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Introduction: Metal corrosion detection is important for protecting lives and
property. X-ray inspection systems are widely used because of their good
penetrability and visual presentation capability. They can visually display both
external and internal corrosion defects. However, existing X-ray-based defect
detection methods cannot present and estimate the dense corrosion depths. To
solve this problem, we propose a densemetal corrosion depth estimationmethod
based on image segmentation and inpainting.

Methods: The proposed method employs an image segmentation module to
segment metal corrosion defects and an image inpainting module to remove
these segmented defects. It then calculates the pixel-level dense corrosion depths
using the X-ray images before and after inpainting. Moreover, to address the
difficulty of acquiring training images with ground-truth dense corrosion depth
annotations, we propose a virtual data generation method for creating virtual
corroded metal X-ray images and their corresponding ground-truth annotations.

Results: Experiments on both virtual and real datasets show that the proposed
method successfully achieves accurate dense metal corrosion depth estimation.

Discussion: In conclusion, the proposed virtual data generation method can
provide effective and sufficient training samples, and the proposed dense
metal corrosion depth estimation framework can produce accurate dense
corrosion depths.
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1 Introduction

Metal objects are common and important in daily life. However, contact with air and
water often cause unavoidable corrosion during the service life of metal components.
Corrosion significantly reduces the strength of metal materials, shortening their service
life and even posing serious safety hazards. Therefore, timely and accurate metal corrosion
detection can effectively protect lives and property.

At present, many defect detection methods have been proposed, using RGB [1] or RGB-
D images [2, 3], eddy currents [4], and ultrasound [5]. However, these methods either cannot
detect internal corrosion defects or cannot visually display them. In contrast, X-ray
inspection systems have the visual presentation capability to display both external and
internal structures. Therefore, X-ray inspection systems are often used to detect metal defects
including corrosion. Existing automatic defect detection methods using X-ray images fall

OPEN ACCESS

EDITED BY

Zhiqin Zhu,
Chongqing University of Posts and
Telecommunications, China

REVIEWED BY

Guanqiu Qi,
Buffalo State College, United States
Huafeng Li,
Kunming University of Science and
Technology, China

*CORRESPONDENCE

Xiaomei Zhao,
zhaoxiaomei20@sdjzu.edu.cn

RECEIVED 15 August 2023
ACCEPTED 11 September 2023
PUBLISHED 22 September 2023

CITATION

Li Y, Li H, Guan Y, Zhang X and Zhao X
(2023), Dense metal corrosion
depth estimation.
Front. Phys. 11:1277710.
doi: 10.3389/fphy.2023.1277710

COPYRIGHT

© 2023 Li, Li, Guan, Zhang and Zhao. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 22 September 2023
DOI 10.3389/fphy.2023.1277710

https://www.frontiersin.org/articles/10.3389/fphy.2023.1277710/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1277710/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1277710&domain=pdf&date_stamp=2023-09-22
mailto:zhaoxiaomei20@sdjzu.edu.cn
mailto:zhaoxiaomei20@sdjzu.edu.cn
https://doi.org/10.3389/fphy.2023.1277710
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1277710


into three categories: classification-based, target detection-based,
and segmentation-based methods.

1) Classification-based methods generally use and improve classic
classification networks [6–9] such as Inception [10] andVGG [11].
For example, Zhang et al. [9] trained Inception and MobileNet
[12] by transfer learning and combined these two networks
through a multi-module ensemble framework to classify weld
defects. Hu et al. [6] proposed an object-level attentionmechanism
and used this mechanism to train a VGG16-based type
classification module and a defect classification module to
classify casting defects. Jiang et al. [8] improved VGG16 by
employing attention-guided data augmentation to train the
casting defect classification network with effective data
augmentation. Tang et al. [7] improved VGG16 by employing
a spatial attention mechanism and bilinear pooling to classify
casting defects. As shown in Figure 1A, classificationmethods only
output an image-level classification result to determine whether
there is a defect in the image.

2) Target detection-based methods generally use and improve popular
object detection networks such as Faster RCNN [13]. For example,
Gong et al. [14] improved domain adaptive Faster RCNN (DA
Faster) [13] by adding a feature pyramid network (FPN) [15], small
anchor strategies, ROI Align, and other strategies to detect defects in

spacecraft composite structures. Liu et al. [16] improved Faster
RCNN by employing a residual network combined with FPN and
an efficient convolutional attention module to detect weld defects.
Cheng et al. [17] improved DS-Cascade RCNN [18] by adding a
spatial attention mechanism, deformable convolution and pruning
algorithms to detect wheel hub defects. As shown in Figure 1B, these
target detection methods can roughly locate the position of defects
using bounding-boxes.

3) Segmentation-based methods generally use segmentation networks
with encoder–decoder structures, such as U-Net [19]. Du et al. [20]
improved U-Net to segment defects in casting parts by changing its
backbone to ResNet 101 [21], adding a contrast-limited adaptive
histogram equalization module, a gated multi-layer fusion module,
and a weighted intersection over union (IOU) loss function. Yang
et al. [22] improved U-Net by adding a multi-scale feature fusion
block and a bidirectional convolutional Long Short-Term Memory
block to segment welding defects. Du et al. [23] built an interactive
X-ray network (IXNet) with a click attention module based on
U-Net to perform interactive segmentation of casting defects. As
shown in Figure 1C, the segmentation results of these methods
contain detailed defect location, area, and shape information.

Of all these methods, segmentation-based approaches provide
the most detailed defect information. Despite this, even these

FIGURE 1
Comparison of results of different kinds of defect detection methods (A) classification-based method (B) target detection-based method (C)
segmentation-based method; and (D) the proposed dense metal corrosion depth estimation method.
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methods cannot estimate the depth of defects, which is a crucial
parameter for metal corrosion analysis. Currently, software
developed by NOVO DR Ltd. Is able to estimate the depth of
defects through the DoubleWall Technique (DWT) [24]. The major
drawback of DWT is its strongly reliance on manual operation,
making it unusable for automatic depth estimation.

To address these limitations, we propose a new defect detection
method that detects corrosion defects based on dense metal
corrosion depth estimation. The proposed method is capable of
automatically estimating the corrosion depth maps that contain
dense corrosion depth information. An example of estimated
corrosion depth map from our method is shown in Figure 1D,
with the value of each pixel denoting its corresponding corrosion
depth. The estimated corrosion depth map not only contains dense
corrosion depth information but also includes detailed information
regarding the location, area, and shape of corrosion defects.

The proposed method is composed of three modules for corrosion
segmentation, corrosion inpainting, and dense corrosion depth
calculation. The corrosion segmentation module is based on the state-
of-the-art real-time instance segmentation method YOLOv8 [25]. The

corrosion inpainting module is based on the state-of-the-art image
inpainting method LAMA [26]. The corrosion depth calculation
module is based on the Beer–Lambert law [27]. Both the corrosion
segmentation and the corrosion inpainting modules are based on deep
learning neural networks, which require a large number of training
images with ground-truth annotations. However, annotating corrosion
defects in X-ray images not only requires significant manpower and time
but also extensive expertise. This implies that only adequately trained
researchers possess the ability to annotate corrosion defects in X-ray
images. As a result, it is very hard to annotate sufficient X-ray images for
training. To address this issue, we propose a novel virtual data generation
method. This method can generate virtual corroded metal X-ray images
and their corresponding ground-truth annotations automatically without
any manual intervention.

The main contributions of this paper are as follows.

1) We propose a novel dense metal corrosion depth estimation
framework to address the problem that previous technologies
cannot automatically estimate dense corrosion depths. This
proposed framework uses a corrosion segmentation module

FIGURE 2
The flow chart of our proposed dense metal corrosion depth estimation framework. CSM denotes the corrosion segmentation module. CIM
denotes the corrosion inpainting module. DCDCM denotes the dense corrosion depth calculation module.
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(CSM) to segment corrosion defects and a corrosion inpainting
module (CIM) to remove these segmented corrosion defects.
Then, a dense corrosion depth calculation module (DCDCM) is
employed to calculate the pixel-level dense corrosion depths
using the X-ray images before and after inpainting.

2) We propose a novel virtual data generation method to address
the issue that it is difficult to manually annotate dense corrosion
depths in X-ray images. This proposed method contains a virtual
corrosion cell generation module (VCCGM) to generate virtual
corrosion cells, and a virtual corrosion image generation module
(VCIGM) to generate virtual corroded metal X-ray images and
their corresponding ground-truth dense corrosion depth
annotations. With the help of this method, sufficient virtual
images and their ground-truth annotations are generated for
training and testing.

3) We perform sufficient experiments on both virtual and real
datasets to prove the effectiveness of the proposed virtual data
generation method and dense metal corrosion depth estimation
framework. The experimental results show that the proposed
framework trained by the generated virtual dataset successfully
produces accurate dense metal corrosion depths.

2 Dense metal corrosion depth
estimation

2.1 Overview

The process flow of our dense metal corrosion depth estimation
framework is shown in Figure 2. The framework is composed of
three modules: the corrosion segmentation module (CSM), the
corrosion inpainting module (CIM), and the dense corrosion
depth calculation module (DCDCM). An incoming X-ray image

with corrosion defects is first given to CSM. CSM outputs its
corresponding corrosion segmentation result. CIM then removes
the corrosion defects according to the original X-ray image and its
corresponding corrosion segmentation result. Finally, DCDCM
calculates the corrosion depth of each pixel according to the
X-ray images before and after inpainting. These modules are
described in detail in the following sections.

2.2 Corrosion segmentation module

In the field of computer vision, YOLO plays an important role. It
stands out from a large number of methods for its remarkable
balance of speed and accuracy [28]. The first version of YOLO was
proposed in 2015 [29]. Through the efforts of many researchers, the
eighth version of YOLO, YOLOv8, was proposed in early 2023 [25].
YOLOv8 achieves state-of-the-art performance in real-time object
detection and instance segmentation. Therefore, we use YOLOv8 in
our corrosion segmentation module (CSM).

The simplified network architecture of YOLOv8 is shown within
the CSM in Figure 2. As shown, five convolutional blocks are first
employed to extract high-level features. After passing through each
convolutional block, the height and width of feature map are
reduced. In Figure 2, these feature maps produced by the
different convolutional blocks are denoted as P1, P2, P3, P4, and
P5. Then, a neck block called PANFPN is employed to combine
image features from P3, P4 and P5, enhancing the spatial and
semantic information across different scales. PANFPN outputs
three collections of features, each at different scale, denoted as
F3, F4, and F5. The heights and widths of F3, F4, and F5 match
the heights and widths of P3, P4, and P5, respectively. Finally, the
category, bounding box, and segmentation mask of each object are
predicted using F3, F4, and F5.

FIGURE 3
The architecture of fast Fourier convolution (FFC).
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We design the CSM module to segment corrosion defects from
X-ray images of corroded metal materials. As shown in Figure 2, the
outputs of the neural network consist of two parts:N detection results

and 32 segmentation prototypes [30]. Let us use PreN to denote the
prediction results, wherePreN � pren|n � 1, 2, 3, . . . . . . ,N{ },N is the
number of detected corrosion defects, and pren is the nth detection

FIGURE 4
The components of the virtual data generationmethod and examples (A) the flowchart of the VCCGM (virtual corrosion cell generationmodule) and
the VCIGM (virtual corrosion image generation module) (B) examples of virtual contour maps (C) examples of virtual corrosion cells (D) a real metal X-ray
image without corrosion (E) the foreground segmentation result (F) the generated virtual corrosion region (G) the randomly selected regions that used to
place virtual corrosion cells (H) the generated virtual corrosion depth map; and (I) the generated virtual corroded metal X-ray image.

TABLE 1 Evaluation scores of the framework with different instance segmentation models.

Frameworks with different instance segmentation
models

mAPbox50 mAPmask
50 mIoU

(%)
Speed
(ms)

MAE
(×10–2) ↓

MSE
(×10–2) ↓

Framework with YOLOv5 73.6% 61.1% 62.6 38.3 1.32 2.26

Framework with YOLOv7 73.4% 60.3% 62.3 37.5 1.33 2.37

Framework with YOLOv8 75.0% 71.3% 69.4 38.5 1.23 1.92

Scores marked in bold indicate the best results on the corresponding metric.
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TABLE 2 Evaluation scores of the proposed framework with different inpainting models.

Frameworks with different inpainting models MAE (×10–2) ↓ MSE (×10–2) ↓

Framework with AOT 7.05 189.51

Framework with PUT 3.99 26.74

Framework with LAMA 1.23 1.92

Scores marked in bold indicate the best results on the corresponding metric.

FIGURE 5
The inpainting and depth map estimation results of different frameworks (A) virtual corroded metal X-ray image (B) the ground-truth inpainting
result (C) the ground-truth depth map (D) the inpainting result of AOT (E) the estimated depth map of the framework with AOT (F) the inpainting result of
PUT (G) the estimated depth map of the framework with PUT (H) the inpainting result of LAMA; and (I) the estimated depth map of the framework with
LAMA.

Frontiers in Physics frontiersin.org06

Li et al. 10.3389/fphy.2023.1277710

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1277710


result. pren � Coef32
n , Conf

1
n, Clas

1
n, Box

4
n{ }. Coef32

n denotes the
segmentation prototype coefficients in the nth detection result, and
Coef32

n � coefl
n|l � 1, 2, 3, . . . . . . , 32{ }, where coefl

n denotes the lth

segmentation prototype coefficient. Conf1
n denotes the confidence of

the nth detection result. The length of Conf1
n is 1. Clas1n denotes the

classification result of the nth detection result. The length of Clas1n is 1.

FIGURE 6
Examples of dense metal corrosion depth estimation on virtual images (A) the virtual corroded metal X-ray image (B) the ground-truth depth maps
(C) the corrosion defect segmentation results of CSM (using YOLOv8) (D) the corrosion defect inpainting results of CIM (using LAMA); and (E) the
estimated corrosion depth map.
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Box4
n denotes the bounding box of the n

th detection result. The length of
Box4

n is 4, and it contains the horizontal and vertical coordinates of the
upper-left corner of the bounding box, as well as the width and height of
the bounding box. The 32 segmentation prototypes are denoted as
Pro32 � prol|l � 1, 2, 3, . . . . . . , 32{ }, where prol denotes the lth

segmentation prototype. The segmentation mask of the nth detection
result is calculated based on Coef32

n , Box
4
n, and Pro32 through the

following three steps:

(1) Coef32
n � coefl

n|l � 1, 2, 3, . . . . . . , 32{ } are used as the
combination weights to linearly combine the 32 segmentation
prototypes Pro32 � prol|l � 1, 2, 3, . . . . . . , 32{ } and obtain the
combination result comn, comn � ∑32

l�1coef
l
n × prol.

(2) comn is processed using a sigmoid nonlinearity operation and a
binarization operation to obtain the primary segmentation
mask pmn � Binary(Sigmoid(comn)), where Sigmoid()
denotes the sigmoid nonlinearity operation and Binary()
denotes the binarization operation.

(3) The primary segmentation mask pmn is cropped by the
bounding box of the nth detection result Box4

n, and the final
segmentation mask of the nth detection resultmn � Crop(pmn)

is obtained. The cropping operation Crop() assigns zero to
pixels outside of Box4n.

A set of corrosion segmentation results are shown in Figure 2. Each
detected corrosion defect contains its bounding box coordinates,
classification value, confidence value, and segmentation mask.

During training of the CSM, binarized virtual corrosion depthmaps
and the bounding boxes of disconnected corrosion areas are used as the
ground truth of the instance segmentation results. Further details on the
generation of virtual corroded X-ray images and their corresponding
ground-truth depth maps are presented in Section 3.

2.3 Corrosion inpainting module

In the proposed dense corrosion depth estimation framework, we
use a corrosion inpainting module to remove corrosion defects. This
module employs the state-of-the-art image inpainting method LAMA
[26]. LAMA builds its inpainting network using fast Fourier
convolutions (FFCs) to obtain an image-wide receptive field and
improve inpainting performance.

FIGURE 7
X-ray images of the test metal pipe (A) raw image of the metal pipe with six holes of known depths; and (B) annotated image with the position and
depth of each hole.

TABLE 3 The depth estimation results of the proposed framework and DWT using a real X-ray image of a metal pipe with six holes of known depths.

Index of holes Ground-truth
depth (mm)

DWT Ours

Predicted
depth (mm)

Absolute
error (mm)

Predicted
depth (mm)

Absolute
error (mm)

➀ 3.00 3.08 0.08 3.04 0.04

➁ 3.00 3.16 0.16 3.18 0.18

➂ 2.40 2.24 0.16 2.27 0.13

➃ 2.60 2.49 0.11 2.52 0.08

➄ 1.40 1.12 0.28 1.11 0.29

➅ 1.50 1.22 0.28 1.21 0.29

Frontiers in Physics frontiersin.org08

Li et al. 10.3389/fphy.2023.1277710

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1277710


The architecture of FFC is shown in Figure 3. FFC contains two
parallel branches: a local branch and a global branch [31]. The local
branch uses conventional convolutions to extract local features. The

global branch uses a spectral transformer to extract global features.
The spectral transformer first transforms image features into a
spectral domain by fast Fourier transform (FFT), then conducts

FIGURE 8
Examples of densemetal corrosion depth estimationwith real images (A) the real corrodedmetal X-ray image (B) the corrosion defect segmentation
results from CSM (using YOLOv8) (C) the corrosion defect inpainting results from CIM (using LAMA) (D) the estimated corrosion depth maps (to make the
corrosion defects more significant, each corrosion depth map has been divided by its maximum depth); and (E) the estimated corrosion depth map
shown in 3D.
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an efficient global update in the spectral domain, and finally converts
features back to the spatial domain via inverse fast Fourier transform
(Inv FFT). A point-wise update in the spectral domain globally
affects all spatial features [31]. Therefore, the spectral transformer
can extract global features. The above local features and global
features are then combined to fuse multi-scale features. A large
effective receptive field plays a crucial role in the inpainting task
[26]. However, conventional convolutions cannot provide a large
effective receptive field, especially in the early layers of the network.
In contrast, FFC can provide an image-level receptive field in very
early layers of the network [26]. Therefore, FFC effectively improves
the inpainting performance.

The simplified network architecture of LAMA is shown within
the CIM in Figure 2. In our project, the resolution of the processed
images is large, so we use an architecture containing low-resolution
and high-resolution pipelines. These two pipelines use the same
network (i.e., having the same architecture and weights) to process
inputs in different resolutions. As shown in Figure 2, the
inpainting network contains three blocks: a downscaling block
(labeled D in Figure 2), an FFC residual block, and an upscaling
block (labeled U in Figure 2). The downscaling block contains
3 FFCs with strides set to 2. The FFC residual block contains
18 sub-residual blocks built on FFCs with strides set to 1. The
upscaling block uses 3 transpose convolutions with strides set to 2.
The inpainting results produced by the inpainting network have
the same size as the inputs as a result.

In the inpainting architecture, the two pipelines play different
roles. As shown in Figure 2, the low-resolution pipeline uses the
downscaled inputs for inpainting. Smaller inputs are beneficial to
generate inpainting results with better global structures [32].
However, many image details can be lost during the down-
sampling operation. In contrast, the high-resolution pipeline uses
the original inputs for inpainting. No image details are lost in its
inputting step. However, larger inputs cause incoherent structures
[32]. To maintain image details while generating inpainting results
with better global structures, the inpaining results of the low-
resolution pipeline are used to supervise the global structures of
the inpainting results of the high-resolution pipeline. The
supervision process is operated by minimizing the L1 loss
between the downscaled high-resolution inpainting results and
the low-resolution inpainting results. Note that the L1 loss is
minimized by updating the feature map from the downscaling
block of the high-resolution pipeline FD (as shown in Figure 2),
rather than the parameters in the neural network. Using the above
method, FD can learn the global structures of the low-resolution
inpainting results. FD passes these good global structures to the final

inpainting results of the high-resolution pipeline through forward
propagation. Therefore, the final inpainting results of the high-
resolution pipeline can maintain image details and have good global
structures.

The binary mask used for inpainting is provided by the CSM, as
shown in Figure 2. It covers all detected corrosion defects. The
original X-ray image, as shown in Figure 2, is masked using this
binary mask. This masked X-ray image is then stacked with the
binary mask to generate a fused input. The inpainting network
finally outputs the inpainting result with the same scale as the
original X-ray image, as shown in Figure 2. A comparison of the
images in Figure 2 before and after inpainting shows that the
corrosion defects have been removed.

When training CIM, the actual X-ray images without corrosion
that used to combine virtual corrosion depth maps are used as the
ground truth of image inpainting results. Further details on the
generation of virtual corroded X-ray images and their corresponding
ground-truth depth maps are presented in Section 3.

2.4 Dense corrosion depth calculation
module

In X-ray images, the gray value of each pixel is exponentially
related to the corresponding thickness of the transilluminated
material as given by:

gk � go
ke

−μtk (1)
where gk represents the gray value of the kth pixel in X-ray image
I � gk|k � 1, 2, 3, . . . , K{ }; K denotes the total number of pixels in
this image; go

k is a parameter related to the intensity of incident
X-ray; μ represents the attenuation coefficient, which can be roughly
considered as a constant when the material category and the
radiation source are the same; and tk represents the thickness of
the corresponding transilluminated material. If corrosion occurs
and the corrosion depth is Δtk, the gray value will change to:

gc
k � go

ke
−μ tk−Δtk( ) (2)

Eq. 2 can be rewritten as:

gc
k � go

ke
−μtk · e−μΔtk (3)

As go
ke

−μtk � gk, we obtain the equation:

gc
k � gk · eμΔtk (4)

According to Eq. 4, the corrosion depth can be calculated as:

Δtk � 1
μ
ln

gc
k

gk
( ) (5)

Therefore, when the values of μ, gc
k, and gk are known, the

corrosion depth of the kth pixel Δtk can be calculated. The value of μ
can be calibrated by a step wedge of the same material in advance. gc

k

is the gray value of the kth pixel in the corroded metal X-ray image
Ic � gc

k|k � 1, 2, 3, . . . , K{ }, and Ic is the X-ray image to be
processed. gk is the gray value of the kth pixel in the X-ray
image without corrosion defects I. In practice, when we obtain
the X-ray image to be processed Ic, it is difficult to obtain its
corresponding I. In this paper, we use the inpainting result

TABLE 4 Corrosion depth estimation results for our framework and DWT using
real corroded metal X-ray images.

Index of points DWT (mm) Ours (mm)

➀ 3.15 3.06

➁ 2.66 2.55

➂ 2.23 2.16

➃ 1.77 1.79

➄ 0.68 0.79
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Ĩc � g̃c
k|k � 1, 2, 3, . . . , K{ }, instead of the real I. The estimated

corrosion depth of the kth pixel Δt̃k can then be calculated as:

Δt̃k � 1
μ
ln

gc
k

g̃c
k

( ) (6)

From Eq. 6, we obtain a pixel-level dense corrosion depth map
Δ~T � Δt̃k|k � 1, 2, 3, . . . , K{ }, as shown in Figure 2.

3 Virtual data generation

As described above, the proposed dense corrosion depth
estimation framework contains two deep learning-based modules:
CSM and CIM, both of which need a large number of annotated
images for training. However, it is quite difficult to annotate the
corrosion defects in real X-ray images. We propose the virtual data
generation method in this section to solve this problem. This
method automatically generates virtual corroded metal X-ray
images and their corresponding virtual corrosion depth maps for
the purpose of acquiring sufficient and various annotated training
X-ray images automatically.

A flowchart of the proposed virtual data generation method is
shown in Figure 4A. A set of images in the key steps of our proposed
method are shown in Figures 4(B)–(I). This method consists of two
modules: the virtual corrosion cell generation module (VCCGM)
and the virtual corrosion image generation module (VCIGM).
VCCGM and VCIGM cooperate to generate the virtual corrosion
image and the corresponding corrosion depth map. Specifically,
VCCGM provides virtual corrosion cells for VCIGM; VCIGM
randomly combines these virtual corrosion cells to generate
virtual corrosion depth maps and combines the virtual corrosion
depth maps with real metal X-ray images without corrosion to
generate virtual corroded metal X-ray images.

In the following subsections, we first introduce the working
principle of the virtual data generation method in detail, and then we
introduce VCCGM and VCIGM in detail.

3.1 Principle of virtual data generation

As shown in Eq. 4, when the gray value without corrosion gk, the
corrosion depth Δtk, and the attenuation coefficient μ are known, we
can obtain the gray value after corrosion gc

k. gk comes from I, the
X-ray image without corrosion, with I � gk|k � 1, 2, 3, . . . , K{ } and
K denoting the total number of pixels in the image. We can obtain I
by taking X-ray images of metal materials without corrosion. Based
on I, if we wish to obtain a virtual gc

k, denoted as ĝc
k, we need to

generate a virtual Δtk, denoted as Δt̂k, and a virtual μ, denoted as μ̂:

ĝc
k � gk · eμ̂Δt̂k (7)

In this paper, we treat μ̂ as a constant, generated by experience.
Thus, the challenge of generating ĝc

k is how to generate Δt̂k. The
values of Δt̂k differ for each pixel, but the values of Δt̂k are not
independent within the image. These values have a reasonable global
structure. Therefore, instead of generating pixel-level Δt̂k values one
by one, we generate an image-level virtual dense corrosion depth

map ΔT̂ � Δt̂k|k � 1, 2, 3, . . . , K{ }. The relationship among I, μ̂, ΔT̂,
and Îc � ĝc

k|k � 1, 2, 3, . . . , K{ } can be formulated as:

Îc � I · eμ̂ΔT̂ (8)

Therefore, the main mission of the proposed virtual data
generation method is to generate a reasonable virtual dense
corrosion depth map ΔT̂. ΔT̂ is then combined with the existing
real X-ray image without corrosion I to generate the virtual
corroded metal X-ray image Îc.

In the field of image processing, a generative adversarial network
(GAN) is commonly used for generating virtual images. However, a
GAN needs a large number of real data samples for training, and it is
difficult to acquire real dense corrosion depth maps. Therefore, it is
difficult to train a GAN that can generate virtual dense corrosion
depth maps.

Through the observation of many corroded metal X-ray images,
we find that the brightness fluctuations in the corrosion areas of
X-ray images are similar to the topographic fluctuations. Thus, one
solution to the above problem is to borrow the concept of contour
maps from geography and use terrain contour maps downloaded
from the internet as real data samples to train a GAN that can
generate virtual contour maps. Then, virtual depth maps can be
obtained by interpolating these virtual contour maps. However, the
above solution has two problems: 1) it is difficult to download
sufficient complex terrain contour maps to simulate complex
corrosions, and 2) it is difficult to interpolate complex contour maps.

To solve the above two problems, we only use a GAN to generate
virtual corrosion cells by VCCGM, and then we randomly combine
different virtual corrosion cells to generate virtual corrosion depth
maps by VCIGM. Although it is difficult to download sufficient
complex terrain contour maps, it is much easier to download simple
terrain contour maps with one or two peaks. We use these simple
terrain contour maps downloaded from the internet as real data
samples to train a GAN that can generate simple virtual contour
maps. Virtual corrosion cells can be generated by interpolating these
simple virtual contour maps. By randomly combining different
virtual corrosion cells, we can generate a large number of various
virtual corrosion depth maps.

3.2 Virtual corrosion cell generation module

The virtual corrosion cell generation module is designed to
generate a series of virtual corrosion cells as shown in the examples
in Figure 4C. Virtual corrosion cells are sub-depth maps with simple
structures and fixed scale.

In order to generate sufficient virtual corrosion cells with a
variety of structures, we create the virtual corrosion cell generation
module (VCCGM) using a generative adversarial network (GAN).
GAN is a commonmethod used for data augmentation. A simplified
GAN structure is shown in the VCCGM of Figure 4A. GAN has two
main blocks: a generator block and a discriminator block. During
training, the two blocks play against each other and finally generate
virtual data samples which are indistinguishable from real ones.

Even though GAN is able to generate a large number of high-
quality virtual data samples, it also needs a large number of real data
samples for training. However, it is very difficult to obtain a sufficient
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number of real corrosion cells. To solve this problem, we borrow the
concept of contour maps from geography and use some terrain
contour maps downloaded from the Internet as real data samples.

The processing steps of VCCGM are as follows.

Step 1.Virtual contour map generation. The GAN, which is trained
by terrain contour maps, generates virtual contour maps, with
examples shown in Figure 4B.

Step 2. Interpolation. The generated virtual contour maps are
interpolated to generate virtual corrosion cells as shown in
Figure 4C.

3.3 Virtual corrosion image generation
module

The virtual corrosion image generation module generates virtual
corrosion depth maps by combining the virtual corrosion cells
provided by the VCCGM and generates virtual corroded metal
X-ray images by combining the generated virtual corrosion depth
maps with real X-ray images without corrosion. The flow chart of
this module has been shown in the VCIGM in Figure 4A. To ensure
that the generated virtual corrosion defects locate at the foreground
areas, the X-ray images without corrosion that used to combine
virtual corrosion depth maps also participate in generating virtual
corrosion depth maps. The steps of how to use virtual corrosion cells
to generate virtual corrosion depth maps and how to generate virtual
corroded metal X-ray images are as follows.

Step 1. Foreground segmentation. An actual X-ray image
without corrosion, as shown in Figures 4D, is sent into the
foreground segmentation step. The foreground segmentation
part, built using YOLOv8, produces the segmentation result
shown in Figure 4E;

Step 2. Virtual corrosion region generation. This step randomly
generates a bounding box in the segmented foreground area. The
green bounding box in the white foreground area shown in Figure 4F
is an example. Virtual corrosion will be put in this bounding box;

Step 3. Random placement of virtual corrosion cells in the virtual
corrosion region. A cluster of sub-boxes are randomly generated in
the virtual corrosion region. These sub-boxes have been marked in
red in Figure 4G. They have different sizes and different aspect
ratios. Each sub-box selects a virtual corrosion cell generated by
VCCGM and resizes the selected virtual corrosion cell to fill itself. If
overlap occurs, the overlapping parts are added together. After this
step, a preliminary virtual corrosion depth map is obtained;

Step 4.Normalization. This step normalizes the preliminary virtual
corrosion depth map into a reasonable value range. The upper
bound of corrosion depth equals the thickness of inspected metal
material. The lower bound of corrosion depth is 0. The max value of
depth map d max is randomly selected between the upper and lower
bounds. Then, the value range of preliminary virtual depth map is
linearly transformed to [0, dmax] to obtain the final virtual corrosion
depth map shown in Figure 4H;

Step 5. Combination. This step combines the generated virtual
corrosion depthmap shown in Figure 4H and the actual X-ray image
without corrosion shown in Figure 4D according to Eq. 8. The result
is a virtual corroded metal X-ray image, as shown in Figure 4I.

4 Experiments

In this paper, we have presented our framework for estimating the
dense metal corrosion depth using X-ray images. In view of the
previously described difficulties in obtaining actual corroded metal
X-ray images with ground-truth annotations, we have also presented a
method for generating virtual corrosion images for the purposes of
training our method. In our experiments, we used 16,199, 4,200, and
2,170 virtual images for training, validation, and testing, respectively.
To verify that the model trained on virtual datasets is also suitable for
real datasets, we also tested our proposed model on several real cases.
All our experiments were implemented using PyTorch with two
NVidia RTX 3090 GPUs and one Intel Xeon Gold 5222 CPU.

4.1 Experiments on virtual dataset

As described in Section 2, our framework has three modules: a
corrosion segmentation module (CSM), a corrosion inpainting module
(CIM), and a dense corrosion depth calculation module (DCDCM).
CSM and CIM use the YOLOv8 real-time instance segmentationmodel
and the LAMA inpainting model, respectively. To verify their
effectiveness, we also performed experiments with other models. We
employedmean absolute error (MAE) andmean square error (MSE) to
evaluate the corrosion depth estimation performance. The formulas of
MAE and MSE are:

MAE � 1
K
∑K
k�1

Δtgtk − Δtpk( )∣∣∣∣∣ ∣∣∣∣∣ (9)

MSE � 1
K
∑K
k�1

Δtgtk − Δtpk( )2 (10)

where K denotes the total number of pixels in this image; Δtgtk
represents the corrosion depth value of the kth pixel in the
ground-truth depth map; and Δtpk represents the corrosion
depth value of the kth pixel in the predicted depth map. The
evaluation scores of the proposed framework with different
instance segmentation models and different inpainting models
are shown in Table 1 and Table 2.

To compare different instance segmentation models in more
aspects, we also show mAPbox50 , mAPmask

50 [25], mIoU [33], and
processing speed in Table 1. As shown in this table, we tested
three instance segmentation models (YOLOv5 [34], YOLOv7 [35],
and YOLOv8 [25]) with the proposed framework. The use of
YOLOv8 yielded the best performance, largely owing to its
higher segmentation accuracy. The processing speeds of these
three instance segmentation methods are comparable.

As shown in Table 2, we tested three inpainting models (AOT
[32], PUT [36], and LAMA) on the proposed framework. LAMA
provided the best performance, with a large performance gap
compared to the others, because the inpainting performance of
LAMA is significantly higher than that of the other two methods. To
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qualitatively compare the inpainting performance of AOT, PUT,
and LAMA, we show a group of their inpainting results in Figure 5.

As shown in Figure 5, the corrosion regions are still readily
visible (indicating reduced inpainting performance) in the
inpainting result of AOT as indicated by the red circles. PUT
was better, but in the regions marked with green circles, the
differences between corroded and normal areas are still visible. In
the inpainting results of LAMA, it is quite difficult to distinguish
corrosion regions from normal regions. As LAMA provides the best
inpainting results, the corrosion depths calculated from its
inpainting results are more accurate. The predicted corrosion
depth maps of the proposed frameworks with AOT, PUT, and
LAMA are also shown in Figure 5. The predicted corrosion depth
map when using LAMA is closest to the ground-truth depth map.

Figure 6 shows more examples of corrosion depth estimation
with virtual cases. CSM accurately segmented most corrosion
defects; CIM successfully removed the segmented corrosion
defects; and DCDCM estimated accurate and reasonable depth
maps that are fairly close to the ground-truth depth maps.

4.2 Experiments on real dataset

It is extremely difficult to quantitatively evaluate the dense metal
corrosion depth estimation performance on real corrodedmetal X-ray
images because it is hard to obtain their ground-truth corrosion depth
maps. In this section, we used a metal pipe with six holes of known
depths to quantitatively evaluate the depth estimation accuracy of our
proposed framework, and collected several real corroded metal X-ray
images to qualitatively evaluate the dense metal corrosion depth
estimation performance of our proposed framework.

4.2.1 Quantitative experiment
As noted, we used a metal pipe with six holes of known depths.

The wall thickness of this pipe was 3 mm. The raw and annotated
X-ray images are shown in Figure 7. The depth estimation results of
our framework and DWT are shown in Table 3. DWT is the defect
depth estimation method used in NOVO DR systems [24].

As shown in Table 3, the depth estimation absolute errors of our
framework are comparable with DWT, indicating similar accuracy.
DWT, however, requires human–computer interaction, while our
framework is fully automatic. Therefore, our framework is more
convenient to use.

4.2.2 Qualitative experiment
In this experiment, we collected some real X-ray images of corroded

metal pipes. Because we could not obtain their ground-truth corrosion
depth maps, we could not quantitatively evaluate the dense corrosion
depth estimation performance using MAE and MSE. However, we can
still qualitatively analyze the performance of our proposed framework
by checking whether the estimated corrosion depth maps are
reasonable. Three group of examples are shown in Figure 8.

As shown in Figure 8, CSM successfully segmented the corrosion
defects; CIM successfully removed these corrosion defects, obtaining
accurate inpainting results; and DCDCM successfully estimated the
dense corrosion depth maps according to the original corroded metal
X-ray images and their corresponding inpainting results. In order to
present the estimated corrosion depth maps more vividly, they are

shown in 3D in the last row of Figure 8. As shown in Figure 8A, the
three cases had different degrees of corrosion: in the first case, the
corrosion defects were large, dense, and deep; in the second case, the
corrosion defects were much smaller; in the third case, the corrosion
defects were very shallow. The estimated corrosion depthmaps shown
in Figure 8E are consistent with these observations.

Even though we could not obtain the ground truth of corrosion
depths, we still compared the depth estimation results of our
framework with DWT at five different points, labeled as ➀, ➁,
➂, ➃, and ➄ in Figure 8. The depth estimation results of these five
points are shown in Table 4. DWT is widely used in the NOVO DR
systems [24]. Although it is not perfect (as shown in Table 3, the
depth estimation results of DWT are not exactly equal to the
ground-truth values), widespread experience shows that DWT is a
reliable defect depth estimation method. As shown in Table 4, the
depth estimation results of our framework are close to the depth
estimation results of DWT, demonstrating that the depth values in
our estimated dense corrosion depth maps are reasonable.

5 Conclusion

In this paper, we propose a novel dense metal corrosion depth
estimation framework for X-ray images. It consists of three modules: a
corrosion segmentation module (CSM), a corrosion inpainting
module (CIM), and a dense corrosion depth calculation module
(DCDCM). CSM segments corrosion defects from the X-ray
images. CIM removes these segmented corrosion defects. DCDCM
calculates the corrosion depth maps, which contain dense corrosion
depth information, according to the original X-ray images and the
inpainting results of CIM. To solve the problem of lacking training
dataset with ground-truth of annotations, we propose a virtual data
generation method to generate virtual corroded metal X-ray images
and their corresponding ground-truth corrosion depth annotations.
The virtual data generation method consists of two modules: a virtual
corrosion cell generation module (VCCGM) and a virtual corrosion
image generation module (VCIGM). VCCGM generates virtual
corrosion cells using a generative adversarial network. VCIGM
generates virtual corrosion depth maps by combining the virtual
corrosion cells and produces virtual corroded metal X-ray images by
combining the generated virtual corrosion depth maps with actual
X-ray images without corrosion. We use these generated images to
train both CSM and CIM. Experimental results show that the
proposed dense metal corrosion depth estimation framework
trained using the generated virtual dataset could successfully
estimate accurate and dense metal corrosion depth automatically.
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