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In this study, we investigate the effect of a rotation field on a homogeneous
photo-thermoelastic nonlocal material and how its thermal conductivity changes
as a result of a linearly distributed thermal load. The thermal conductivity of an
interior particle is supposed to increase linearly with temperature. Microelastic,
non-local semiconductors are used to model the problem in accordance with
optoelectronic procedures, as proposed by the thermoelasticity theory. The
micropolar-photo-thermoelasticity theory takes into account the medium’s
microelongation properties in accordance with the microelement transport
processes. This mathematical model is solved in two dimensions (2D) using
harmonic wave analysis. Dimensionless components of displacement,
temperature, microelongation, carrier density, and stresses are generated when
the non-local semiconductor surface is subjected to the right boundary
conditions. For silicon (Si) material, the wave propagation impact of the main
physical fields is examined and graphically shown for various values of variable
thermal conductivity, thermal relaxation durations, nonlocality, and rotation
parameters.
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1 Introduction

The classical theory of continuum mechanics, which regards matter as continuous, can
only describe solids’ macroscale mechanical behavior since microstructures are
microelements. Microinertia must be accounted for in continuum mechanics since
macroscopic and microscopic scales must be considered. To conclude, thermoelasticity
requires semiconductors to be elastic. Because thermoelastic and electrical deformations are

OPEN ACCESS

EDITED BY

Gokhan Zengin,
Selcuk University, Türkiye

REVIEWED BY

Katarzyna Jakimiuk,
Medical University of Bialystok, Poland
Sengul Uysal,
Erciyes University, Türkiye

*CORRESPONDENCE

Khaled Lotfy,
khlotf_1y@yahoo.com

RECEIVED 01 September 2023
ACCEPTED 02 October 2023
PUBLISHED 30 October 2023

CITATION

Kamel A, Alhejaili W, HassanW, El-Bary AA
and Lotfy K (2023), A changeable thermal
conductivity and optoelectronic-
mechanical wave behavior in a
microelongated, non-locally rotating
semiconductor media.
Front. Phys. 11:1287381.
doi: 10.3389/fphy.2023.1287381

COPYRIGHT

© 2023 Kamel, Alhejaili, Hassan, El-Bary
and Lotfy. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 30 October 2023
DOI 10.3389/fphy.2023.1287381

https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1287381/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1287381&domain=pdf&date_stamp=2023-10-30
mailto:khlotf_1y@yahoo.com
mailto:khlotf_1y@yahoo.com
https://doi.org/10.3389/fphy.2023.1287381
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1287381


linked. The ED is based on semiconductor crystal lattice photo-
generation theory. Semiconductors microelongate because their
internal resistance lowers with temperature. In light of the
aforementioned, it is crucial to study how light’s thermal energy
affects the material’s microelongation and microinertia. The
photothermal (PT) theory states that transition phases promote
free electrons on surfaces.

The idea of micro-elongation within the context of classical
deformation posits that the micro-elongated medium can be
classified into various typologies. The aforementioned examples
encompass solid-liquid crystals, composite materials comprising
elastic fibers, and porous media featuring pores filled with either
gaseous or non-viscous fluids. The findings suggest that the
expansion of material particles at the micro-scale exhibits volumetric
characteristics. The material sites within the deformation medium
undergo individual contraction and stretching. The semiconductor’s
internal structure experiences various modifications in response to the
thermal impact of light, as well as the shown microelongation
parameters. Microelongation is dependent on thermal deformation,
whereas the last one is dependent on electronic deformation based on
electron rotation (micropolar) [1]. When studying the semiconductor
materials in this scenario, the microstretch and micropolar theories are
taken into account. When the directions of freedom of electrons are
orthogonal and contraction, the microelongational theory arises as a
specific instance of the microstretch theory. When considering the
microstructure of the solid medium, Ref. [2, 3] introduced a unique
microstretch-thermoelasticity model based on the micropolar theory.
The generalized microstretch thermoelasticity theory [4–8] is used to
investigate the many uses of elastic bodies. In the case of the Casson
fluid flow of the porous medium, several applications of the
microstretch theory are used for hydrodynamics [9, 10]. On the
other hand, Ref. [11] investigated some viscoelastic conditions for
the flow layer of a viscoelastic porous medium with a single
relaxation period. To study the microelongated elastic media and
determine wave propagation within an elastic medium, the impact
of the internal heat source is applied [12, 13]. To understand the
microelongated governing equations of an elastic material, The research
conducted by Ref. [14–16] focused on analyzing the phenomenon of
plane strain deformation along with the influence of an internal heat
source. The micropolar theory of the elastic body is shown using the
twofold porosity medium [17]. Reference [18–20] used the finite
element analysis and eigenvalues approach to investigate the
thermoelastic interactions in an initially stressed porous medium.
Reference [21, 22] studied the responses of conductive semi-solid
thermoelectric surface and thermomagnetic according to a heat
transfer of Moore–Gibson–Thompson (MGT) model subjected to
variable thermal shock.

The investigation of semiconductor materials using
photoacoustic and photothermal theory (PT) has gained
acceptance in recent years [1, 2]. Effective personification was
examined by many authors in their examination of photoacoustic
and photothermal technology [23–26]. This is made possible by
using 2D deformation of the semiconductor material to examine
how the photothermal and thermoelasticity theories interact [27].
According to ED, microcantilever methods are used to investigate
the optical characteristics of semiconductor material [28, 54].
According to the photo-thermoelasticity theory of elastic
semiconductor media, several researchers proposed some unique

models with various applications that explain the interaction of
mechanical, optical, thermal, and elastic waves [29–34]. In the
framework of the two-temperature theory, Ref. [35, 36]
conducted a study on a novel model that describes the excitation
processes based on the theory of photo-thermoelasticity. This model
takes into account variations in the thermal conductivity of the
elastic media used in semiconductors. The dual-phase lags model
under photothermal interaction processes was employed by Ref.
[37]. To represent the photothermal excitation processes, Ref. [38]
explored the revised multi-dual phase-lags model. When analyzing
the semiconductor medium in the context of photothermal
transport processes, Ref. [39] considered the microstretch theory
under the impact of rotation. On the other hand, Ref. [40]
investigated the photo-microstretch theory for a semiconductor
elastic medium using the electro-magneto-thermoelasticity
theory. Reference [41] investigated a cylindrical gap of
semiconductor medium according to fractional MGT heat model
of photothermal-induced due to laser pulse.

Reference [42] developed the nonlocal elasticity hypothesis by
applying the principles of global balancing rules and the second law of
thermodynamics. The theory of nonlocal elasticity initially focused on
studying screw dislocation and surface waves in solids [43]. Reference
[44] examined how the Hall current affected the nonlocality
semiconductor media to obtain the optical, elastic, thermal, and
diffusive waves. On the other hand, Ref. [45] investigated the
thermos-diffusion waves for nonlocal semiconductors utilizing the
fractional calculus and the laser short-pulse effect. When the thermal
conductivity is variable (depends on the heat), previous works on non-
local semiconductors ignored the impact of micro-elongation
parameters and rotating fields.

In the present work, an examination of the ED and TE
deformation in accordance with microelongated (microelements)
excited medium was carried out. This examination looked at the
impact of non-local, rotation field, and altering thermal
conductivity, as well as photo-thermomechanical. When the
primary physical fields are chosen in dimensionless form, the
governing equations are stated in terms of the two-dimensional
deformation of the space. Normal mode analysis is carried out to get
the comprehensive analytical solutions of the primary variables
under study under certain conditions that exist at the medium
boundary. Several graphs are used in order to compare the waves
that are propagated by the physical field variables in four distinct
contexts. These contexts include the influence of rotational
parameters, the effect of thermal memory, non-local contexts,
and changing thermal conductivity.

2 Mathematical basic equations

The four basic quantities in this model: carrier density N
(photo-electronic according to the plasma wave propagation), the
temperature T (thermal distribution), the elastic waves
(displacement) ui and the scalar microelongational function φ)
are presented in Cartesian coordinates (see Figure 1). The basic
equations of non-local semiconductor medium are presented in 2D
under the influence of a uniform rotating field (Ω � Ω n ) which is
rounded about the y-axis. In the absence of body forces, the field
equations and constitutive relations for the homogeneous and
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isotropic non-local semiconductor medium with rotational with
variable thermal conductivity are provided as:

1) The microelongated constitutive equations for non-local
photo-thermoelasticity are [12, 54].

σ iI′ � λoφ + λur,r( )δiI + 2μuI,i − γ̂ 1 + vo
∂
∂t

( )TδiI − 3λ + 2μ( )dnN( )δiI,
mi � a0φ,i , 1 − ξ2∇2( )σ iI � σ iI′,

s − 1 − ξ2∇2( )σ′ � λoui,i − γ̂ 1 + vo
∂
∂t

( )T + − 3λ + 2μ( )dnN( )δ2 i + λ1φ,

ξ � ae0
l
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(1)

2) The coupled thermal-electronic equation is [28]:

_N � DEN,ii − N

τ
+ κ

T

τ
. (2)

3) The equation of motion and the microelongation equation for
non-local medium, as determined by the processes involving
microelements, may be expressed as [46]:

λ + μ( )uj,ij + μui,jj + λoφ,i − γ̂ 1 + vo
∂
∂t

( )T,i − δnN,i

� ρ 1 − ξ2∇2( )€ui + Ω
.
x Ω

.
x �u( ){ }

i
+ (2Ω. x _�u)i( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (3)

αoφ,ii − λ1φ − λouj,j + γ̂1 1 + vo
∂
∂t

( )T � 1
2
jρ €φ. (4)

4) The non-local semiconductor medium’s microelongated heat
conduction equation is [16]:

KT,i( ),i − ρCE n1 + τo
∂
∂t

( ) _T − γ̂To n1 + noτo
∂
∂t

( ) _ui,i + Eg

τ
N

� γ̂1To _φ, (5)
where _□ � ∂□

∂t , γ̂1 � (3λ + 2μ)αt2, κ � ∂n0
∂T

T
τ and □,i � ∂□

∂xi
.

Certainly, in the context of a non-local microelongated
semiconductor material, it is indeed possible to consider the
thermal conductivity as a variable that depends on temperature.
This relationship can be expressed mathematically as a linear
function where the thermal conductivity is directly proportional
to temperature. In this instance, the thermal conductivity may be
expressed as follows by the thermal impact of light beams [35, 36]:

K T( ) � K0 1 + πT( ). (6)
Where π ≤ 0 is a small parameter. When the medium is not

temperature-dependent, the physical constant K0 is the reference
thermal conductivity. The integral version of Kirchhoff’s transform
theory of temperature may be used to turn the nonlinear
components in thermal conductivity into linear ones as [47]:

Θ � 1
K0

∫
T

0

K R( )dR. (7)

The following quantities may be recast in space (xz-plane) and
time (t) coordinates for the 2D deformation as: �u � (u �
u(x, z, t), 0, w � w(x, z, t)) ; φ � φ(x, z, t).

FIGURE 1
Geometry of problem.
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The basic Eqs. 2–4 in 2D can be reduced as:

λ + μ( ) ∂2u

∂x2 +
∂2w

∂x∂z
( ) + μ

∂2u
∂x2 +

∂2u

∂z2
( )+

λo
∂φ
∂x

− γ̂ 1 + vo
∂
∂t

( ) ∂T
∂x

− δn
∂N
∂x

� ρ 1 − ξ2∇2( ) ∂2u

∂t2
− Ω2u + 2Ω ∂w

∂t
( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(8)

λ + μ( ) ∂2u
∂x∂z

+ ∂2w

∂z2
( ) + μ

∂2w

∂x2 +
∂2w
∂z2

( )+
λo
∂φ
∂z

− γ̂ 1 + vo
∂
∂t

( ) ∂T
∂z

− δn
∂N
∂z

� ρ 1 − ξ2∇2( ) ∂2w
∂t2

−Ω2w − 2Ω ∂u
∂t

( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(9)

αo
∂2φ
∂x2

+ ∂2φ
∂z2

( ) − λ1φ − λoe + γ̂1 1 + vo
∂
∂t

( )T � 1
2
jρ

∂2φ
∂t2

, (10)

The selected parameters no, n1 and the thermal relaxation times
govern the various photo-thermoelasticity models [coupled-
dynamical (CD, n1 � 1, no � τo � vo � 0), Lord and Shulman (LS,
n1 � no � 1, vo � 0, τo > 0), and Green and Lindsay (GL,
n1 � 1, no � 0, vo ≥ τo > 0)] [39–41]. The following differentiation
relations indicate that Eqs. 6, 7 can be utilized to incorporate the
thermal conductivity variable into calculations:

K0Θ,i � K T( )T,i,

K0
∂θ
∂t

� K T( ) ∂T
∂t

,

K0

K T( )Θ,i � T,i,

K0Θ,ii � K T( )T,i( ),i.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (11)

When applying map transform and differentiation affects, Eq. 2
may be rewritten as follows:

∂
∂t

∂N
∂xj

� DE
∂N,ii

∂xj
− 1
τ

∂N
∂xj

+ κ

τ

∂T
∂xj

,

∂
∂t

∂N
∂xj

� DE
∂N,ii

∂xj
− 1
τ

∂N
∂xj

+ κK0

τK

∂Θ
∂xj

,

∂
∂t

∂N
∂xj

� DE
∂N,ii

∂xj
− 1
τ

∂N
∂xj

+ κ

τ

∂Θ
∂xj

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12)

When the Taylor expansion was used to solve for the last
component in the prior Eq. 13, the non-linear terms were ignored:

κK0

τK

∂Θ
∂xj

� κK0

K0τ 1 + πT( )
∂Θ
∂xj

� κ

τ
1 + πT( )−1 ∂Θ

∂xj
� κ

τ
1 − πT + πT( )( 2 − .......) ∂Θ

∂xj
�

κ

τ

∂Θ
∂xj

− κ

τ
πT

∂Θ
∂xj

+ κ

τ
πT( )2 ∂Θ

∂xj
− ....... � κ

τ

∂Θ
∂xj

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(13)

Integrating Eq. 12 and using Eq. 13, yields:

∂N
∂t

� DEN,ii − 1
τ
N + κ

τ
Θ. (14)

In this case, the non-local microelongated heat Eq. 5 can be
reduced using the map transform (7) as:

Θ,ii − 1
k

n1 + τo
∂
∂t

( ) ∂Θ
∂t

− γ̂To

K0
n1 + noτo

∂
∂t

( ) _ui,i + Eg

K0τ
N

� γ̂1T0

K0
_φ. (15)

Where 1
k � ρCE

K0
expresses the thermal diffusivity of the medium.

To further simplify things, the dimensionless quantities, have
the form:

�N � δn
2μ + λ

N, �xi, �ξ, �ui( ) � 1
ω*CT

xi, ξ, ui( ), �t, �τo, �]o( ) � t, τo, ]o( )
ω*

,

C2
T � 2μ + λ

ρ
, �Θ � γ̂Θ

2μ + λ
, �σ ij �

σ ij
2μ + λ

, �φ � ρC2
T

Toγ̂
φ,ω* � K0

ρCEC2
T

,

�Π, �ψ( ) � Π,ψ( )
CTω*( )2, C

2
L �

μ

ρ
, �Ω � ω*Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(16)
The basic equations may be rewritten as follows using the

dimensionless Eq. 16 (with dropping the superscripts):

∇2 − ε3 − ε2
∂
∂t

( )N + ε4Θ � 0, (17)

1 − ξ2∇2( ) ∂2u
∂t2

−Ω2u + 2Ω ∂w
∂t

� λ + μ( )
ρC2

T

∂e
∂x

+ μ

ρC2
T

∇2u+

Toγ̂λo

ρC2
T( )2

∂φ
∂x

− 1 + vo
∂
∂t

( ) ∂Θ
∂x

− ∂N
∂x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (18)

1 − ξ2∇2( ) ∂2w
∂t2

−Ω2w − 2Ω ∂u
∂t

� λ + μ( )
ρC2

T

∂e
∂z

+ μ

ρC2
T

∇2w+

Toγ̂λo

ρC2
T( )2

∂φ
∂z

− 1 + vo
∂
∂t

( ) ∂Θ
∂z

− ∂N
∂z

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (19)

∇2 − C3 − C4
∂2

∂t2
( )φ − C5e + C6 1 + vo

∂
∂t

( )Θ � 0, (20)

∇2Θ − n1 + τo
∂
∂t

( ) ∂Θ
∂t

− ε n1 + noτo
∂
∂t

( ) ∂e
∂t

+ ε5N � ε1
∂φ
∂t
. (21)

The potential scalar Π(x, z, t) and the vector space-time
Ψ(x, z, t) � (0,ψ, 0) functions can be introduced in the following
form:

�u � gradΠ + curlΨ, u � ∂Π
∂x

− ∂ψ
∂z

, w � ∂Π
∂z

+ ∂ψ
∂x

. (22)

Using Eq. 22, the main Eqs. 18–21 can be represented as:

1 + ξ2
∂2

∂t2
( )∇2 +Ω2 − ∂2

∂t2
( )Π + 2Ω ∂ψ

∂t
+ 1 + vo

∂
∂t

( )Θ + a1φ −N

� 0,

(23)
1 + ξ2

∂2

∂t2
( )∇2 − a3Ω2 − a3

∂2

∂t2
( )ψ − a3*

∂Π
∂t

� 0, (24)

∇2 − C3 − C4
∂2

∂t2
( )φ − C5∇

2Π + C6 1 + vo
∂
∂t

( )Θ � 0, (25)

∇2 − n1
∂
∂t

+ τo
∂2

∂t2
( )( )Θ − ε n1

∂
∂t

+ noτo
∂2

∂t2
( )∇2Π + ε5N − ε1

∂φ
∂t

� 0.

(26)
The constitutive relations in 2D and dimensionless can be

rewritten as [54]:
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1 − ξ2∇2( )σxx � ∂u
∂x

+ a2
∂w
∂z

− 1 + vo
∂
∂t

( )Θ −N + a1φ,

1 − ξ2∇2( )σzz � a2
∂u
∂x

+ ∂w
∂z

− 1 + vo
∂
∂t

( )Θ −N + a1φ,

1 − ξ2∇2( )σxz � a4
∂u
∂z

+ ∂w
∂x

( ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (27)

Where

a1 � Toγ̂λo

ρC2
T( )2, a2 �

λ

ρC2
T

, a3 � ρC2
T

μ
, ε � γ̂2ω*To

K0ρ
, ε1 � γ̂1γ̂

2ω*To

K0ρ 2μ + λ( ),
ε2 � ω*C2

T

DE
, a3* � 2Ωa3, a4 � μ

ρC2
T

, C4 � ρjC2
T

2α0
, ε3 � ω*2C2

T

τDE
,

ε4 � κdnω*
2ρ

τDEαt1
, ε5 � Egγ̂ω*

2C2
T

τK0δn
, C3 � λ1C2

Tω*
2

α0
, C5 � λoρC4

Tω*
2

α0T0γ̂
,

C6 � γ̂1ρω*
2To

γ̂α0
.

(28)

3 Normal mode technique

Any functionC(x, z, t) in 2D (which represents the main fields)
is converted to a harmonic wave using the normal mode approach as
follows [44–48]:

C x, z, t( ) � �C x( )ei b zeω t. (29)
Where �C(x) is the amplitude of the function C(x,z, t), in the

z-direction the wave number is b and i � ���−1√
. The complex frequency

expresses ω � ω0 + i ζ , where ω0 and ζ are arbitrary parameters.
Using Eq. 29, the fundamental Eq. 17 and Eqs 23–27 take the

following form:

D2 − α1( ) �N + ε4 �Θ � 0, (30)
D2 − A1( )�Π + A9 �ψ + A2

�Θ + a1
* �φ − a2

* �N � 0, (31)
D2 − A3( )�ψ − A10

�Π � 0, (32)
D2 − A4( )�φ − C5 D2 − b2( )�Π + A5

�Θ � 0, (33)
D2 − A6( )�Θ − A7 D2 − b2( )�Π + ε5 �N − A8 �φ � 0, (34)

1 − ξ2 D2 − b2( )( )�σxx � D�u + iba2 �w − A2
�Θ − �N + a1 �φ,

1 − ξ2 D2 − b2( )( )�σzz � a2D�u + ib �w − A2
�Θ − �N + a1 �φ,

1 − ξ2 D2 − b2( )( )σxz � a4 ib�u +D �w( ).

⎫⎪⎪⎬⎪⎪⎭. (35)

Where,

α1 � b2 + ε3 + ε2ω, A1 � b2 + ω2

1 + ξ2ω2
− Ω2,

A3 � b2 + a3Ω2 + a3ω
2

1 + ξ2ω2
, A10 � a3*ω

1 + ξ2ω2

D � d

dx
, A4 � b2 + C3 + C4ω

2, A5 � C6 1 + ]oω( ),

A2 � 1 + ]oω
1 + ξ2ω2

, a2
* � 1

1 + ξ2ω2
,

A6 � b2 + n1ω + noτoω
2( ), A7 � ε n1ω + noτoω

2( ),
A8 � ε1ω, A9 � 2Ωω

1 + ξ2ω2
, a1

* � a1
1 + ξ2ω2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (36)

Solving the system of Eqs. 30–34, yields:

D10 − B1D
8 + B2D

6 − B3D
4 + B4D

2 − B5{ } �φ, �N, �Θ, �Π, �ψ( ) � 0.

(37)
Where the coefficients of Eq. 37 are:

B1 � − A2A7 + C5a1
* − A1 − A3 − A4 − a2

*A6 − α1{ },
B2 � −A2A7 −C5a1* +A1 +A3 +A4 +A6( )α1 + −b2 −A3 −A6( )C5 −A5A7( )a1* +A2A8C4 +A5A8+

−b2A2 −A2A3 −A2A4 + ε4( )A7 + A1 +A3 +A4( )A6 +a2* A1 +A3( )A4 +A1A3 +A9A10 − ε4ε5{ },

B3 � −

−C5a1* + A1 + A3 + A4( )ε4ε5 + A7 −b2 − A3 − A4( ) + A8C5( )ε4 + ( − A2A3A8 + A3A6a1*+
−A3A4 − A6 A3 + A4( ) − A9A10 − A5A8a2* + A7 A5a1* + A2A3 + A2A4( )+(

A2A7b
2 + b2a1

* − A4A8 + A3a1 + A6a1
*( )C5 − A1A4 − A1A6 − A1A3)α1 − A1A4A6−

A3A5A8 − A1A5A8 − A6A9A10a2* − A4A9A10 + A7 A2A3A4 + A3A5a1*( ) − a2*A1A3A6−
A3A4A6 + A7 A2A3 + A2A4 + A5a1*( )b2 + −A2A8 + A3 + A6( )a1*( )b2)C5 − A1A3A4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

B4 �

−A3 − A6( )b2 − A3A6( )α1 + −A3A6 + ε4ε5( )b2 + A3ε4ε5( )C5 + −b2A5A7 − A3A5A7( )α1−(
A3A5A7b

2)a1* + b2A2A8 + A2A3AA8( )α1 + A2A3A8 − A8ε4( )b2 − A3A8ε4( )C5+
−A2A3A7 − A2A4A7( )b2 + A1A3A6 + A1A4A6 + A1A5A8 + A3 A1A4 + A5A8( ) + A4A9A10(

+ A3A4 + A9A10( )A6 − A2A3A4A7)α1 + −A2A3A4A7 + A3A7 + A4A7( )ε4( )b2 + A1A3(A4A6+
A5A8) + A4A6A9 + A5A8A9( )A10 + A3A4A7a2* + −A1A3 − A1A4 − A3A4 − A9A10( )ε5( )ε4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

B5 � −
A3A5A7 + A3A6C5( )b2α1 − b2A3C5ε5ε4( )a1*

+( A2A3A4A7 − A2A3A8C5( )b2−
A1A3 A4A6 + A5A8( ) − A4A6 + a2

*A5A8( )A9A10)α1
+(A4 A1A3 + A9A10( )ε5+
−A3A4A7 + A3A8C5( )b2)ε4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Factorizing Eq. 37 with the roots k2n(n � 1, 2, 3, 4, 5: Re(kn)> 0),
yields:

D2 − k21( ) D2 − k22( ) D2 − k23( ) D2 − k24( ) D2 − k25( ) �Θ, �N, �Π, �φ, �ψ{ } x( ) � 0,

(38)

The solutions in linearity form for Eq. 37 are:

�Θ x( ) � ∑5
i�1
Qi b,ω( )e−kix, (39)

�φ x( ) � ∑5
i�1
Q

′
i b,ω( )e−kix � ∑5

i�1
h1iQi e

−kix, (40)

�Π x( ) � ∑5
i�1
Q

″
i b,ω( )e−kix � ∑5

i�1
h2iQi e

−kix, (41)

�N x( ) � ∑5
i�1
Q

‴
i b,ω( )e−kix � ∑5

i�1
h3iQi e

−kix. (42)

�ψ x( ) � ∑5
i�1
Q

′′′′
i b,ω( )e−kix � ∑5

i�1
h4iQi e

−kix. (43)

Where Qi are unknown quantities, can be formulated and the
other parameters take the following form:

h1i � A2C5 + A5( )k6i + c8k4i + c9k2i + c10( )
k8i + c4k6i + c5k4i + c6k2i + c7( ) ,

h2i � A2k6i + c1k4i + c2k2i + c3( )
k8i + c4k6i + c5k4i + c6k2i + c7( ),

h3i � − ε4( )
k2i − ε4( ),

h4i � A2A10k4i + c11k2i + c12( )
k8i + c4k6i + c5k4i + c6k2i + c7( ),

c1 � −A2A3 − A2A4 − A2α1 − A5a1 + ε4( ),
c2 � A2A3A4 + A2A3α1 + A2A4α1 + A3A5a1 + A5a1α1 − A3ε4 − A4ε4( ),
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c3 � −A2A3A4α1 − A3A5a1α1 + A3A4ε4,

c4 � C5a1 − A1 − A3 − A4 − α1, c5 � −b2C5a1 − A3C5a1 − C5a1α1

+ A1A3 + A1A4 + A1α1 + A3A4 + A3α1 + A4α1 + A9A10,

c6 � b2AC5a1 + b2C5a1α1 + A3C5a1α1 − A1A3A4 − A1A3α1

− A1A4α1 − A3A4α1 − A4A9A10 − A9A10α1,

c7 � −b2A3C5a1α1 + A1A3A4α1 + A4A9A10α1,

c8 � ( − b2A2C5 − A2A3C5 − A2C5α1 − A1A5

− A3A5 − A5α1 + C5ε4,

c9 � b2A2A3C5 + b2A2C5α1 − b2C5ε4 + A2A3C5α1 + A1A3A5

+ A1A5α1 + A3A5α1 − A3C5ε4 + A5AA9A10,

c10 � −b2A2A3C5α1 + b2A3C5ε4 − A1A3A5α1 − A5A9A10α1,

c11 � A10 −A2A4 − A2α1 − A5a1 + ε4( ),
c12 � A10 A2A4α1 + A5a1α1 − A4ε4( ).

The displacement components can be rewritten as:

�u x( ) � −∑5
n�1

Qn knh2n + ibh4n( ) e−knx,

�w x( ) � ∑5
n�1

Qn ibh2n − knh4n( )e−knx. (44)

The constitutive Eq. 35 can be represented as:

�σxx � ∑5
n�1

Qn

h2n k2n − b2a2( ) − A2 − h3n + a1h1n − ibknh4n a2 − 1( )( )
1 − ξ2 k2n − b2( ) e−knx,

�σzz � ∑5
n�1

Qn

h2n a2k2n − b2( ) − A2 − h3n + a1h1n − ibknh4n 1 − a2( )( )
1 − ξ2 k2n − b2( ) e−knx,

�σxz � −∑5
n�1

a4Qn

ib knh2n + ibh4n( ) + kn(ibh2n − knh4n( )
1 − ξ2 k2n − b2( ) e−knx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(45)

4 Boundary conditions

The arbitrary parameters may be assessed when certain
boundary constraints are applied to the free non-local
microelongated surface. The boundary conditions are selected at
[45], and they may be introduced in the following ways:

Mechanical boundary conditions can be selected in the mechanical
ramp type at x � 0, which can be represented by the normal stress with
loaded force F(t) on the non-local surface x � 0 as [49]:

σ 0, t( ) �
0 t≤ 0
t

t0
0< t≤ t0

1 t> t0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (46)

The other mechanical condition can be chosen for tangent stress
freely at x � 0 as:

σxz � 00�σxz � 0. (47)
When the converted temperature gradient has vanished, the

thermal state may be considered. In the thermally insulated example,
this is stated as [50]:

∂Θ
∂x

∣∣∣∣∣∣∣x�0 � 00
d�Θ
dx

� 0. (48)

The scalar function’s elongation condition may be written as:

�φ � 0. (49)
The carrier intensity condition of the microelongated non-local

semiconducting may be shown following the diffusion transport
mechanism. When the concentration of electrons ~n0 is present and
there is a limited range of recombination probabilities, the gradient of
the carrier density may be introduced in the manner shown in [51]:

d �N

dx
� −~sn0

DE
. (50)

Where ~s is the speed of recombination. Using the values of
�Θ, �σxx, �σxz, �φ and �N, yields:

∑5
n�1

Qn

h2n k2n − b2a2( ) − A2 − h3n + a1h1n − ibknh4n a2 − 1( )( )
1 − ξ2 k2n − b2( ) � �F s( ) 1 − e−st0( )

t0s
2 ,

∑5
n�1

ibQkn h2i − 1( ) + 1 + k25( )Λ5 � 0,

∑5
n�1

−knQn b,ω( ) � 0,

∑5
n�1

h1nQn b,ω( ) � 0,

∑5
n�1

h3nknQn b,ω( ) � ~s~n0
DE

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(51)

5 Particular cases

1. The theory of rotational microelongation according to the non-
local thermoelasticity is derived by considering the change in
thermal conductivity while neglecting the impact of the photo-
electronics plasma effect (i.e., N � 0) [14, 15].

2. The rotational non-local photo-thermoelasticity theory with the
variable thermal conductivity is obtained under the effect of the
photo-electronics plasma impact when the elongation
parameters αo, λo and λ1, are neglected.

3. The models of rotational photo-thermoelasticity with elongation
and variation of the thermal conductivity are obtained when the
non-local parameter is omitted (i.e., ξ � 0).

4. The elongation non-local photo-thermoelasticity theory
according to the variable thermal conductivity is observed
when the angular velocity is neglected (i.e., Ω � 0) [20, 22]:

5. The elongation rotational non-local photo-thermoelasticity model is
obtained when the thermal conductivity of the medium is
independent of temperature (i.e., π � 0 and hence K � K0.

To depict the temperature previous to conversion using a map, it
is possible to determine the connection between T and Θ using the
maps transform, which is described in Eqs. 6, 7 as:

Θ � 1
K0

∫
T

0

K0 1 + πT( )dT � T + π

2
T2 � π

2
T + 1

π
( )2

− 1
2π

, or (55)

T � 1
π

�������
1 + 2πΘ

√ − 1[ ] � 1
π

������������
1 + 2π�Θeωt+ibz

√
− 1[ ]. (56)
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6 Discussion and numerical results

A numerical analysis is carried out with the use of MATLAB
(2022a) software to investigate the problem more closely and to
explain the effects of relaxation times, rotation, the non-local
parameter, and the thermal conductivity on the physical field
variables according to the propagated waves. We have selected a
polymer silicon (Si, n-type)-like semiconductor medium for
numerical calculation. The SI units are selected for the physical
constants of the Si media, which are represented as [52–54]:

λ � 3.64x 1010 N/m2, μ � 5.46 × 1010 N/m2, ρ � 2330 kg/m3,
T0 � 800 K, τ � 5x 10−5 s, dn � −9 x 10−31 m3, DE � 2.5 ×

10−3 m2/s, Eg � 1.11 eV, ~s � 2m/s, CE � 695 J/(kgK), αt1 �
0.04x 10−3 K−1, αt2 � 0.017x 10−3 K−1, K � 150Wm−1K−1, λ0 �
0.5 × 1010Nm−2, t � 0.001, j � 0.2 × 10−19m2, γ � 0.779 × 10−9N,
k � 1010Nm−2, ~n0 � 1020 m−3, λ1 � 0.5 × 1010Nm−2, α0 �
0.779 × 10−9N, τ0 � 0.00005, ]0 � 0.0005.

In the current study, the dimensionless fields are used for
numerical calculations to obtain wave propagations of the
important physical variables in 2D according to a small value
of time. The additional problem constants are used for
numerical calculation as: z � −1 according to the range
0≤ x≤ 5, b � 1, the loaded force �F � 1, ζ � 0.05 and ω0 � −2.5
[46, 47].

FIGURE 2
The effects of the rotating field in the non-local situation according to various values of variable thermal conductivity, as well as changes of themain
physical field’s relative horizontal distance under the GL model.
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6.1 Impact of variable thermal conductivity

The effect of various non-positive parameters π on the wave
propagation of the main physical field distributions versus the
horizontal distance is shown in Figure 2 (consisting of six
subfigures) for the range of 0≤ x≤ 10. There are three cases
examined in this figure. The first condition is when π � 0
(K � K0), which stands for the circumstance in which the
medium is independent of temperature changes [54]. The second
and third scenarios show situations in which the medium is
dependent on a temperature change when π � −0.3 and π � −0.6.
Under the influence of the GL model, the thermal, non-local
elongation, elastic, plasma, and mechanical waves propagate at a
predetermined period when t � 0.001 and Ω � 0.5. For the thermal

condition, the thermal wave begins at positive at the free surface and
rises in the initial range towards the edge until reaching its
maximum value under the influence of thermal loads brought on
by the light beams and mechanical ramp. As a result, the thermal
wave gradually and exponentially decrements in the second range
until it reaches the least value and aligns with the zero line to achieve
stability. We see that the value of the temperature distribution
magnitude greatly rises with the increase in parameter. The
carrier density with optoelectronic distribution (plasma wave), on
the other hand, has the same characteristics as the thermal wave.
However, if the parameter π is increased, the amplitude of the
dispersion of plasma waves decreases and is consistent with the
experimental findings [55]. The second subfigure demonstrates that
for three values of the parameter π, the distribution of the

FIGURE 3
According to the variations in thermal relaxation times for non-local mediumwith varying thermal conductivity while π � −0.6 under the influence of
rotation parameter, the main physical fields’ change with respect to horizontal distance.
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microelongation always starts from the zero value at the boundary.
As can be observed from the subfigure, the microelongation function
reaches its greatest value in the beginning near the non-local surface,
at which point the magnitude of the profile starts to decrease as the
distance increases. The solution curves of elastic wave
(displacement) begin in each of the three situations with a
distinct magnitude and converge to zero with an increase in the
distance. A drop in numerical values of normal displacement occurs
when the value of the π parameter is increased, indicating that it is
very sensitive to the variable thermal conductivity parameter. The
usual stress variations throughout the distance for all three
scenarios (π � 0, π � −0.3 and π � −0.6) are shown in the fifth
subfigure. It is seen that the normal stress σxx magnitudes begin

at positive values in order to comply with the mechanical ramp-
type boundary conditions of the issue, grow to achieve maximum
values, then decline and raise again to reach zero values. The
magnitudes of the normal stress values are at their highest in all
circumstances near the source before progressively approaching
zero. Three distinct amounts of variable thermal conductivity
(π � 0, π � −0.3 and π � −0.6) are used to illustrate the
differences in the tangential stress σxz with the distance x in
sixth subfigure. The tangential stress has a predictable zero
magnitude starting point, which is satisfied the non-local
boundary condition. The subfigure shows that the tangential
stress numerically increases for the increasing in the values of
variable thermal conductivity [56, 57].

FIGURE 4
According to variable thermal conductivity (π � −0.6), the main physical fields under the GL model change depending on whether the rotation field
has an influence or not for the non-local medium.

Frontiers in Physics frontiersin.org09

Kamel et al. 10.3389/fphy.2023.1287381

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1287381


6.2 Photo-thermoelasticity models

According to the photo-thermoelasticity models
((CD, n1 � 1, no � τo � vo � 0), (LS, n1 � no � 1, vo � 0, τo > 0),
and (GL, n1 � 1, no � 0, vo ≥ τo > 0)), Figure 3 shows the
fluctuations of the basic physical quantities with distance in
the range 0≤x≤ 10 for three distinct values of the relaxation
times. The non-local boundary condition is met under the
influence of rotation (Ω � 0.5)for elongation-nonlocality
properties that follow the same trend of variations when solution
curves for the three relaxation time values start at the surface when
π � −0.6. In this diagram, all solution curves coincide with a line of zero
magnitudes while the distances between the three values and the
equilibrium state are increasing. It is obvious that the dispersion of

the waves under examination is significantly influenced by the
relaxation times [58, 59].

6.3 Impact of rotation parameter

The distribution of the basic physical fields in two different
scenarios is shown in Figure 4 [presence and absence of rotation
field (Ω � 0.0 and Ω � 0.5)] according to the increase in distance
model in the range 0≤x≤ 10. The computational results are made
under the effect of the nonlocality parameter according to the GLmodel
when the thermal conductivity depends on the thermal distribution
(π � −0.6). All wave propagations in the domains under consideration
are significantly influenced by the rotation parameter.

FIGURE 5
According to variable thermal conductivity (π � −0.6), the main physical fields under the GL model change depending on whether the local has an
influence or non-local for the rotating medium.
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6.4 Impact of the nonlocality parameter

To examine the impact of nonlocality in all of the distributions
with the medium, Figure 5 has been plotted. At the small time
according to the GL theory for rotational medium when π � −0.6,
we compare local and nonlocal theories throughout the whole area
of study. Similar qualitative behavior to that seen in Figure 5 (five
subfigures) has been shown. It is clear from this collection of
Figure 5 that nonlocality causes all the field variables under study
to increase. The elongation function and optoelectronics field are
the two exceptions. All distributions are more affected by
nonlocality.

6.5 The temporal influence

The present analysis pertains to the utilization of a time
historical effect in accordance with the GL model for non-local
rotating silicon (Si) material. Figure 6 illustrates the temporal
variations of temperature, displacement, normal stress, and
carrier density within the interval [0, 0.05] at three distinct
distance values under the impact of the variable thermal
conductivity. Based on the presented plot, it is evident that the
distributions being examined exhibit an initial rise in amplitude,
followed by a subsequent decline over time, ultimately penetrating
further into the semiconductor material.

FIGURE 6
The temporal evolution of wave propagation in non-local rotating Si materials, as described by the GL model with variable thermal conductivity
(π � −0.6), is investigated over the time span [0, 0.05].
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7 Conclusion

The research discussed focuses on investigating the two-
dimensional deformation of a homogeneous, isotropic,
microelongated semiconducting half-space within the framework of
photo-thermoelasticity. The study incorporates variable thermal
conductivity in its models and aims to explore the impact of this
parameter, as well as thermal relaxation durations and rotation, on
various physical fields. The numerical results obtained were
approximated and visually represented. The findings suggest that
the wave propagation behavior of the physical quantities is
primarily influenced by the variable thermal conductivity parameter
across a wide range. Using optoelectronics and thermoelastic
processes, we are able to acquire and graphically illustrate the wave
behavior of the primary fields in semiconductors. The magnitudes of
the primary physical fields are observed to increase with different
thermal relaxation time choices. Additionally, all waves propagating
within the primary fields tend to approach equilibrium. The presence
of angular velocity in the microelongated semiconductor medium,
along with various relaxation time values, plays a crucial role in the
distribution of the physical quantities within a nonlocality medium.
Moreover, the rotation parameter is found to have a significant impact
on the wave propagation of the studied physical variables. Research
into microelongated semiconductor silicon is warranted because of its
potential applications in modern electronic devices like cellphones,
sensors, computer processors, medical equipment, diodes,
accelerometers, inertial sensors, and electric circuits. It is also
anticipated that it will be helpful in the design of structures in a
wide range of engineering challenges, contemporary physics,
mechanical material design, photo-thermal efficiency, and the solar
cell. This article’s examination and findings will be invaluable to
researchers interested in the applications of semiconductors like
diodes, triodes, and other cutting-edge electrical devices.
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Nomenclature

λ, μ Elastic parameters

δn � (3λ + 2μ)dn The potential difference

T0 References temperature

γ̂ � (3λ + 2μ)αt1 Volume thermal expansion

σij Microelongational stress tensor

ρ Medium density

αt1 Thermal expansion coefficient

e � ∂u
∂x + ∂w

∂z . Dilatation in 2D

Ce Specific heat of the microelongated material

K Thermal conductivity

DE Carrier diffusion

τ The lifetime

Eg The energy gap

eij Strain tensor

Π,Ψ Two scalar functions

j0 The microinertia of microelement

a0 , α0 , λ0 , λ1 Microelongational material parameters

τ0 , ν0 Thermal relaxation times

φ The scalar microelongational function

mk Microstretch vector

s � skk Stress tensor component

δik Kronecker delta

n Unit vector in the direction of the y-axis

Ω � Ω n Angular velocity

ξ The length-related elastic nonlocal parameter

l The external characteristic length scale

a The internal characteristic length

e0 Non-dimensional material property

αt2 The linear micro-elongation coefficient
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