwj) = 0
and ωDL(wiwj) > 0, ωDU(wiwj) > 0 for some i and j,

(iv) χDL(wiwj) > 0, χDU(wiwj) > 0, ψDL(wiwj) > 0, ψDU(wiwj) > 0
and ωDL(wiwj) = 0, ωDU(wiwj) = 0 for some i and j,

(v) χDL(wiwj) = 0, χDU(wiwj) = 0, ψDL(wiwj) > 0, ψDU(wiwj) > 0
and ωDL(wiwj) > 0, ωDU(wiwj) > 0 for some i and j,

(vi) χDL(wiwj) > 0, χDU(wiwj) > 0, ψDL(wiwj) = 0, ψDU(wiwj) = 0
and ωDL(wiwj) > 0, ωDU(wiwj) > 0 for some i and j, and

(vii) χDL(wiwj) > 0, χDU(wiwj) > 0, ψDL(wiwj) > 0, ψDU(wiwj) > 0
and ωDL(wiwj) > 0, ωDU(wiwj) > 0 for some i and j.

Proof. It is easy to verify by using the definition of the path in an
IVPFG.

Definition 27. If P′ = w1, w2, . . ., wn is a path in G, then
(i) the χ-strength of path P′ is {[minχDL(wiwj), minχDU(wiwj)]},

for every i, j = 1, 2, . . ., n, abbreviated as Pχ,
(ii) the ψ-strength of path P′ is {[minψDL(wiwj), minψDU(wiwj)]},

for every i, j = 1, 2, . . ., n, abbreviated as Pψ, and
(iii) the ω-strength of path P′ is {[maxωDL(wiwj),

maxωDU(wiwj)]}, for every i, j = 1, 2, . . ., n, abbreviated as Pω.
Different types of strengths of connectedness of nodes are

described as follows.

Definition 28. If wi, wj ∈ V ⊆ G. Then,
(i) the χ-strength of connectedness between the two nodes wi

and wj is CON[χL,χU](G)(wi, wj) � max{Pχ},
(ii) the ψ-strength of connectedness between the two nodes wi

and wj is CON[ψL,ψU](G)(wi, wj) � max{Pψ}, and
(iii) the ω-strength of connectedness between the nodes wi and

wj is CON[ωL,ωU](G)(wi, wj) = min{Pω}
of all possible paths between wi and wj.
By CON[χL,χU](G)−(wi,wj)(wi, wj), CON[ψL,ψU](G)−(wi,wj) (wi, wj),

CON[ωL,ωU](G)−(wi,wj)(wi, wj), we mean a strength of
connectedness between wi and wj in the IVPFG obtained from G
by removing an edge (wi, wj).

Definition 29. An edge (wi, wj) is a bridge in G, if either
CON[χL,χU](G)−(wi,wj)(wi, wj)<CON[χL,χU](G) (wi, wj),
CON[ψL,ψU](G)−(wi,wj)(wi, wj)<CON[ψL,ψU](G) (wi, wj), and
CON[ωL,ωU](G)−(wi,wj)(wi, wj)≥CON[ωL,ωU](G)(wi, wj)
OR
CON[χL,χU](G)−(wi,wj)(wi, wj)≤CON[χL,χU](G)(wi, wj),
CON[ψL,ψU](G)−(wi,wj)(wi, wj) ≤ CON[ψL,ψU](G)(wi, wj), and
CON[ωL,ωU](G)−(wi,wj)(wi, wj)>CON[ωL,ωU](G)(wi, wj) for some

wi, wj ∈ V.

FIGURE 6
H − e = H ⊕ e.

FIGURE 7
Strong = (semi χ − strong, semi ψ − strong, and semi ω − strong).

FIGURE 8
Complete χ − strong, complete ψ − strong, and complete ω −

strong graph.
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Alternatively, removing an edge (wi,wj) decreases the strength of
connectedness between the pair of vertices (wi, wj) called a bridge, if
there exist the vertices wi, wj with (wi, wj) being the edge of every
strongest path from wi to wj.

Definition 30. An edge (wi, wj) in G is
(i) η-strong, if [χDL, χDU](wiwj)>CON[χDL,χDU](G)−(wi,wj)(wi,wj),
[ψDL,ψDU](wiwj)>CON[ψDL,ψDU](G)−(wi,wj)(wi, wj), and
[ωDL,ωDU](wiwj)< CON[ωDL,ωDU](G)−(wi,wj)(wi, wj);
(ii)φ-strong,if[χDL, χDU](wiwj)�CON[χDL,χDU](G)−(wi,wj) (wi,wj),
[ψDL,ψDU](wiwj) � CON[ψDL,ψDU](G)−(wi,wj)(wi, wj), and
[ωDL,ωDU](wiwj) � CON[ωDL,ωDU](G)−(wi,wj) (wi, wj); and
(iii) ξ-strong, if [χDL, χDU](wiwj)<CON[χDL,χDU](G)−(wi,wj)

(wi, wj), [ψDL, ψDU](wiwj) < CON[ψDL,ψDU] (G) − (wi, wj)(wi, wj)
and [ωDL,ωDU](wiwj)> CON[ωDL,ωDU](G)−(wi,wj)(wi, wj).

Remark 3. Let G be an IVPFG. Then,
(i) if all the edges in a path G are η-strong, we call it an η-strong

path inG. In the φ-strong path, all the edges are φ-strong, and a path
is ξ-strong if all its edges are ξ-strong;

(ii) the strongest path may contains all types of edges that are η-
strong, φ-strong, and ξ-weak; and

(iii) a strong path contains only η-strong or φ-strong edges but
no ξ-weak edges.

Theorem 4. An edge (wi, wj) of an IVPFG G is a bridge if and only
if it is η-strong.

Proof. Let (wi, wj) be an IVPFB. Then,
CON[χCL,χCU](G)−(wi,wj)(wi, wj) ≤ CON[χCL,χCU](G)(wi,wj), then
CON[χCL,χCU](G)(wi,wj) � χD(wiwj),
CON[ψCL,ψCU](G)−(wi,wj)(wi, wj)≤CON[ψCL,ψCU](G)(wi,wj),
then CON[ψCL,ψCU](G)(wi,wj) � ψD(wiwj),
ωD(wiwj)>CON[ωCL,ωCU](G)−(wi,wj)(wi, wj) and
CON[ωCL,ωCU](G)−(wi,wj)(wi, wj)>CON[ωCL,ωCU](G)(wi,wj), then,
CON[ωCL,ωCU](G)(wi, wj) � ωD(wiwj),
ωD(wiwj)<CON[ωCL,ωCU](G)−(wi,wj)(wi, wj), which shows that

(wi, wj) is η-strong.
Conversely, let (wi, wj) be η-strong. By definition, wiwj is the

only strongest path from wi to wj and the deletion of (wi, wj) will
reduce the strength of connectedness between wi and wj. Hence,

(wi, wj) is an IVPFB. It is notable that if an edge (wi, wj) in G is an
IVPFB, then

CON[χCL,χCU](G)(wi, wj) � [χDL, χDU](wiwj) CON[ψCL,ψCU](G)
(wi, wj) � [ψDL,ψDU](wiwj) CON[ωCL,ωCU](G)(wi, wj) � [ωDL,ωDU]
(wiwj).

Remark 4. The converse of the aforementioned theorem does not
hold true.

Remark 5. There exists utmost one η-strong edge in a complete
IVPFG.

Theorem 5. A complete IVPFG has no ξ-edge.
Proof. Let G be a complete IVPFG. If possible, let us assume that

G contains an ξ-edge (wi, wj); then,

[χDL, χDU](wiwj)<CON[χCL,χCU](G)−(wi,wj)(wi, wj)
[ψDL,ψDU](wiwj)<CON[ψCL,ψCU](G)−(wi,wj)(wi, wj)
[ωDL,ωDU](wiwj)>CON[ωCL,ωCU](G)−(wi,wj)(wi, wj).
It means there is a stronger path P′ other than (wi, wj) from wi

to wj in a graph G. Let [χDL, χDU] (w1 w2) � p1′, [ψDL,
ψDU](w1w2) � p2′, [ωDL,ωDU](w1w2) � p3′, the strength of the
path P′ (q1′, q2′, q3′), and then, p1′ < q1′, p2′ < q2′, p3′ > q3′. Let w3 be
the first node in P′ after w1; then, [χDL, χDU](w1w3)>p1′,
[ψDL,ψDU](w1w3)>p2′, and [ωDL,ωDU](w1w3)<p3′. Similarly,
let w4 be the last in P′ before w2; then, [χDL, χDU](w2w4)>p1′,
[ψDL,ψDU](w2w4)>p2′, and [ωDL,ωDU](w2w4)<p3′. Since [χDL,
χDU](w1w2) � p1′, [ψDL,ψDU](w1w2) � p2′, and [ωDL,ωDU]
(w1w2) � p3′, at least one of [χCL, χCU](w1) or [χCL, χCU](w2),
[ψCL, ψCU](w1) or [ψCL, ψCU](w2), and [ωCL, ωCU](w1) or [ωCL,
ωCU](w2) should be p1′, p2′ and p3′. Now, G is a complete IVPFG, a
contradict, which completes the proof.

Theorem 6. Let G be any complete IVPFG without an η-strong edge.
LetP′ be awiwj path inG. Then, the following statements are equivalent:

(i) P′ is a strong wiwj path.
(ii) P′ is the strongest wiwj path.
Proof. (i) 0 (ii) Let G be a complete IVPFG without η-strong

edges. Let P′ be anywiwj path inG. We assume that P′ is a strongwiwj

path. By definition, all edges inG are φ-strong edges or ξ-strong edges.

TABLE 1 [47] Interval-valued picture TCP.

Input Output

SC dRTT Δ Cwnd

L Z VS

L D S

M I VS

M Z Mod

M D MTM

H I S

H Z L

H D VL
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CON[χCL,χCU](G)−(wi,wj)(wi,wj) � [χDL, χDU](wiwj) � χ-strength
of P′, CON[ψCL,ψCU](G)−(wi,wj) (wi,wj) � [ψDL,ψDU] (wiwj) �
ψ-strength of P′, and CON[ωCL,ωCU](G)−(wi,wj) (wi, wj) = [ωDL, ωDU]
(wiwj) = ω-strength of P′. Since G is complete, CON[χCL,χCU](G)
(wi,wj) � [χDL, χDU](wiwj), CON[ψCL,ψCU](G)(wi,wj) � [ψDL,ψDU]
(wiwj), and CON[ωCL,ωCU](G)(wi,wj) � [ωDL,ωDU](wiwj). From
that mentioned above, CON[χCL,χCU](G) (wi,wj) � CON[ψCL,ψCU](G)
(wi,wj) � CON[ωCL,ωCU](G)(wi,wj) � strength of P′. It means P′ is
the strongest path.

(ii)0 (i) Let P′ be the strongest wiwj path in G. Let the path P′
contain only φ-strong edges or ξ-strong edges, and hence, wiwj is a
strong path.

5 Interval-valued picture fuzzy logic
system for the TCP

The TCP is a transport protocol used on top of the Internet
Protocol (IP) to ensure the reliable transmission of packets. The TCP
includes mechanisms to address problems that arise due to a packet-
based messaging which include lost packets, out-of-order packets,
and corrupted packets. Conventional logic accepts exact inputs and
yields definite outputs such as “Yes” or “No.”We can easily analyze
the TCP using appropriate graphs. However, in reality, crisp graphs
can only represent “Yes” or “No” values. Consequently, classical
graphs cannot simultaneously detect the transmission rate in terms
of received packets, lost packets, and corrupted packets. Classical
graphs can only determine packet conditions after the sender sends
the packets, starts a timer, and places the packets in a retransmission
queue. If the timer expires without an acknowledgment from the
recipient, the sender resends the packet. These re-sending data can
lead to the occurrence of duplicate packets, which can cause
congestion, where a packet was not genuinely lost but
experienced delays in acknowledgment.

On the other hand, a fuzzy logic system (FLS) processes
incomplete and inaccurate inputs to produce acceptable outputs.
A fuzzy logic-based TCP can handle vague and erroneous network

states effectively. However, the aforementioned circumstances of
sent and received data cannot be explained using a simple FLS.
Consequently, fuzzy graphs or even intuitionistic fuzzy graphs are
incapable of representing the three states of packets: received, lost,
and corrupted. Fortunately, this situation can be addressed
accurately using IVPFGs. Through IVPFGs, we can
simultaneously determine the transmission rate by detecting the
rate at which packets are received, lost, and out of order (corrupted).
We represent received packets, lost packets, and out-of-order
packets with positive membership, negative membership, and
neutral membership values, respectively (i.e., ([a, b], [c, d], [e,
f])). By utilizing IVPFGs, we can enhance the fuzzy logic system
presented in [47, 48] for TCP analysis. Since, the interval-valued
picture fuzzy logic-based TCP includes lost and out-of-order
packets, the system based on IVPFGs would be more efficient in
dealing with the TCP) as compared to the TCP based on fuzzy logic
described in [48].

The layout of the TCP based on IVPFSs is as follows.
In a fuzzy-based error detection mechanism (FEDM), a fuzzy

logic controller (FLC) was used to distinguish congestion losses and
random channel losses (losses due to wireless errors). The FEDM uses
an improved error detector (IED) module to identify the possible
cause of a loss. The IED output is manipulated through three flags:
C—congestion, U—uncertain, and B—bit error (wireless errors). The
error recovery mechanism (ERM) accepts the output of the IED and
acts properly. The retransmission timeout (RTO) with congestion or
uncertain (C flag is set or U flag is set) retransmits and decreases the
transmission rate. When the RTO takes place due to a bit error
(indicated by the B flag being set), retransmissions are performed
without reducing the transmission rate. In addition to the error
recovery mechanism provided by the FEDM (fast error detection
and mitigation), the fast retransmission phase has the ability to
autonomously identify and address the errors, and it happens
when the receiver receives three duplicate acknowledgments (ACKs).

The FEDM becomes active when it receives an ACK, and the
functions involve in it monitors the total number of hops and
fluctuations occurring in round trip time (RTT) values through the

TABLE 2 [50] Interval-valued picture fuzzy rules- IVPF-based transport rules.

Input Output

Variable Value f

D VL EL

D L L

D M M

D H S

D VH ES

SP VL EL

SP L L

SP M M

SP H S

SP VH ES
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entire network. An increase in RTT can occur due to either congestion
or an increase in the number of hops. The count of hops is determined
by checking time to live (TTL) field in the corresponding IP header.
The RR-RTT rate module identifies intervals where the RTT increases
by a value greater than α, with n representing the number of such
occurrences. In [5], it was suggested that satisfactory outcomes can be
achieved by setting n to [1.52.5], α to 15–25 percent, and the sampling
duration between two RTT values to 100 ms. The NH information is
utilized to quickly classify the input/output equipment device (IED)
status as congestion if there is a significant increase in RTT without a
corresponding increase in the number of hops. The input variables for
this process include the mean t − RTT and the variance Δt − RTT.

t � 1
n
∑n
i�1

ti, (13)

Δt � 1
n
∑n
i�1

ti − t( )2. (14)

There are three sets characterized as small, medium, and large
for both t and Δt. The fuzzy engine’s output is represented by three
individual sets denoting congestion, bit error, and uncertain status.

The IVPF-TCP utilizes the fuzzy logic controller to calculate the
value of Cwnd (congestion window), a TCP parameter that monitors
the transmission rate. By taking into account the current values of
Cwnd, SSThresh (slow start threshold), and RTT, it estimates the
next subsequent value of Cwnd. TCP’s slow start and congestion
avoidance phases demonstrate exponential and linear growth in the
transmission rate, respectively. Slow start gradually increases Cwnd
initially and then accelerates toward the end. In the event of packet
loss, TCP halves Cwnd and transitions to congestion avoidance.
Nevertheless, during transition from slow start to congestion
avoidance, the possibility of packet loss may occur. The aim of
fuzzy TCP is to modify the transition of the congestion window
(Cwnd), achieving an improved process. The six fuzzy sets for Cw
are decrease very large (DVL), decrease large (DL), decrease medium
(DM), decrease small (DS), no change (NC), and increase (I) (these
are elaborated in Tables 1–3). Some fuzzy rules for TCP are
mentioned in Tables 1–3. Triangular membership functions are
employed, with the maximum throughput that serve as the upper
limit. We can represent the received packets, lost packets, and out-
of-order packets by positive membership, negative membership, and
neutral membership values, respectively (i.e., ([a, b], [c, d], [e, f])).
The range for Cw is [−3, −1] to [0, 0.1] instead of numbers −2.0 to

0.005 as were taken in [49]. Here, we are taking the values of
congestion window size (cw) [−3, −1] to [0, 0.1] instead of −2.0 to
0.005. The considered values are in intervals instead of numbers,
which are encompassing the values considered in [49]. In this way,
the proposed methodology is relaxing the values.

By taking input at one node and output at the other end (vertex)
of the IVPFG and the other way around, we can manipulate the
situation very easily. The simulation can be executed in NS-2
simulator, and we can get more adequate enhancement in
performance in terms of throughput and the packet delay.

Description: Here, VS—very small, S—small, ES—extreme
small, M—medium, H—high, Mod—moderate, MTM—more
than moderate, VS—very small, S—small, L—large, VL—very
large, EL—extreme large, VH—very high, and LT—little high.

6 Application of IVPFGs toward social
networking

IVPFGs are the best to deal different social networks such as
Instagram, Facebook, WhatsApp, TikTok, and Twitter. In these
networks, we can consider the individual or a group of people or
might be any organization as node, while their relationships (if exist)
can be depicted through edges between the nodes. Since there are
variations in relationships, we can consider a node (a person,
organization, etc.) has good, not good, and no (neutral) activities.
Then, the degrees of good, not good, and no activities of the nodes
can be represented in terms of subintervals of [0, 1]. Similarly, the
degrees of the relationships among nodes measure the edge
membership values. It has been observed that the two persons
have good attitude for some types of activities (such as exam
structure and paper organization), they can have no good mind
for some other types of activities (religion, food habit, etc.) while
they do not have any activity toward business. Thus, there are three
types of edge membership values such as good, bad, and neutral.
Thus, such type of networks can be best manipulated through
IVPFGs.

7 Conclusion

The theory of fuzzy graphs provides an effective tool to model
the uncertain real-world problems in various fields of science,

TABLE 3 [49] Interval-valued picture fuzzy rules- IVPFL-TCP.

Input Output

E A Cω

VL VL I

L VL NC

M Lt DS

Lt H Lt DM

H Lt DL

VH L DVL
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including computer science, information technology, decision-
making theory, statistics, and pattern recognition. Several
generalizations of fuzzy graphs have been explored in order to
handle such types of complex real-life problems. An IVPFS is a
direct extension of the IVFS and PFS. While discussing IVPFGs in
this manuscript, we introduce the notion of IVPFGs, which is an
extension of both IVFGs and PFGs. We utilize the concepts of
interval-valued picture fuzzy relations to define IVPFGs. First, for
investigation purposes, we apply different types of operations to
IVPFGs, including the ring sum of two IVPFGs. We introduce
special types of IVPFGs such as complete IVPFGs, regular IVPFGs,
strong IVPFGs, and complement IVPFGs. Additionally, we
explore different product types of IVPFGs, such as Cartesian
product and direct product. We introduce and apply different
strengths of paths, such as strong, semi-strong, and complete
strong, to analyze the connectivity of IVPFGs. Furthermore, we
explore structural properties of IVPFGs through these arcs. Since
PFSs have an additional degree called neutrality compared to
intuitionistic fuzzy sets, they prove to be a more efficient tool
for expressing uncertainties. Consequently, IVPFGs are more
efficient in modeling real-life problems containing uncertainties
compared to other forms of fuzzy graphs. At the end, we provide a
clue as an application of IVPFGs toward the TCP and plan to write
a full-length article on the TCP based on IVPFGs. Moreover, we
also provided the application of IVPFGs toward social networks.
Furthermore, IVPFGs can be utilized in other fields of sciences
such as image processing, database systems, social networks, and
transportation networks. In spite of all these, one could shift this
study toward bipolar picture fuzzy graphs.
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