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This research paper presents the generalized micropolar thermo-visco-elasticity
model in an isotropic elastic medium that has two temperatures with conformable
fractional order theory. The whole elastic medium rotates at a constant angular
velocity. The generalized theory of thermoelasticity with one relaxation time is
used to describe this model. We aim to study the effect of conformable fractional
derivative, effect of rotation, and the two-temperature coefficients. The normal
mode analysis is used to acquire the specific articulations for each component
under consideration. Moreover, some specific cases are discussed with regarding
to the problem. Numerical findings are gathered and displayed graphically for the
variables under consideration. The outcomes were analyzed in terms of the
presence or absence of rotation, viscosity, conformable fractional parameter
and two temperatures for various values.
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1 Introduction

The study of fractional calculus, a subject that has garnered significant attention from
mathematicians, engineers, and physicians, involves the investigation of mathematical
analysis utilizing differential operators of any order. The fractional calculus has extended
the usual definitions of integer order integrals and derivatives in ordinary differential
calculus by transforming them into real-order operators [1–6].

Over the past 40 years, there has been a lot of focus on Theories of thermoelasticity that
permit for restricted heat wave speed. These theories, known as general thermo-elasticity
theories, are hyperbolic and differ from the traditional combined thermo-elasticity (C-T)
theory [7], This predicts an infinite pace of heat propagation and is based on a parabolic heat
equation. Lord and Shulman (L-S) [8] were the first to alter the usual Fourier law by
including a unique heat conduction law, resulting in a wave type heat equation, on the other
hand Green and Lindsay (G-L) [9], introduced the temperature-rate hypothesis of
thermoelasticity. Green and Naghdi (G-N) [10], proposed a theory of thermo-elasticity
without energy dissipation, this, unlike earlier models, does not account for thermal energy
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loss. Chandrasekharaia proposed two theories of dual-phase lag
thermo-elasticity [11, 12] and Tzou [13]. Eringen developed the
general theory of micropolar elasticity [14, 15]. In this form of solid,
the vector of displacement and micro-rotation is fully defined,
whereas the displacement vector alone defines motion in the case
of classical elasticity [16]. The essential equations of the theory of
micropolar thermoelasticity linearly get by Tauchert et al. [17] and
Boschi [18]. Ciarletta [19] proposed a thermoelasticity with
micropolar energy dissipation. A Lord-Shulman model of
micropolar thermoelasticity dependent linear theory was
proposed by Sherief et al. [20]. Othman is to blame for various
issues with thermoelastic spinning media [21].

Many authors have made significant contributions to resolving
the boundary value problem for thermoelasticity [22–27].

Chen and Gurtin discussed two types of temperatures:
thermodynamic temperature and conductive temperature [28]. In
time-independent settings, the connection between these two
temperatures is linked to the heat supply. The two temperatures
are similar in the absence of a heat supply and often differ in the
presence of a heat supply. The two temperatures and strain are
shown to have inputs in the form of a travelling wave and an
instantaneous reaction that happens during the body. The waves in
the two-temperature thermoelasticity theory were investigated by
Warren [29], but no study in the sense of a generalised
thermoelasticity theory has been carried out so far. So, along
with two temperatures, the theory of two-temperature-
generalized thermo-visco-elasticity will be constructed in this work.

Many authors have made significant contributions to resolving
the boundary value problem for linear viscoelastic thermal materials
[30–33].

The current study seeks to determine the physical quantities,
such as viscosity, rotation, conformable fractional parameter, and
two-temperatures, in a homogeneous, isotropic, micropolar thermo-
elastic material [1, 34–40].

2 Field equations and constitutive
relations

We put a system in a generalized micropolar thermo-viscoelastic
medium under five theories, two temperatures and rotation as
[41, 42]:

(i) The constitutive relations

σ ij � 2μe 1 + α1
∂
∂t

( )eij + λe 1 + α0
∂
∂t

( )eδij − γeT0 1 + γ0
∂
∂t

( )Tδij,
(1)

mij � αϕr,rδij + εϕj,i + βϕi,j. (2)

(ii) Stress equation of motion

λe 1 + αo
∂
∂t

( ) + μe 1 + α1
∂
∂t

( )[ ]∇ ∇ · �u( ) + μe 1 + α1
∂
∂t

( ) + υ[ ]∇2 �u + υ ∇×�ϕ( )
−γe 1 + γo

∂
∂t

( )∇T � ρ €�u + �Ω× �Ω×�u( ) + 2�Ω× _�u].[
(3)

(iii) Couple stress equation of motion [43, 44]

α + β + ε( )∇ ∇ · �ϕ( ) − ε∇× ∇×�ϕ( ) + υ ∇×�u( ) − 2υ�ϕ � ρj €�ϕ + �Ω× _�ϕ).(
(4)

(iv) Heat conduction equation with five theories

kθ,ii � ρCE 1 + τα0
α!
t1−α

∂
∂t

( ) _T + γeT0 1 + γ0
∂
∂t

( ) 1 + τα0
α!
t1−α

∂
∂t

( ) _e,

(5)
With,

T � θ − aθ,ii. (6)

3 Problem formulation

Take a homogenous, isotropic, micropolar-viscoelastic generalised
medium with rotation and two temperatures with Cartesian rectangular
system of coordinates (x,y, z) , getting half-space surface like the plane
z � 0. Two more terminology for the displacement equation in the
rotating frame: the centripetal acceleration �Ω× (�Ω×�u) just because of the
time change and the Coriolis acceleration 2�Ω× _�u because of the moving
frame of reference.

Our study was restricted to x − z plane. Then �u, �Ω and �ϕ will
have the components:

�u � u, 0, w( ), �Ω � 0,Ω, 0( ) and �ϕ � 0,ϕ, 0( ) (7)
Combination of (3), (4) and (7) provides:

ρ €u + 2Ω _w −Ω2u( ) � μe 1 + α1
∂
∂t

( )∇2u +
1 + α1

∂
∂t

( )μe
+ 1 + α0

∂
∂t

( )λe
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e,x

− υϕ,z − γe 1 + γ0
∂
∂t

( )T,x,

(8)
ρ €w − Ω2w − 2Ω _u( ) � μe 1 + α1

∂
∂t

( ) + υ( )∇2w+

μe 1 + α1
∂
∂t

( ) + λe 1 + α0
∂
∂t

( )( )e,z
+ υϕ,z − γe 1 + γ0

∂
∂t

( )T,z, (9)

ε∇2ϕ + υ u,z − w,x( ) − 2υϕ � ρj€ϕ. (10)
From Eqs 1, 2, 7 the stresses can be formulated as follow:

σxx � 2μe 1 + α1
∂
∂t

( ) + υ( )u,x + λe 1 + α0
∂
∂t

( )e − γe 1 + γ0
∂
∂t

( )T,
(11)

σzz � 2μe 1 + α1
∂
∂t

( ) + υ( )w,z + λe 1 + α0
∂
∂t

( )e − γe 1 + γ0
∂
∂t

( )T,
(12)

σxz � μe 1 + α1
∂
∂t

( ) + υ( )w,x + μe 1 + α1
∂
∂t

( )u,z + υϕ, (13)

σzx � μe 1 + α1
∂
∂t

( ) + υ( )u,z + μe 1 + α1
∂
∂t

( )w,x − υϕ, (14)
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mxy � εϕ,x, (15)
mzy � εϕ,z. (16)

For simplification, we take the non-dimensional variables:

x′, z′{ } � ϖ
co

xi, zi{ }, t′, τ0′, α0′, α1′, γ0′{ } � ϖ t, τ0, α0, α1, γ0{ },
T′, θ′{ } � T, θ{ }

T0
, σ ij

′ � σ ij
γeT0

,Ω′ � Ω
c20η

, u′, w′{ } � ρcoϖ
γeTo

u, w{ },

mij
′ � ϖ

γeToco
mij, ϕ′ � ρc2o

γeTo
ϕ. (17)

Where, c20 � λe+2μe+υ
ρ ,ϖ � ρc2oCE

k .
With regard to the non-dimensional quantities set out in (17),

Eqs 8–10, Eqs 5, 6 take the form:

€u −Ω2u + 2Ω _w � a1 1 + α1
∂
∂t

( ) + υ1( )∇2u

+ a2 1 + αo
∂
∂t

( ) + a3 1 + αo
∂
∂t

( )[ ]e,x
−υ1ϕ,z − 1 + γ0

∂
∂t

( )T,x, (18)

€w −Ω2w − 2Ω _u � a1 1 + α1
∂
∂t

( ) + υ1( )∇2w

+ a2 1 + αo
∂
∂t

( ) + a3 1 + αo
∂
∂t

( )[ ]e,z + υ1ϕ,x

− 1 + γ0
∂
∂t

( ) 1 + υ0
∂
∂t

( )T,z, (19)

∇2ϕ + a4 u,z − w,x( ) − 2a4ϕ � a5€ϕ, (20)

∇2θ � 1 + τα0
α!
t1−α

∂
∂t

( ) _T + εo 1 + γ0
∂
∂t

( ) 1 + τα0
α!
t1−α

∂
∂t

( ) _e, (21)

T � 1 − a*∇2( )θ. (22)
Also, the constitutive relations (11)–(16) reduce to

σxx � 2a1 1 + α1
∂
∂t

( ) + υ1( )u,x + a2 1 + α0
∂
∂t

( )e − 1 + γ0
∂
∂t

( )T,
(23)

σzz � 2a1 1 + α1
∂
∂t

( ) + υ1( )w,z + a2 1 + α0
∂
∂t

( )e − 1 + γ0
∂
∂t

( )T,
(24)

σxz � a1 1 + α1
∂
∂t

( ) + υ1( )w,x + a1 1 + α1
∂
∂t

( )u,z + υ1ϕ, (25)

σzx � a1 1 + α1
∂
∂t

( ) + υ1( )u,z + a1 1 + α1
∂
∂t

( )w,x − υ1ϕ, (26)

mxy � a6ϕ,x, (27)
mzy � a6ϕ,z, (28)

Where,

a1 � μe
ρc20

, a2 � λe
γeTo

, a3 � μe
γeTo

, a4 � υc2o
εϖ2, a5 �

ρjc2o
ε

, a6 � εϖ2

ρc4o
,

εo � γe
ρCE

, a* � aϖ2

c2o
, υ1 � υ

ρc2o
.

(29)

We define e(x, z, t) and ψ(x, z, t) as the displacement potentials
recount to u and w

e � u,x + w,z,ψ � u,z − w,x. (30)

4 Normal mode analysis

In terms of normal modes, the solution of the considered
variables can be written as:

u, w, e,ψ, T, θ, ϕ, mij, σ ij[ ] x, z, t( ) � �u, �w, �e, �ψ, �T, �θ, �ϕ, �mij, �σ ij[ ]
z( ) exp ωt + ibx( ). (31)

Where, [�u, �w, �e, �ψ, �T, �θ, �ϕ, �mij, �σ ij](z) are the amplitudes of the
variables, ω is the complex angular frequency, b is the wave
number in the z-direction and � ���−1√

.
From Eqs 18, 19 we get

€e −Ω2e − 2Ω _ψ � a1 1 + α1
∂
∂t

( ) + a2 1 + αo
∂
∂t

( )(
+a3 1 + αo

∂
∂t

( ) + υ1)∇2e − 1 + γ0
∂
∂t

( )∇2T, (32)

€ψ − Ω2ψ + 2Ω _e � a1 1 + α1
∂
∂t

( ) + υ1( )∇2ψ − υ1∇
2ϕ. (33)

Using Eqs 22, 30, 31, Eqs 20, 21, 31 and 32 lead to

b1 D2 − b2( ) − b2[ ]�θ � b3�e, (34)
b4 − b5 D2 − b2( )[ ]�e − b6 �ψ � −b7 D2 − b2( ) 1 − a* D2 − b2( )[ ]�θ,

(35)
b4 − b8 D2 − b2( )[ ]�ψ � −b6�e − υ1 D2 − b2( )�ϕ, (36)

D2 − b2( )�ϕ + a4 �ψ − 2a4�ϕ � ω2a5�ϕ. (37)
Also, the constitutive relations (18)–(21) become

�σxx � 2a1 1 + α1ω( ) + υ1( )ib�u + a2 1 + αoω( )�e − 1 + γoω( )�T, (38)
�σzz � 2a1 1 + α1ω( ) + υ1( )D �w + a2 1 + αoω( )�e − 1 + γoω( )�T, (39)

�σxz � a1 1 + α1ω( ) + υ1( )ib �w + a1 1 + αoω( )D�u + υ1�ϕ, (40)
�σzx � a1 1 + α1ω( ) + υ1( )D�u + a1 1 + αoω( )ib �w − υ1�ϕ, (41)

�mxy � iba6�ϕ, (42)
�mzy � a6D�ϕ. (43)

Where,

D � d

dz
, b1 � a*ω 1 + τα0

α!
t1−αω( ), b2 � εoω 1 + γ0ω( ) 1 + τα0

α!
t1−αω( ),

b3 � εoω 1 + γ0ω( ) 1 + τα0
α!
t1−αω( ), b4 � ω2 − Ω2,

b5 � 1 + α1ω( )a1 + 1 + α0ω( )a2 + 1 + α1ω( )a3 + υ1, b6 � 2Ωω,

b7 � 1 + γoω( ), b8 � υ1 + a1 1 + α1ω( ), b9 � ω2a5 + 2a4.

Eliminating �ψ(z), �θ(z) and �ϕ(z) between Eqs 34–37, we get the
following eighth order ordinary differential equation satisfied
with �e(z)

D8 − AD6 + BD4 − CD2 + E[ ]�e z( ) � 0. (44)
Where,
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A �
b1b5 + a*b3b7( ) a4υ1 − b4 − b8b9 − 2b2b8( )

−b8 b1b4 + 2b2b1b5 + b2b5 + b3b7 + 2a*b2b3b7( )
−b1b5b8 − a*b3b7b8

,

B �

−b1b5 − a*b3b7( ) b4b9 + b2b4 + b2b8b9 + b4b8 − b2a4υ1( )
−b8 b2b1b4 + b4b1b5 + b2b4 + b2b2b5( )

+ a4υ1 − b4 − b8b9 − 2b2b8( )
b1b4 + 2b2b1b5 + b2b5 + b3b7 + 2a*b2b3b7( ) − a*b4b3b7b8
−b2b3b7b8 − b1b

2
6

−b1b5b8 − a*b3b7b8
,

C �

− b4b9 + b2b4 + b2b8b9 + b4b8 − b2a4υ1( )
b1b4 + 2b2b1b5 + b2b5 + b3b7 + 2a*b2b3b7( )

+ a4υ1 − b4 − b8b9 − 2b2b8( )
a*b4b3b7 + b2b3b7 + b2b1b4 + b4b1b5 + b2b4 + b2b2b5( )
−b26 b1b9 + 2b2b1 + b2( )

−b1b5b8 − a*b3b7b8
,

E �

− b4b9 + b2b4 + b2b8b9 + b4b8 − b2a4υ1( )
a*b4b3b7 + b2b3b7 + b2b1b4 + b4b1b5 + b2b4 + b2b2b5( )
−b26 b2b1b9 + b4b1 + b2b9 + b2b2( )

−b1b5b8 − a*b3b7b8
.

By rewriting Eq. 44, we get

D2 − k21( ) D2 − k22( ) D2 − k23( ) D2 − k24( )�e z( ) � 0. (45)
Where, the roots of the characteristic Eq. 44

k2n n � 1, 2, 3, 4( ).
The solution of Eq. 44, which bounded as x → ∞, is given by

�e z( ) � ∑4
n�1

Mne
−knz. (46)

In a similar manner,

�θ x( ) � ∑4
n�1

H1nMne
−knz, (47)

�ψ z( ) � ∑4
n�1

H3nMne
−knz. (48)

Substituting from Eqs 46 to Eq. 48 and (31) in Eqs 30, 22 and Eqs
38–43, the thermodynamic temperature, micro-rotation, the
displacement, force stresses and the couple stresses components
take the form

�T z( ) � ∑4
n�1

H2nMne
−knz, (49)

�ϕ z( ) � ∑4
n�1

H4nMne
−knz, (50)

�w z( ) � ∑4
n�1

H5nMne
−knz, (51)

�u z( ) � ∑4
n�1

H6nMne
−knz, (52)

�σxx z( ) � ∑4
n�1

H7nMne
−knz, (53)

�σzz z( ) � ∑4
n�1

H8nMne
−knz, (54)

�σxz z( ) � ∑4
n�1

H9nMne
−knz, (55)

�σzx z( ) � ∑4
n�1

G1nMne
−knz, (56)

�mxy z( ) � ∑4
n�1

G2nMne
−knz, (57)

FIGURE 1
Thermodynamic temperature T for various values of rotation.
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�mzy x( ) � ∑4
n�1

G3nMne
−knz. (58)

Where,

H1n � b3
b1 k2n − b2( ) − b2

, H2n � 1 − a* k2n − b2( )[ ]H1n,

H3n � b4 − b5 k2n − b2( )( ) +H2n b7 k2n − b2( )( )
b6

,

H4n � a4H3n

b9 − k2n − b2( ), H5n � −kn − ibH3n

k2n − b2
, H6n � −i 1 + knH5n( )

b
,

H7n � ibH6n 2a1 1 + α1ω( ) + υ1( ) + a2 1 + αoω( ) −H2n 1 + γoω( )
H8n � −knH5n 2a1 1 + α1ω( ) + υ1( ) + a2 1 + αoω( ) −H2n 1 + γoω( ),
H9n � ibH5n a1 1 + α1ω( ) + υ1( ) + υ1H4n − a1knH6n 1 + α1ω( ),
G1n � −knH6n a1 1 + α1ω( ) + υ1( ) + iba1H5n 1 + α1ω( ) − υ1H4n,

G2n � iba6H4n, G3n � −a6knH4n.

Mn(n � 1, 2, 3, 4), some coefficients can be calculated based on the
boundary conditions

5 The boundary conditions

To obtain the coefficientsMn(n � 1, 2, 3, 4), we use the surface’s
boundary conditions on the surface z � 0 as

T x, 0, t( ) � f x, 0, t( ) � f* exp ωt + ibx( ), (59)
σzz x, 0, t( ) � 0, (60)
σzx x, 0, t( ) � 0, (61)

mzy x, 0, t( ) � 0. (62)

Where, f(x, t) is an arbitrary function of x, t and f* is the
magnitude of the constant temperature applied to the boundary.

Using Eqs 59–62, the following equations satisfied by the
coefficient Mn(n � 1, 2, 3, 4) can be obtained

∑4
n�1

H2nMn � f*, (63)

∑4
n�1

H8nMn � 0, (64)

∑4
n�1

G1nMn � 0, (65)

∑4
n�1

G3nMn � 0. (66)

We complete the solution of the problem by solving the system
of Eqs 63–66.

6 Numerical results and disccusion

To perform numerical calculations [45] the magnesium crystal
value of the related parameters is taken at

To � 23 oC

λe � 9.4 × 1010kgm−1 s−2, ε � 0.779 × 10−9kgm s−2, , k

� 2.510w.m−1.k−1, αt � 2.36 × 10−5k−1, ρ � 1.74 × 103kg.m−3, CE

� 9.623J.kg−1.k−1, υ � 1010kg m−1s−2, μe � 4 × 1010kgm−1s−2, j

� 0.2 × 10−19m2.

FIGURE 2
Conductive temperature θ for various values of rotation.
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The comparison was performed for

x � 0.01, f* � 1,ω � ω0 + iξ,ω0 � −2, ξ � 1, b � 0.5, τ0 � 0.08,

α � 0.1a � 0.5,Ω � 0.1, α0 � 0.6, α1 � 0.9.

The numerical data given above were used to determine the real
part distribution of the displacement component, force stress
components, conductive temperature, thermo-dynamic
temperature, micro-rotation, and couple stress components in

FIGURE 3
Horizontal displacement u for various values of rotation.

FIGURE 4
Force stress components σzx for various values of rotation.
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relation to the problem under consideration. Figures 1–25 show the
results.

From an implementation standpoint, we divided the schematics
into four components.

(i) For different values of rotation, the micropolar thermo-
visco-elasticity theory with conformable fractional order
theory and two-temperatures is concerned. Figures 1–7
i.e.., (Ω � 0.1, 0.01).

FIGURE 5
Force stress components σzz for various values of rotation.

FIGURE 6
Couple stress components mzy for various values of rotation.
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(ii) For different values of a(a � 0, a � 0.5), the micropolar
thermo-visco-elasticity theory with rotation and
conformable fractional order theory is concerned. Figures
8–14, where a � 0 indicates one-type temperature and a �
0.5 indicates two-types of temperature.

(iii) Concerned are micropolar thermoelasticity with rotation,
conformable fractional order theory, and two temperatures.
Figures 15–21 show variable comparisons for various values
of α0 and α1 where, α0 � α1 � 0 indicates a generalized
theory of micropolar thermo-elasticity (TE) and α0 � 0.6,

FIGURE 7
Micro-rotation φ for various values of rotation.

FIGURE 8
Thermodynamic temperature T for two various values of two-temperature parameter.
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α1 � 0.9 indicates generalized theory of micropolar thermo-
visco-elasticity (TVE).

(v)The Figures 22–25 clarified four curves predicted by the
different theories of thermo-elasticity, such that

• α � 1, indicates the generalized micropolar thermoelastic
theory with one relaxation time [8].

• t � 0, indicates the coupled theory of micropolar
thermoelasticity [46].

• 0< α< 1, indicates the generalized conformable
fractional order theory of micropolar thermo-
elasticity.

(i) (Effect of rotation)

FIGURE 9
Conductive temperature θ for two various values of two - temperature parameter.

FIGURE 10
Horizontal displacement u for two various values of two-temperature parameter.
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Figures 1, 2 depict the distribution of θ and T with
distance x with two-temperatures for varying
rotational values. It is noticed that curves of θ and T
begin from a positive value. Then, it then reduces to zero
indefinitely.

Figure 3 shows the variations of u with distance x with two-
temperatures for different values of rotation. The rotation has a
decreasing influence.

Figures 4, 5 represent the profile of force stress components
σzx, σzz based for various values of rotation with two-temperature.

FIGURE 11
Force stress components σzx for two various values of two-temperature parameter.

FIGURE 12
Force stress components σzz for two various values of two-temperature parameter.
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They start with a zero value that is completely compatible with the
limits. The value of σzx, σzz for Ω � 0.1 is less as compared to Ω �
0.01, the values of σzx, σzz tending to zero.

Figure 6 displays the disparity of the couple stress
component mzy with distance x for two-temperatures for
varying rotational values. It begins with a zero value entirely

consistent with the limit conditions. We notice that the value of
mzy forΩ � 0.1 is less as compared to Ω � 0.01, the values ofmzy

tending to zero.
Figure 7 shows the variation of the micro-rotation ϕ with

distance x, with two-temperatures for different values of rotation.
The rotation has a decreasing influence.

FIGURE 13
Couple stress components mzy for two various values of two-temperature parameter.

FIGURE 14
Micro-rotation ϕ for two various values of two-temperature parameter.
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(ii) Effect of two temperatures

Figure 8 illuminates the supply of the thermodynamic
temperature T with distance x for different a � 0, a � 0.1. values
under the influence of rotation. It begins with T � 1 that fully
complies with the limit conditions, subsequently decreases

continually to zero value. We noticed that the parameter a has
an increasing effect

Figure 9 shows the conductive temperature θ with distance x
with the effect of rotation. We noticed that the curve of θ begins
from a positive value. It then, reduces constantly to zero. We notice
that the parameter a has an increasing effect.

FIGURE 15
Thermodynamic temperature distribution T in the nonexistence and existence of viscosity.

FIGURE 16
Conductive temperature distribution θ in the nonexistence and existence of viscosity.
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Figure 10 displays the variations of u with distance z under the
influence of rotation for different values of a � 0, a � 0.5. The
parameter a is seen to have an increasing impact.

Figures 11, 12 denote the outline of the force stress component
σzx, σzz under the effect of rotation for changed values of
a � 0, a � 0.5. It begins with a zero value that is fully consistent

with the limits. In this figure, we can see that the values of σzx, σzz for
a � 0 is greater than that at � 0.5 .

Figure 13 shows the profile of the couple stress component
mzy under the influence of rotation for the values of
a � 0, a � 0.5. This begins with a zero value that is totally
compatible with the limits. In this figure, we can see that the

FIGURE 17
Horizontal displacement distribution u in the nonexistence and existence of viscosity.

FIGURE 18
Distribution of force stress components σzx in the nonexistence and existence of viscosity.
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value of mzy for a � 0.5 is greater than that at as a � 0 It is
observed that the influence is rising in parameter.

Figure 14 represents the variation of the micro-rotation with
distance under the influence of rotation for different values of � 0,

a � 0.5. In the figure the value of ϕ for a � 0.5 is greater than that at
a � 0. The a parameter is seen to have a growing effect.

(iii) Effect of viscosity

FIGURE 19
Distribution of force stress components σzz in the nonexistence and existence of viscosity.

FIGURE 20
Distribution of couple stress components mzy in the nonexistence and existence of viscosity.
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Figures 15, 16 depict θ and T in two-temperature under the
influence of rotation with and without of viscosity. It has been
observed that the curves of θ andT begin from a positive value, Then
it decreases constantly to zero.

Figure 17 shows the deviation of the horizontal displacement
distribution u with distance x under the influence of rotation and

two-temperatures with and without viscosity. It can be seen
that TE>TVE

Figures 18, 19 represent the profile of stress components σzx,
σzz under the influence of rotation and two-temperature for
TE and TVE.They begin with a zero value that is fully in line
with the limit conditions. The value of σzx for TVE is greater

FIGURE 21
Distribution of micro-rotation ϕ in the nonexistence and existence of viscosity.

FIGURE 22
Distribution of the temperature T for various values of α.
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than that for TE. the value of σzz for TE is greater than that
for TVE.

Figure 20 depicts the disparity of the couple stress mzy with
distance x under the influence of rotation and two-temperatures for

TE and TVE.We observe that the value of mzy for TVE is greater
than that for TE.

Figure 21 depicts the variation of the micro-rotation ϕ with
distance x under the influence of rotation and two-temperature for

FIGURE 23
Distribution of the temperature θ for various values of α.

FIGURE 24
Distribution of the horizontal displacement u for various values of α.
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TE and TVE. We observe that the value of ϕ for TVE is greater than
that for TE.

(v) Effect of Conformable fractional parameter

The figures [22–24] clarified four curves predicted by the
different theories of thermo-elasticity, such that

• α � 1, indicates the generalized thermoelastic theory with one
relaxation time [10].

• t � 0, indicates the coupled theory of thermoelasticity [9].
• 0< α< 1, indicates the generalized conformable fractional
order theory of thermo-elasticity.

Figures 22, 23 depict the distribution of the thermo-dynamic
temperature T and conductive temperature θ with distance x, under
the influence of rotation and two-temperature for various values of α
and for t � 0. It is observed that the variation of θ starts from a positive
value, then decreases continually to zero. It is also visible that for α � 1,
the result coincides with all results of applications that are taken in the
context of the generalized thermoelasticity with one relaxation time, for
t � 0, the result coincides with all results of applications that are taken
in the case of the coupled theory, for α � 0.1 and α � 0.5 gives new
results for the generalized conformable fractional order theory of
thermoelasticity From this figure it is spotted that as fractional
parameter α increase the measure of the temperature θ rise.

Figure 24 shows the variations of u via distancex under the influence
of rotation and two-temperature for various values of α and t � 0. For
α � 1, the result to agree with all results of applications that are taken in
the context of the generalized thermoelasticitywith one relaxation time, for
t � 0, the result agree with all results of applications that are taken in the
context of the coupled theory, for α � 1 and α � 0.5 gives new results for
the generalized conformable fractional order theory of thermoelasticity.

Figure 25 explains the variations of stress components σzx
with distance x under the influence of rotation and two-
temperature for various values of α and for t � 0. It can be
visible that they beginning with zero value that fully agrees with
the boundary conditions.

7 Conclusion

Normal mode analysis was employed to investigate the behavior
of the conductive temperature, the thermodynamic temperature, the
component of horizontal displacement, the component of force
stress, the couple stresses, and the micro-rotation under the effect of
rotation, conformable fractional order theory, viscosity, and two-
temperatures in a homogeneous, isotropic, generalized micropolar
thermo-viscoelastic medium. We aim to study the effect of
conformable fractional derivative, effect of rotation, and the two-
temperature coefficients. The above analysis leads us to the following
conclusions:

• Variations in various fields are clearly constrained to a certain
zone in all of the data, and the values vanish outside of the
region, which is consistent with the perspective of generalized
micropolar thermo-visco- elasticity theory.

• All of the physical values fulfill the boundary criteria.
• The thermodynamic and conductive temperature nature of all
models TE and TVE is same.

• The angular velocity and two-temperature parameters have a
significant impact on the horizontal displacement component,
the force stress components, the couple stresses components,
and the micro-rotation. However, there are minor impacts on
the conductive temperature and the thermodynamic
temperature.

FIGURE 25
Distribution of the stress component σzx for various values of α.
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• For two temperature parameter values, θ and T show a
virtually identical pattern, and increasing the value of the
two-temperature parameter leads the values of those functions
to grow. While increasing the two-temperature parameter
value leads the values of the horizontal displacement and
stress components to drop, increasing the two-temperature
parameter value causes the values of these functions to rise, as
shown in the figures.

The given model will be valuable for scientists working on
micropolar thermoelasticity in understanding the viscoelastic
characteristics of human soft tissue and may lead to enhanced
diagnostic applications. The findings may be used to both
theoretical and empirical wave propagation.

• The fractional parameter α highly influences all variables.
• According to this work, we can treat the theory of conformable
fractional order generalized micropolar thermoelasticity as an
improvement in studying thermoelastic materials, we have to
construct a new ranking for materials according to their
fractional parameter α, where this parameter becomes a
new conductor of its ability to conduct heat under the
effect of thermoelastic properties, we use these properties in
the factory of glasses and ceramic.
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Appendix

Researchers in the field of thermoelasticity have all employed
fractional derivatives to develop the heat conduction equation based
on these derivatives

kθ,ii � ρcE 1 + τα0
α!

∂α

∂tα
( )θ,t + γT0 1 + τα0

α!

∂α

∂tα
( )e,t − 1 + τα0

α!

∂α

∂tα
( )Q

(A1)
They arrived at this equation through the utilization of the

following definitions:

(i) Riemann-Liouville definition. For α ∈ [n − 1, n), the α

derivatives of f is

Dα
a f( ) t( ) � 1

Γ n − α( )
dn

dtn
∫t
a

f x( )
t − x( )α−n+1 dx. (A2)

(ii) Caputo definition. For α ∈ [n − 1, n), the α derivatives of f is

Dα
a f( ) t( ) � 1

Γ n − α( )∫
t

a

f n( ) x( )
t − x( )α−n+1 dx. (A3)

Nevertheless, these two definitions possess certain limitations
that can be summarized as follows:

(i) The Riemann-Liouville derivatives do not hold true for

Dα
a 1( ) � 0

Dα
a 1( ) � 0 for the caputo derivative( ), if α is not natural. (A4)

(ii) None of the fractional derivatives fulfill the well-known formula
for the derivative of the product of two functions:

Dα
a fg( ) � fDα

a g( ) + gDα
a f( ). (A5)

(iii) None of the fractional derivatives comply with the established
formula for the derivative of the division of two functions:

Dα
a f/g( ) t( ) � gDα

a f( ) − fDα
a g( )

g2
. (A6)

(iv) None of the fractional derivatives abide by the chain rule.

Dα
a fog( ) t( ) � f α( ) g t( )( )g α( ) t( ). (A7)

(v) Fractional derivatives do not abide by the general rule
DαDβf � Dα+βf It was necessary to adopt another
definition of fractional derivatives, which is the
"Conformable fractional derivatives," in order to
overcome the limitations discussed above [47, 48].

The fractional derivatives of the order α ∈ (0, 1] of the
absolutely continuous function f(t) is

dαf t( )
dtα

� t1−α
df t( )
dt

(A8)
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Nomenclature

λe , μe Lame elastic constants

ρ Density

CE Specific heat at constant strain

αt Coefficient of linear thermal expansion

αo ,α1 Viscoelastic relaxation times

k Thermal conductivity

γe � (3λe + 2μe)αt
t Time

γo � (3λeα0 + 2μeα1)αt/γe
λ � λe(1 + α0 ∂

∂t)

μ � μe(1 + α1 ∂
∂t)

γ � γe(1 + γ0
∂
∂t)

σij Components of force stress tensor

mij Components of couple stress tensor

ui Components of displacements vector

Ω Angular velocity

eij Components of strain tensor

e Cubical dilatation

θ Conductive temperature

T Thermodynamic temperature

T0 References temperature

a Two- temperature parameter

α Fractional parameter

τ0 Relaxation time

δij Kronecker delta

ϕ Micro rotation vector

j Micro inertia

α, β, ε, υ Micropolar material constant

εijk Permutation tensor
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