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Given the improved capabilities of radar systems, addressing unfamiliar signals
presents a challenge for radar jamming technology. To tackle this issue, this study
proposes an adaptive technique for optimizing jamming waveforms to suppress
multiple false targets in escort jamming scenarios. The objective is tominimize the
detectability of false targets by fine-tuning phase modulation and individual
waveform parameters. The optimization model adjusts the energy and delay of
jamming waveform segments using intercepted radar signal phase modulation
and direct forwarding. Real-time adaptation is achieved through the utilization of a
genetic algorithm and radar constant false alarm rate detection based on received
emissions. The key findings highlight the advantages of adaptivity in effectively
suppressing false targets under diverse conditions. The technique successfully
learns efficient waveforms through feedback, even without specific knowledge of
the radar system. The optimized waveforms maintain consistent jamming impact
across different constant false alarm rate settings, surpassing the limitations
associated with fixed assumptions. The introduction of phase modulation
enhances the resilience of false targets by creating noise-like characteristics.
Remarkably, robust jamming is achieved with only 12 false targets, reducing
complexity. The unified waveform design is particularly suitable for single
platform jamming, eliminating the need for multiple jammers. Furthermore, the
optimized waveforms demonstrate improved coverage of real targets under
position errors. As a result, the approach exhibits versatility across various
signals, processing methods, and scenarios. This study suggests that increased
adaptability and the incorporation of machine learning techniques contribute to
the advancement of radar jamming capabilities. By optimizing jamming
waveforms, the adaptive approach presented in this study may enhance the
effectiveness of countering advanced radar systems.
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1 Introduction

The disruption of radar performance is a crucial aspect for
military forces and the aerospace industry interested in degrading an
adversary’s radar capabilities. Among the various approaches, false
target jamming has proven to be highly effective in confusing radar
systems by introducing false target echoes into the radar return
signal. In recent times, considerable research efforts have been
devoted to multi-false target suppression jamming, which
involves generating a multitude of false targets to overwhelm the
radar’s ability to detect genuine targets. However, existing methods
for generating the jamming waveform often rely on predetermined
assumptions regarding radar signal parameters and detection
algorithms. Consequently, these techniques have limited
adaptability to accommodate diverse and evolving radar
systems [1–3].

False target jamming is a technique utilized to deceive radar
operators or disrupt automatic tracking systems by generating radar
echoes that imitate legitimate target returns [4]. To accomplish this,
the jammer detects the radar pulse, amplifies it, and transmits the
signal again with suitable delays, thereby simulating target echoes at
false distance ranges [5]. Multi-false target jamming involves
generating a multitude of false echoes, which impairs the radar’s
ability to differentiate genuine targets from the false ones [6].
Consequently, this suppression effect significantly deteriorates the
radar’s detection capability.

Multi-false target suppression jamming refers to a specific form
of false target jamming that aims to overpower the radar’s signal
processing by inundating it with an abundance of false targets [7,
8]. In this technique, the jammer produces replicated radar pulses
that correspond to multiple closely-positioned false targets
surrounding the desired target [9]. The presence of numerous
false targets in close proximity serves to obscure the genuine target
and overwhelms the radar’s display and tracking processing.
Compared to generating only a small number of isolated false
targets, multi-false target jamming poses a greater challenge for the
radar system to mitigate.

The effectiveness of multi-false target jamming is significantly
influenced by the radar’s constant false alarm rate (CFAR) detection
method [10–12]. CFAR adjusts the detection threshold based on
estimated noise and clutter levels to maintain a desired target false
alarm probability. By incorporating the presence of multi-false
targets in the threshold determination, CFAR detection can
partially mitigate the impact of jamming. Consequently, it is
crucial to optimize the jamming waveform in consideration of
the radar’s CFAR implementation.

Numerous research studies have focused on the optimization of
multi-false target jamming waveforms in the context of specific
CFAR detection scenarios. Shi et al. [13] conducted an analysis of
the effects of jamming on a linear frequency modulation radar
utilizing cell-averaging CFAR detection. They derived expressions
for false target amplitude and spacing. Zhang et al. [14] proposed an
intermittent sampling method to enhance the effectiveness of
jamming against CFAR detection. Zheng et al. [15] investigated
the influence of closely spaced false targets on various CFAR
techniques. However, most existing analyses assume a priori
knowledge of the radar parameters and fixed CFAR settings,
which are typically known to the jammer.

The adaptability and effectiveness of jamming can be enhanced
by optimizing the jamming waveform in response to radar emissions
and the detection process. Recent studies have started exploring
cognitive methods for adapting the jamming waveform. For
instance, Jiang et al. [16] conducted joint optimization of the
spacing and amplitude of false targets based on detection
outcomes. Li et al. [17] proposed a “smart” false target approach
that involved evolutionary optimization of the waveform. Although
these approaches show promise, most adaptive optimizations have
been tailored to specific signal types or variants of CFAR. To enable
real-time adaptation for multi-false target suppression jamming, it
would be advantageous to develop a more flexible jamming module
capable of responding to diverse radar signals and unknown CFAR
processing methods.

Phase modulation [18] is a technique that can be employed to
manipulate the radar signal within the false target jamming
waveform, thereby introducing complexity to pulse compression
processing. By applying pseudo-random phase codes to modulate
the replicated radar pulses prior to retransmission, the correlation
between these pulses and the radar receiver’s matching filter is
reduced. This transformation results in false targets resembling
noise-like returns, thereby enhancing the effectiveness of the
jamming. Yuan and Tao [8] demonstrated the efficacy of
incorporating phase modulation into successive radar pulse
segments to deceive mainlobe tracking. Expanding the
application of such phase modulation techniques to multi-false
target jamming waveforms has the potential to further enhance
the resilience of jamming efforts.

The integration of evolutionary optimization methods, such as
genetic algorithms, into the adaptation process enables efficient
waveform optimization when faced with an unknown radar
adversary [18, 19]. By treating waveform parameters, such as
false target positions and amplitudes, as genes, the jammer can
iteratively modify them tominimize an objective function associated
with jamming effectiveness, such as reducing detectable false targets.
Genetic algorithms facilitate exploration of the vast solution space to
identify jamming waveforms that effectively counter specific radar
detection schemes [20–23].

Therefore, in light of scientific progress across various
disciplines, such as electronics, researchers have undertaken
numerous investigations aimed at improving and optimizing
electronic systems [24–28]. Past studies have primarily
concentrated on the assessment of essential tools within satellite
and military sectors [29–33]. Furthermore, recent scholarly focus
has been directed towards the exploration of satellite-based
communication systems and wireless technologies that eliminate
the need for wired connections [34–38]. The incorporation of radar
systems in communication and military domains has also garnered
significant attention within the scientific community over the past
decade [39–43]. Prior research endeavors have encompassed the
utilization of diverse methodologies, including modeling and
analytical approaches, to address these subjects [44–48].
Moreover, previous studies have proposed different models and
optimization techniques to advance the understanding and
application of these systems [49–53].

An adaptive optimization approach for the design of multi-
false target suppression jamming waveforms based on genetic
algorithms and phase modulation is proposed in this study. The
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aim is to achieve robust jamming performance against various
radar signals and unknown CFAR processing settings. A
formulation of an optimization model is presented to minimize
the detectability of false targets by adjusting the contributions of
individual false targets within a segmented, phase-modulated
jamming waveform. Real-time adaptation of waveform
parameters is enabled by a genetic algorithm, which utilizes
feedback from received radar emissions and evaluation through
CFAR detection. The proposed adaptive methodology utilizing
genetic algorithms and phase modulation offers a more flexible

real-time approach for countering modern radar systems
compared to previous fixed analyses or optimizations. By
continuously evaluating CFAR detection outcomes in response
to transmitted jamming waveforms, effective waveforms tailored
to the current radar signal and processing scheme can be learned
by the jammer, even without specific knowledge of the threat
parameters. This research explores the potential benefits of
increased adaptability and machine learning techniques in the
established field of radar jamming.

An investigation is conducted in this study on an adaptive
technique for optimizing jamming waveforms to counter
diverse radar signals and CFAR processing methods. Existing
jamming waveform designs, based on fixed radar knowledge,
exhibit limited adaptability against modern agile radars. To
address this limitation, an optimization model is proposed to
minimize the detectability of false targets by tuning the phase
modulation and individual parameters of the jamming
waveform. Real-time optimization of the waveform is
achieved using a genetic algorithm that leverages CFAR
evaluations to refine the jamming approach. The robustness
against varying radar emissions and detection schemes is
improved by this adaptive methodology. The effectiveness of
the proposed technique is validated through simulations
conducted under different scenarios involving radar signals,
CFAR settings, and target position errors. The results
demonstrate the benefits of adaptation in enhancing the
suppression of multi-false targets through jamming, laying
the foundation for real-time optimization of jamming
waveforms across diverse scenarios.

FIGURE 3
Principle of segmented reconstruction method for jamming waveform generation.

FIGURE 2
Illustration of CFAR detection processing window.

FIGURE 1
Schematic of escort-support jamming method.
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2 Jamming scene and jamming signal
generation

2.1 Jamming scenario

This jamming technique is specifically designed for escort jamming
scenarios where the jammer is positioned closer to the radar system than
the protected target. During the flight process, the radar signal is
intercepted,modulated, delayed, and transmitted, as depicted in Figure 1.

2.2 CFAR detection

The radar CFAR detector maintains a consistent probability of
false alarms by continuously estimating the noise from the data in
real time. The detection process involves comparing the estimated
values of the detection cells with the noise signal to determine the
presence of a target. Figure 2 provides an illustrative representation
of the CFAR processing window, highlighting its conceptual
framework.

This study investigates the jamming method specifically
targeting ML-CFAR, which encompasses various techniques

such as cell-averaging CFAR (CA-CFAR), greatest of CFAR
(GO-CFAR), and smallest of CFAR (SO-CFAR). Among these
ML-CFAR methods, the SO-CFAR approach exhibits certain
advantages in terms of detection performance in multi-target
scenarios. Therefore, this study examines the impact of
jamming suppression under the conditions of SO-CFAR. In the
SO-CFAR method, the normalization factor T is determined based
on the reference cell length N and the desired false alarm rate (Pfa).
The relationship between these parameters is expressed as
follows [54]:

Pfa � 2 2 + T

N/2( )( )−N/2 ∑N2−1
k�0

N

2
− 1 + k

k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 2 + T

N/2
( )−k⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭ (1)

The threshold value under SO-CFAR condition is as follows:

TABLE 2 Radar simulation parameter settings.

Parameter name Value

False alarm rate 10–4

Bandwidth/(MHz) 5

Sampling rate/(MHz) 20

Pulse width/( μs) 20

Number of protection cells 2

Number of References cells 8、10、12、14、16

CFAR type SO-CFAR

SJR/(dB) 10

SNR of target echo after pulse compression/(dB) 30

FIGURE 5
Schematic diagram of the adaptive jamming module for multi-
false target jamming optimization.

FIGURE 4
Jamming effect of the jamming signal after pulse compression.

TABLE 1 Multi-false target suppression jamming waveform optimization
parameters.

Parameter name Value range Accuracy

Delay time Δt/μs 0.1 μs–1 μs 0.01 μs

Signal amplitude A1、A2(A15、A16) 0.4–2 0.4

Signal amplitude A3 ~ A8(A9 ~ A14) 0.1–1 0.1
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Z � TSO min σ2w1, σ
2
w2( ) (2)

where σ2w1 � 1
N/2 ∑N/2−1

k�0
x2
i , σ

2
w2 � 1

N/2 ∑0
k�−N/2+1

x2
i , and xi are the signals

after the radar pulse compression processing and N represents the
number of reference cells.

2.3 Jamming signal generation

Pseudo-random sequence phase modulation is a widely
employed technique for modulating signal phases due to its ease
of implementation in engineering and its proven effectiveness in
practical applications. The expression of this modulation method is
as follows:

u t( ) � rect t/Tc( ) ⊗ ∑P−1
q�0

cmδ t − qTc( ) (3)

where Tc represents the width of the code, P denotes the length of
the pseudorandom sequence, and cm represents the code value. In
this investigation, a binary pseudo-random sequence was employed,
where the value of cm was set to ±1. The pseudo-random sequence,
denoted as p, had a length of 511 and a code width of 0.5. After

applying phase modulation, the resulting signal of the pseudo-
random sequence, referred to as xs(t) can be represented as follows:

xs t( ) � S t( ) · u t( ) (4)
where S(t) denotes the intercepted radar signal.

The jammer utilizes a segmented reconstruction method to
generate a jamming waveform by combining the radar signal
after pseudo-random phase modulation with the intercepted
complete radar signal. The reconstructed signal, denoted as
xm(t) has a length of L. The signal is divided into k segments,
with Δt serving as the unit of division. Additionally, Δt
represents the delay between individual segments. When the
number of reconstructed signals is M, each segment of the signal
is delayed M times and accumulated in chronological order. The
schematic diagram illustrating this process is presented in
Figure 3.

Illustrating the jamming effect, Figure 4 showcases the
schematic diagram of the jamming signal after pulse
compression. Taking the example of a Linear Frequency
Modulated (LFM) signal, the transmitted radar signal is defined
as follows:

S t( ) � exp j2π f0t + kt2

2
( )[ ], 0< t<T (5)

FIGURE 6
Comparison of jamming waveforms and their effects before and after optimization under SO-CFAR conditions.
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By delaying and superimposing the signal “xs2″ on each
segment of the jamming waveform, the resulting jamming signal
can be expressed as follows:

Xj t( ) � ∑M
m�0

Am · xm t −m
Δt
L

( ) � ∑M
m�0

Am · xm t( ) ⊗ δ t −m
Δt
L

( )( )
(6)

Here,Am represents the amplitude of xm(t), whileM denotes the
number of signals constituting the jamming waveform. x1(t), x2(t),
xM−1(t), and xM(t) are the radar signals modulated by pseudo-
random phase xs(t). Additionally, the signal includes the forward-
intercepted radar signal S(t).

Figure 4 showcases the effects of both the jamming signal and
target echo after the application of matched filtering. The
transmitted radar signal undergoes pulse compression processing,
resulting in the generation of a false target signal. The radar signal is
modulated by the pseudo-random phase of the jammer, and during
the radar pulse compression processing, a noise-like jamming signal
is formed alongside the false target.

To achieve different jamming effects, the delay of each
superimposed signal and the amplitude of the signal on different

segments are flexibly adjusted. As mentioned in [13], effectively
covering a real target does not require a large number of false targets.
Thus, in this study, the number of false targets generated was set to
12, with six on each side. The segmented reconstructed jamming
waveform comprises sixteen parts, with twelve being directly
transmitted radar signals and four being transmitted radar signals
after pseudo-random phase modulation.

3 Jamming optimization model

3.1 Adaptive jamming module

The adaptive jamming module enables the jammer to adaptively
generate optimized multi-false target jamming waveforms in various
radar signal environments. This module incorporates an adaptive
genetic algorithm to optimize the jamming waveform after
segmented reconstruction. The optimized jamming waveform is
evaluated using radar CFAR detection. The schematic diagram of
the adaptive jamming module is presented in Figure 5.

3.2 Optimization parameters

In this study, the optimization of parameters involved
determining the delay time for each segmented signal and the
signal amplitude for each superimposed signal. The following
general constraints were established during the parameter
optimization process (Table 1):

(1) The number of superimposed signals was set to 16. Based on
previous studies (References [13–15]), it was observed that the
false target is symmetrically reduced on both sides of the real
target. Hence, the chosen number of false targets was 12, with
6 on each side.

(2) The delay time, denoted as t, was set within the range of 0.1 μs to
1 µs, with an accuracy of 0.01 µs.

(3) The amplitude of the signal corresponding to the pseudo-
random phase modulation ranged from 0.4 to 2, while the
amplitude of the signal corresponding to the transmitted radar
signal ranged from 0.1 to 1. The accuracy for both amplitude
settings was set to 0.1.

3.3 Objective function

Correlation reception and CFAR are widely used signal
processing techniques in radar systems. These techniques serve to
enhance the Signal-to-Noise Ratio (SNR) of the received signal and
enable adaptive adjustment of the target detection threshold. In this
study, the objective function is established based on the CFAR
threshold, taking into consideration the ability of the modulated
jamming signal to generate multiple realistic false targets around the
real target.

The optimized objective function is defined as the average
deviation between the threshold value and the echo power of the
real target within a range of ±300 m after pulse compression. The
expression of the objective function is as follows:

FIGURE 7
Experimental results obtained under the conditions of Signal 1.
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t1 � 2R1

C

N1 � t1
2Ts

� t1 · fs

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

targetn�N � ∏M
m�0

am · 1
2N1 + 1

∑N1

i�−N1

Zi − Pi( )[ ] (8)

a0 � 1, Z0 >P0

0.00001, Z0 ≤P0
{ , am m ≠ 0( ) 1, Zm >Pm

0.05, Zm ≤Pm
{ (9)

target � 0.5 × targetn�8 + 0.5 × targetn�16 (10)

where -N1 represents the CFAR detection cell corresponding to the
real target R1 within a range of ±300 m, and fs denotes the signal
sampling interval. In Eq 8, the variable N denotes the number of

reference cells employed in the SO-CFAR detection process. Zi
represents the SO-CFAR detection threshold, which is associated
with the reference cell N as described in Section 2.2. Pi represents the
signal power value after pulse compression. The weighting of real
and false targets plays a crucial role as it directly influences the
effectiveness of jamming by considering the detection of genuine
targets resulting from echoes and spurious targets generated by
jamming signals.

In Eq 9, the parameter am denotes the weight assigned to the
impact of detecting the positions of the real and false targets on the
objective function.When a false target is detected by radar CFAR, am
is set to 0.05. Conversely, when a false target is not detected, am is set
to 1. If a real target is detected, am is set to 0.0001 (m = 0); otherwise,
am is set to 1 (m = 0). By combining the detection results for different

FIGURE 8
Jamming effect before optimization with an actual target position estimation error of 180 m.
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reference cells as an objective function, the adaptability of the
optimized jamming waveform for CFAR detection under various
reference cell conditions can be improved. In this study, the average
values of N = 8 and N = 16 were selected, as shown in Eq 10. It is
evident that a larger objective function corresponds to a greater

signal distance threshold, resulting in a more effective suppression
effect.

3.4 Implementation steps

In this study, a genetic algorithm with real code [18] is employed
to optimize the proposed multi-false target jamming waveform. The
implementation steps are outlined as follows:

Step 1: Real number coding is utilized to encode the parameters to
be optimized.

FIGURE 9
Jamming effect after optimization with an actual target position estimation error of 180 m.

TABLE 3 Detection probability of real target under error condition.

References cells N = 8 N = 10 N = 12 N = 14 N = 16

Before optimization 0.27 0.49 0.63 0.64 0.69

After optimization 0.13 0.12 0.24 0.35 0.32
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Step 2: Population initialization is performed by setting the initial
population size to 20.

Step 3: Fitness evaluation is conducted by assigning the individual
fitness values as the negation of the objective functions, which can be
expressed as:

fitness � −target (11)

Step 4: Selection is carried out using a random league operator for
the purpose of selection.

Step 5: Crossover is performed using the BLX mixed crossover
operator. The crossover probability is set to 1, and the crossover
range coefficient is set to 1/4.

Step 6: Mutation is implemented using a single point Gaussian
mutation. Additionally, an adaptive mutation operator is introduced to
prevent convergence to local optima and enhance the convergence speed.

pm � 0.1
fit max

fit max − fit min
,
fitmid

fit max
> 0.8,

fit min

fit max
> 0.7

0.1 , others

⎧⎪⎪⎨⎪⎪⎩ (12)

FIGURE 10
Detection results of jamming technique using numerical derivation of LFM pulse radar SO-CFAR.
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Step 7: Fitness calculation is performed to evaluate the fitness of
each individual in the population.

Step 8: A new population is generated by selecting the top
20 individuals with the highest fitness from the two generations,
which will serve as the new parental generation.

Step 9: The termination criterion is set to 100 (or 200)
iterations. If the criterion is not satisfied, the process repeats
steps 4 to 9.

4 Simulation and result analysis

4.1 Simulation under LFM

Signal 1 utilized in this study is LFM signal. The specific
parameter configurations for Signal 1 and the SO-CFAR
technique can be found in Table 2.

Based on the parameter configurations provided in Table 2,
simulations were conducted to evaluate the jamming waveform after
pulse compression and the detection results under SO-CFAR

FIGURE 11
CFAR detection results after optimization of the adaptive jamming module.
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conditions. The outcomes of these simulations are depicted in
Figure 6.

Figure 6 illustrates the results of the Signal-to-Clutter-plus-
Noise Ratio (SCNR) processing for the jamming waveform before
and after optimization, as well as the pulse compression outcomes
and the reference cells used with 16 reference cells. The pulse
compression of the jamming signal generates a total of 12 false
target signals. Notably, the presence of a pseudo-random phase
modulation component in the radar signal leads to the generation of
a sequence of jamming noises between the outermost false target and
the false target after pulse compression.

To assess the optimization effectiveness of the proposed
jamming model, the Monte Carlo method is employed. The

multi-false-target jamming waveform is optimized using a genetic
algorithm, and the experimental results are presented in Figure 7.

Figure 7A showcases the optimization effect achieved by the
jamming optimization model through 20 Monte Carlo simulations,
under the specified simulation experimental conditions in Section
4.1. The model demonstrates convergence of the objective function
within approximately 70 iterations.

In Figure 7B, the results of the 20 Monte Carlo simulation
experiments are presented. It is observed that the optimized
objective function value is, on average, 2.6658 dB higher than the
average optimal value of the initial population before optimization.
The optimized objective function is determined based on the average
difference between the threshold value of the real target within
300 m and the power value of the target echo after pulse
compression. This optimization approach maximizes the
detection threshold around the target while maintaining a fixed
Jamming-to-Signal Ratio (JSR).

Furthermore, the application of the jamming method discussed
in this study, particularly in escort jamming scenarios, may
introduce errors in the position estimation of the target. When
there is a position estimation error in the target, the jamming effects
before and after jamming waveform optimization are depicted in
Figures 8, 9.

Figures 8, 9 reveal the impact of a real target position estimation
error of 180 m (the maximum error range after optimization) on the
jamming effects. It is observed that, except for N = 8, the jamming
waveform before optimization fails to adequately cover the real
target under the conditions of other reference cells. However, the
optimized jamming waveform demonstrates effective coverage for
the real target.

In practical scenarios, the estimation error often exhibits a
certain degree of randomness. To account for this, a normal
distribution with a random error of 180 m was added to the real
target. The objective function values before and after optimization
were measured at 69.193 dB (initial best) and 71.8422 dB for the
jamming waveforms, respectively. The difference between the group
values before and after optimization was calculated at 2.6519 dB,
slightly lower than the average optimization value. In conjunction
with the Monte Carlo method, this difference signifies the
probability of detecting the real target under error conditions in
100 detections.

Table 3 presents the detection probability of the real target under
error conditions for different reference cell settings. It is observed
that the detection probability is lower under error conditions,
indicating a stronger suppression effect of the jamming
waveform. Additionally, the optimized jamming waveform
demonstrates better coverage of the real target compared to the
non-optimized waveform across different reference cell conditions.
Consequently, the optimized jamming waveform exhibits superior

FIGURE 12
Detection probabilities of real and false targets in different CFAR
reference cells under different jamming methods.

TABLE 4 Different radar signals and their parameters.

Signal type Signal bandwidth Pulse width

Signal 2 Nonlinear frequency modulation signal 8 20

Signal 3 Phase-coded signal 10 6.35
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jamming effectiveness and increased adaptability under varying
conditions.

4.2 Jamming effect analysis

The effectiveness of the optimized waveform jamming results for
signal 1 was validated. In comparison to the jamming method that
employs numerical derivation of the LFM pulse SO-CFAR [13]
(referred to as the calculation method), the proposed method yields
a value whenN = 8. This study introduces an optimization approach
considering different reference cell conditions. The outcomes of
utilizing the LFM radar SO-CFAR detector with this method are
illustrated in Figures 10, 11.

Figure 10 illustrates the detection results obtained from the
generated waveform, assuming that the radar SO-CFAR reference
cell is N = 8. When the reference cells used by the radar do not align
with the jamming assumption, an increase in the reference cell count
(N) results in a higher probability of detecting false targets at the
edges. This is attributed to the gradual decrease in the nominal factor
T of SO-CFAR as N increases, making it more likely to detect false
targets that were derived under the original conditions. The radar
can detect the primary false target, which is the false target closest to
the true target, as depicted in Figures 8D, E. This occurs because an
increase in the number of reference cells causes a portion of the false
target energy to be averaged over a larger number of cells.

Consequently, the threshold is not effectively raised, leading to
the detection of the peak of the primary false target.

Figure 11 showcases the effectiveness of optimizing the multi-
false target jamming waveform using the adaptive jamming module.
The introduction of two radar signals with pseudo-random phase
modulation at the beginning and end of the reconstructed section of
the jamming waveform gradually increases the edge CFAR detection
threshold, resulting in a significant reduction in the detection
probability of the outermost false target. Additionally, by
dispersing part of the energy among each false target, the issue of
increased detection probability due to changes in CFAR detection
reference cells is mitigated. The adaptive genetic algorithm ensures a
reasonable distribution of signal energies for different forms of the
jamming waveform, leading to an improved threshold value
within ±300 m around the target and effectively enhancing the
jamming-shielding effect on the real target. To validate these
conclusions, the Monte Carlo method is employed to evaluate
the two jamming techniques under various conditions. The
detection probability of both true and false targets is calculated
by analyzing the detection results under different reference cell
conditions, with each scenario repeated 100 times. The obtained
results are presented in Figure 12.

In Figure 12, the detection probability for the real target is
represented on the x-axis. The detection probability of a false
target, corresponding to the relative distance from the left and
right sides of the true target, ranges from ±1 to ±4 (±6). In the N =

FIGURE 13
Simulation results under different signal conditions.
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8 reference cell setting scenario, the calculation method
demonstrates effective jamming suppression, with all positions
meeting the requirement of a detection probability less than 0.1.
However, as the number of reference cells varies, the detection
probability for the outermost false target gradually increases from
0.09 to 0.15, 0.20, 0.26, and 0.27. Notably, the detection
probability of the two main false targets closest to the target
significantly rises in the N = 14 and N = 16 scenarios, reaching
0.48 (N = 14) and 0.98 (N = 16). These findings indicate that the
jamming waveform cannot adapt to changes in CFAR detection
reference cells solely by calculating the amplitude and number of

false targets in a specific scene. The estimation of a predetermined
number of CFAR reference cells can be challenging, thereby
affecting the adaptability of the multi-false target jamming
method. The proposed method for optimizing the multi-false
target jamming waveform in different reference cell scenarios
addresses this limitation. Under the N = 10 condition, the second
false target on the left side of the real target exhibits the highest
detection probability, reaching 0.14. After optimization, the
jamming waveform demonstrates good adaptability and
maintains a stable jamming effect under the SO-CFAR
detection conditions.

FIGURE 14
Detection results of the optimized adaptive jamming module (NLFM).
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4.3 Jamming effects in different radar signal
scenarios

Given the diverse operating modes and intricate signal styles of
modern radars, an approach involving the addition of two distinct
signals is employed, with Signal 1 serving as the foundation. The
specific signals utilized in this study are outlined in Table 4.

The adaptive optimization technology for multi-false target
jamming waveforms, as proposed in this study, was applied to
jam the radar in the presence of these two signal conditions. The
optimization process and the outcomes of the 20 Monte Carlo
experiments are depicted in Figure 13.

Figure 13 presents the simulation outcomes, encompassing the
iterative curve and statistical analysis of the optimization results,
under various signal conditions. The proposed jamming
optimization method demonstrates a considerable level of
improvement compared to the initial population’s optimal value
across different signal scenarios. Notably, Signals 2 and 3 require
approximately 180 and 120 times more iterations, respectively,
compared to Signal 1. After optimization, the average objective
function for Signals 2 and 3 increases by 2.67 dB and 3.1607 dB,
respectively, compared to their pre-optimized values.

Figure 14 showcases the detection results obtained from the
optimized adaptive jamming module using the Numerical
Derivation of LFM Pulse Radar (NLFM) waveform. The
subfigures demonstrate the CFAR detection results under
different reference cell conditions, providing insights into the
effectiveness of the optimization process.

Figure 15 presents the detection probabilities of real and false
targets for different CFAR reference cell configurations using the
NLFM waveform. The figure illustrates the impact of various
methods on the detection performance, highlighting the
differences in detection probabilities under different reference cell
conditions.

The false-target detection probability for each position of the
optimized jamming waveform in a nonlinear frequency modulation
signal (refer to Figures 12, 13) demonstrates a symmetrical pattern.

When N = 16, the edge false target, specifically the sixth false target
on the right side of the true target, displayed the highest probability
of being detected at the edge, reaching 0.1. However, false targets at
other positions exhibited consistently low detection probabilities.
Notably, the jamming waveform generated showcased improved
jamming effectiveness when tested under various reference cell
conditions.

Following the optimization of the jamming waveform under
Signal 3, the detection outcomes for different CFAR detection
reference cell conditions, along with the detection probabilities of
both real and false targets, are presented in Figures 16, 17.

Under phase-coding conditions (refer to Figures 16, 17), the
optimized jamming waveform demonstrates enhanced stability in
achieving effective jamming. Specifically, when N = 16, the position
exhibiting the highest detection probability is the sixth false target
situated to the left of the true target, with a detection probability of
0.05. Consequently, the application of the suggested adaptive
technology for optimizing multi-false target jamming waveforms
can lead to improved jamming effects when employed with phase-
coded signals.

4.4 Jamming effect in the case of radar
signal mutation

In the presence of radar disturbances, the nature of the signal can
undergo changes. To validate the operational efficacy of adaptive
jamming modules, three sets of experiments were conducted.
Experiment 1 involved the transformation of Signal 1 into Signal
2 through jamming. In Experiment 2, Signal 2 was transformed into
Signal 3 following jamming. Similarly, in Experiment 3, Signal 3 was
transformed back into Signal 1 after jamming. Figure 18 illustrates the
optimization process in the context of a mutation in the radar signal.

Figure 18 illustrates the occurrence of the jamming transition
phase, denoted as t10, when there is a change in the signal type.
During this phase, the jammer utilizes the previously optimized
jamming waveform. It is evident that the adaptive jamming module
is capable of optimizing the suppression jamming waveform for
multi-false targets following changes in the radar signal. Throughout
the iterative process, the objective function gradually increases over
time, indicating an improvement in the confrontational
performance within the new signal environment. The simulation
results strongly support the effectiveness of the technology
employed for adaptive optimization of jamming waveforms in
suppressing multiple false targets. Consequently, this method
achieves a certain level of adaptability in jamming.

5 Discussion

The conventional approach for suppressing multi-false target
jamming involves employing reference cells in the parameter design
for CFAR detection. However, obtaining these parameters can be
challenging. Moreover, changing the number of CFAR detection
reference cells results in a decrease in the effectiveness of jamming.
To enhance the jamming effect of multi-false target suppression
jamming waveforms, a segmented reconstruction technique is
applied to pseudo-random phase-modulated radar signals and

FIGURE 15
Detection probabilities of real and false targets in different CFAR
reference cells under different methods (NLFM).
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intercepted radar signals. Additionally, an adaptive jamming
module is developed by incorporating an adaptive genetic
algorithm and radar CFAR detection technology. This method
enables the adjustment of delay and energy distribution for each
component of the improved multi-false target suppression jamming
waveform based on different radar signal conditions.

The simulation findings demonstrate that the optimized
waveform produces enhanced jamming outcomes when applied
to CFAR detection with different reference cell setups. This
research proposes a jamming approach that exhibits improved
adaptability to multiple CFAR detections using ML-CFAR, in
contrast to the amplitude and interval arrangement described in

[16]. The key distinction lies in the fact that the suggested method
considers waveform optimization based on varying reference cell
conditions, rather than being restricted to a fixed configuration.

In contrast to previous studies such as Rao et al. [11] which utilized
up to 18 false targets, this research demonstrates that effective jamming
can be achieved with only 12 false targets. This reduction in the number
of false targets not only decreases complexity but also alleviates
processing requirements. The achievement of effective jamming with
fewer false targets is made possible by the optimization approach, which
concentrates the jamming energy in an efficient pattern.

To ensure the adaptability of the method in question when the
number of reference cells is altered, further verification is necessary.

FIGURE 16
Detection results of the optimized adaptive jamming module (PCM).
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While the multi-false target jamming method described in [17] focuses
solely on false-target detection, the disruptive approach proposed in this
study takes into account the detection of both false targets and real
target echoes. This comprehensive evaluation of jamming performance
offers a more thorough assessment by considering both the masking of
real targets and the detectability of false targets.

In [55], the introduction of jamming noise between different false
targets through jammer coordination was explored. In contrast, this
study integratesmultiple functions into a single waveform, resulting in a
reduced number of jammers and more efficient control requirements
for multi-jammer coordination during practical implementation. This
unified waveform optimization approach proves to be more suitable for

single platform jamming applications. Moreover, unlike previous
jamming methods, the proposed approach in this study establishes
adaptability in generating multi-false target jamming waveforms. It
demonstrates versatility in adapting to diverse scenarios and enhancing
radar jamming capabilities. While adaptive algorithms developed in
studies such as [14–16] primarily focused on fixed false target patterns,
this technique optimizes the entire waveform, enabling it to better
respond to varying signals and CFAR processes.

Nonetheless, within the adaptive jamming module, the genetic
algorithm currently employed solely enhances the adaptive
mutation rate; however, it necessitates a larger number of
iterations to achieve convergence. It is recommended that future
research explores the potential of enhancing real-time performance
by incorporating alternative optimization algorithms. This includes
reducing the generation time of the optimized jamming waveform
and improving the responsiveness of the adaptive jamming module.
Hybrid approaches that combine genetic algorithms with faster
techniques like particle swarm optimization [56, 57] have the
potential to expedite the adaptation process. In conclusion, while
the study demonstrates promising adaptivity, further improvements
in speed and complexity are required to enhance its practical
applicability.

6 Conclusion

The optimization of jamming waveforms is a significant area of
study aimed at enhancing the adaptability and resilience of radar
countermeasures. Traditional fixed jamming techniques are limited
in their effectiveness against modern radar systems, which are
becoming increasingly advanced and agile. This study focuses on
an adaptive approach to optimize multi-false target jamming
waveforms, specifically designed to counter diverse radar signals

FIGURE 18
Optimization procedure in the presence of radar signal mutation.

FIGURE 17
Detection probabilities of real and false targets in different CFAR
reference cells under different methods (PCM).
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and unknown CFAR processing methods. The proposed technique
introduces an optimizationmodel that minimizes the detectability of
false targets by adjusting phase modulation and individual
waveform parameters. Real-time adaptation is achieved using a
genetic algorithm, which evaluates the jamming performance
based on CFAR assessments. This approach offers a flexible
methodology for countering modern radar systems compared to
pre-defined methods used in the past.

The results demonstrate the effectiveness of adaptive
optimization in suppressing false targets. The optimized
waveforms maintain consistent jamming impact across various
CFAR reference cell conditions, overcoming limitations of
previous techniques that relied on fixed assumptions. Only
12 false targets were needed to achieve robust jamming, reducing
complexity compared to existing approaches. The unified waveform
design is suitable for single platform jamming applications,
eliminating the need for multiple coordinated jammers.

The introduction of phase modulation enhances the noise-like
characteristics of false targets, thereby improving resilience. The
genetic algorithm enables the jammer to learn effective waveforms
even without specific knowledge of the threat radar system. Although
the convergence speed could be further improved, the adaptivity of the
approach provides versatility across different scenarios and signals. This
study highlights the potential of increased adaptability and the
application of machine learning techniques to strengthen the field of
radar jamming. The proposed methodology demonstrates promising
adaptivity, laying the foundation for real-time optimization of jamming
waveforms in operational settings. However, practical implementation
would require additional improvements in terms of speed, scalability,
and complexity. Hybrid optimization algorithms that combine genetic
techniques with faster methods like particle swarm optimization could
expedite the adaptation process.

The study presents an initial investigation of adaptive jamming
waveform optimization within an escort jamming scenario,
considering simplified assumptions. Further research should explore
scenarios involving multiple targets and jammers, which present
greater complexity. The effectiveness of the proposed technique
against actual fielded radar systems needs to be validated. Additional
intelligence about the threat radar could help constrain the optimization
search space, leading to improved convergence. This study demonstrates
the potential benefits of adaptivity and establishes a foundation for further
development toward real-world jamming applications.

In conclusion, this research introduces an adaptive jamming
waveform optimization technique that exhibits versatility across
signals, CFAR processes, and scenarios. The methodology provides a
valuable framework for enhancing the resilience and flexibility of
radar countermeasures through learning and optimization.
Although further improvements are necessary, this approach has

the potential to overcome limitations in predefined jamming
methods, thereby enhancing the effectiveness of electronic
warfare systems against modern agile radar threats. The concepts
explored in this study can serve as a guide for the further
development of cognitive jamming capabilities.
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