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Editorial on the Research Topic
Nucleation and stability of exotic solitons in condensed matter

Topological solitons in condensed matter are of particular interest for fundamental
theory due to a deep connection between topology and physics manifested in these systems.
At the same time, they are praised as the basis for new technologies of data storage,
information processing, machine learning and neuromorphic computing. The most well-
studied magnetic solitons are quasi-two-dimensional skyrmions and bubble domains.
However, in recent years, attention has shifted to other two-dimensional and even three-
dimensional localized topological structures appearing not only in magnetic materials, but
also in liquid crystals, ferroelectrics and multiferroics, which expands our knowledge about
topological effects in physics and possible scope of topological soliton applications [1].

Although skyrmions and related objects owe their stability to topology, the topological
protection is not strict in real systems due to discrete nature of condensed matter, e.g.,
magnetic moments localized on atomic lattices. Instead, topological solitons can be
nucleated and annihilated by overcoming finite energy barriers. Such over-the-barrier
transitions can be induced spontaneously by thermal fluctuations leading to a finite
lifetime of the states. Successful implementation of topological solitons in technology
requires their lifetime to be sufficiently long, many orders of magnitude longer than
characteristic times of the microscopic dynamics. This hierarchy of the timescales makes
it challenging to study the thermal stability of the solitons. Consistently with the Néel-Brown
theory of thermally activated magnetization reversal [2, 3], experimental observations [4]
and numerical simulations [5] of magnetic skyrmions identified Arrhenius dependency of
their nucleation/annihilation rates k on temperature T:

k = kye AE/kT (1)

However, both the energy barrier AE and, remarkably, the pre-exponential factor kq
which is often taken to be a phenomenological constant, turned out to be highly sensitive to
various control parameters such as an external magnetic field [4]. The physics of the thermal
stability of magnetic skyrmions was revealed using a statistical approach based on the rate
theory for magnetic degrees of freedom [6-9]. Calculations of minimum energy paths
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(MEPs) connecting the skyrmion state with topologically trivial
background state have uncovered skyrmion collapse mechanisms
[10-12], some of which were confirmed experimentally [13]. The
rate theory has made it possible to identify, in a definite way, both
the energy barrier and the Arrhenius pre-exponential factor. In
particular, the unexpected variations of the pre-exponential factor
were explained by large entropy difference between the skyrmion
state and the transition state-the bottleneck for the skyrmion
collapse [11, 14-16]. Overall, recent developments of theoretical
and computational methods for the rate theory [17-20] have made it
possible to establish a coherent picture about thermal stability of
magnetic skyrmions. At the same time, the theoretical framework is
quite general and can be applied to solitons beyond magnetic
skyrmions.

Two-dimensional magnetic films with Dzyaloshinskii-Moriya
interaction (DMI) can host, together with axisymmetric skyrmions,
other locally stable configurations even with the same topological
charge. Among them are so-called tailed skyrmions Kuchkin et al..
They have an elongated shape and can exist in a narrow range of
fields near the transition from spin spirals to a uniform
ferromagnetic state. “Growing a tail” is an additional mechanism
for obtaining new solitons. There is a continuous transition
(homotopy) between such structures and usual skyrmions. The
homotopies can be efficiently found by calculating MEPs using
the geodesic nudged elastic band method [17]. The discovery of
tailed skyrmions extends the range of already known soliton
solutions.

Additional possibilities appear in multilayer systems due to
controlled modification of the interlayer exchange coupling
(IEC). For example, synthetic antiferromagnet can be obtained by
establishing an antiferromagnetic (AFM) IEC between the
ferromagnetic (FM) layers through a non-magnetic spacer. DMI-
stabilized ferromagnetic skyrmions in each layer can couple with
each other in these systems thus forming composite AFM skyrmions
[21]. AFM skyrmions can also be created intrinsically in AFM
materials. Ab initio calculations predict that this can be done, for
example, by depositing a row-wise AFM Cr layer on the PdFelr(111)
structure hosting FM skyrmions [22]. In this case, only exchange
interactions may be required to form a complex AF structure.
Aldarawsheh et al. investigate this system using the Heisenberg
model, which includes basic magnetic interactions necessary to form
AFM skyrmions on a triangular lattice. Interestingly, deposited Cr
layer does not introduce additional DMI interaction but leads to
long-range exchange interaction involving several neighbor shells.

In three-dimensional magnets, the possibility of forming even
more exotic topological structures can be realized. In cubic magnets
with competing magnetic interactions, hopfions can be stabilized
even in the absence of DMI. However, theoretical estimates show
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that they are stable only at low temperatures of a few kelvins [23, 24].
In the presence of DMI and an external magnetic field, hopfions
embedded in a conical magnetic structure form heliknotons. Their
experimental observation, however, is a challenging task. Additional
challenge lies in the interpretation of experimental data, which is far
from being unambiguous, especially in three-dimensional systems.
Therefore, it is necessary to use mutually complementary techniques
and explore different interpretation options. Savchenko et al. show
this using magnetic bubbles with alternating chirality in domain
walls as an example. There, mathematical modeling of the system
response, obtained in the framework of different experimental
methods in combination with various theoretical approaches to
the study of dynamics and stability assessment, is very useful.
Kuchkin et al. discuss the stability of heliknotons and conditions
of their detection based on micromagnetic modeling, rate theory,
and stochastic spin dynamics simulations.

with
delocalized states are possible in addition to localized topological

In three-dimensional samples chiral interactions,
structures. Leonov and Pappas carried out a systematic study of the
states of an inclined spiral arising due to competition of cubic and
exchange anisotropies inherent to cubic helimagnets. Field-
controlled reorientation of metastable skyrmion lattices caused by
competing anisotropies, may be responsible for some features in the

experimental phase diagrams of Cu,0SeOs.
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