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We consider a quantum Otto engine using an Unruh-DeWitt particle detector
model which interacts with a quantum scalar field in curved spacetime. We
express a generic condition for extracting positive work in terms of the
effective temperature of the detector. This condition reduces to the well-
known positive work condition in the literature under the circumstances where
the detector reaches thermal equilibrium with the field. We then evaluate the
amount of work extracted by the detector in two scenarios: an inertial detector in a
thermal bath and a circulating detector in theMinkowski vacuum, which is inspired
by the Unruh quantum Otto engine.
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1 Introduction

Quantum thermodynamics is the study of thermodynamic phenomena from the
perspective of quantum mechanics. Within this field, quantum heat engines, where the
working substance is quantum matter that interacts with thermal baths, have emerged as a
crucial area of research [1]. Notable among quantum heat engines are the quantum Carnot
engine and the quantum Otto engine (QOE). The quantum Carnot engine operates through
two isothermal processes and two quantum adiabatic processes. The QOE, on the other
hand, is composed of two isochoric thermalization processes and two quantum adiabatic
processes [1–7]. For a comprehensive review, see [8].

Our interest lies in the QOE using a two-level quantum system in the realm of relativistic
quantum information (RQI), where relativity is taken into account. In particular, we
consider a specific model for a qubit known as the Unruh-DeWitt (UDW) particle
detector model [9, 10], which interacts with a quantum field in (curved) spacetime. The
UDW detector model exhibits the essential features of the light–atom interaction as long as
angular momenta are not exchanged [11, 12]. A UDW detector reveals interesting
phenomena such as the Unruh effect [9], where a uniformly accelerating UDW detector
perceives a thermal bath at the Unruh temperature TU = a/2π (where a is the magnitude of
the acceleration), whilst an observer at rest sees a vacuum.

Investigations have been carried out previously on the QOE employing the UDW
detector model. In [13], it was shown that a linearly accelerating UDW detector can be
utilized to extract work in a QOE. This process is facilitated by the Unruh effect, which
generates hot and cold thermal baths by varying the magnitude of acceleration a. Such an
engine is commonly referred to as the Unruh QOE. The amount of work extracted is
determined by a response function of the UDW detector, which is the probability of a
transition from the ground state to the excited state and vice versa. Subsequent studies have
further expanded on the Unruh QOE in various scenarios, including a fermionic field [14], a
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degenerate detector [15], entangled detectors [16, 17], and in the
presence of a reflecting boundary [18]. However, these studies focus
on a specific acceleration trajectory, the state of a field, and a
switching function. A comprehensive investigation of the QOE in
a more general setting still remains largely unexplored.

In this paper, we explore the QOE within the framework of RQI
in a generalized setting. We consider a pointlike UDW detector
following an arbitrary trajectory in curved spacetime, interacting
with a quantum scalar field in a quasi-free state. Thus, the
thermalization of the detector is not necessarily required.
Employing a perturbative method, we derive general expressions
(Eq. 3.15 and Eq. 3.20) for the work extracted through the quantum
Otto cycle, which are written in terms of the response function of the
detector. In addition, we identify conditions for extracting positive
work in a generalized setting, given by Eq. 3.16 and Eq. 3.22. These
conditions are expressed in terms of the effective temperature, an
estimator for temperature, as perceived by the detector. Since
thermality is not a prerequisite, the expressions for the work
extracted and the positive work condition are applicable to any
situation. Notably, when the field is in a thermal state, known as the
Kubo–Martin–Schwinger (KMS) state and the interaction duration
of a rapidly decreasing switching function is sufficiently long, the
effective temperature becomes the KMS temperature. In such a case,
the condition for positive work Eq. 3.22 becomes identical to the
original condition found in [2, 3].

The derived expressions are demonstrated concretely within two
scenarios: an inertial detector immersed in a KMS state of a quantum
field in Minkowski spacetime and a detector in circular motion in the
Minkowski vacuum. The first example is the most basic instance of
thermality within QFT, for which we employ a Gaussian switching
function and explore the effects of interaction duration.

The second example is inspired by the Unruh QOE previously
examined in the literature, which has some challenges. A linearly
accelerating detector requires an immense amount of acceleration to
reach a temperature of 1 K. This can be observed from the
expression of the Unruh temperature in SI units, TU = Za/2πkBc,
where Z, kB, and c are the reduced Planck constant, Boltzmann
constant, and speed of light, respectively. It is well known that an
acceleration of a ~ 1020 m/s2 is required to achieve TU ~ 1 K. This
implies that significant work must be performed on the detector to
extract a small amount of work from the Unruh QOE.Moreover, the
duration of interaction is almost instantaneous. Typically, the
Unruh QOE assumes that the detector initially travels at a
constant speed v and then accelerates until it attains the same
speed in the opposite direction. The time interval in this process
(in terms of the detector’s proper time τ) is given by Δτ = (2c/a)
arctanh(v/c), and inserting a = 1020 m/s2, it requires v ≈ c to yield Δτ
~ 1 s. Otherwise, if we demand a slower speed, say v = c/2, then the
interaction duration amounts to Δτ ~ 10−12 s, which is an extremely
short period of time. The detector certainly cannot thermalize within
such a time scale. Finally, executing such a protocol demands
considerable space. The procedure in the Unruh QOE consists of
linear acceleration and uniformmotion at speed v. This means that it
requires the detector to consistently move in one direction, which
cannot be performed in a confined laboratory.

Instead, one can consider a UDW detector in circular motion, a
concept that is motivated by [19–21], where an experimental setup is
proposed to measure the circular Unruh effect (see also [22–25]). A

circulatingUDWdetector overcomes the aforementioned shortcomings,
although the temperature induced by the acceleration is no longer TU. In
fact, the detector cannot be thermalized. Instead, one should define the
effective temperature Tcirc as observed by the circulating detector [24, 26,
27]. This is where the proposed framework excels as our expressions
remain valid even in the absence of thermality.

This paper is structured as follows. After we introduce the basic
aspects of the UDWdetector and thermality in quantum field theory
in Section 2, we review the mechanism of QOE in Section 3.1. Our
main results are shown in Section 3.2, followed by examples in
Section 4.1 and Section 4.2.

Throughout this paper, we use Z = c = kB = 1 and the mostly
positive signature convention (−+ ++).

2 Setup

2.1 Unruh-DeWitt detector model

Consider a pointlike UDW detector, which is a two-level
quantum system with an energy gap Ω between ground |g〉 and
excited states |e〉 locally interacting with the quantum
Klein–Gordon field ϕ̂(x). Here, the background spacetime is not
restricted to a specific geometry but assumed to be a (curved)
spacetime that accommodates a well-behaved Klein–Gordon
equation.

In the Schrödinger picture, the total Hamiltonian ĤS,tot reads

ĤS,tot � ĤS,D + ĤS,ϕ + ĤS,int, (2.1)
where ĤS,D and ĤS, ϕ are the free Hamiltonians for the detector and
the field, respectively, and ĤS,int is the interaction Hamiltonian.
These are explicitly given by

ĤS,D � Ω|e〉〈e|⊗ 1ϕ, (2.2a)
ĤS,ϕ � 1D ⊗ ∫

Rn
dnk ωkâ

†
kâk, (2.2b)

ĤS,int � λχ τ/σ( ) |e〉〈g| + |g〉〈e|( ) ⊗ ϕ̂ x τ( )( ), (2.2c)
where λ is the coupling constant, τ is the proper time of the detector,
and χ(τ/σ) is the switching function (with σ being the typical time
scale of interaction), which determines the time dependence of
coupling. In this paper, we assume that the L2 norm of χ(τ) is unity:

‖χ‖2 :�
�����������∫

R

dτ |χ τ( )|2
√

� 1. (2.3)

Let Ĥ
τ
I (τ) be the interaction Hamiltonian in the interaction

picture. Here, the Hamiltonian is the generator of time translation
with respect to the proper time τ, which is indicated by the
superscript. The explicit form is given by

Ĥ
τ

I τ( ) � λχ τ/σ( )μ̂ τ( ) ⊗ ϕ̂ x τ( )( ), (2.4)
where μ̂(τ) is the monopole moment describing the internal
dynamics of the detector:

μ̂ τ( ) � |e〉〈g|eiΩτ + |g〉〈e|e−iΩτ . (2.5)
Let us obtain the final state of the detector. The time-evolution

operator in the interaction picture is given by
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ÛI � T τ exp −i∫
R

dτ Ĥ
τ

I τ( )( ), (2.6)

where T τ is a time-ordering symbol with respect to the proper time
τ. Carrying out the perturbative method, this operator can be
expanded as

ÛI � 1 + Û
1( )
I + Û

2( )
I +O λ3( ), (2.7a)

Û
1( )
I � −i∫∞

−∞
dτ Ĥ

τ

I τ( ), (2.7b)

Û
2( )

I � −∫∞

−∞
dτ∫τ

−∞
dτ′ Ĥτ

I τ( )Ĥτ

I τ′( ). (2.7c)

We consider the initial state of the total system

ρtot,0 � ρD,0 ⊗ ρϕ, (2.8)

where ρϕ is the initial state of the field and ρD,0 is the initial state of
the detector given by

ρD,0 � p|e〉〈e| + 1 − p( )|g〉〈g|. p ∈ 0, 1[ ]. (2.9)

The final total state ρtot can be obtained as

ρtot � ÛIρtot,0Û
†

I � ∑∞
m,n�0

Û
m( )

I ρtot,0Û
n( )†
I , (2.10)

and by tracing out the field degree of freedom, we obtain the final
state of the detector, ρD. In general, ρD contains n-point correlation
functions 〈ϕ̂(x1) . . . ϕ̂(xn)〉ρϕ, where 〈·〉ρϕ is the expectation value
with respect to ρϕ. In this paper, we are particularly interested in a
quantum field in a quasi-free state,1 in which the one-point
correlator 〈ϕ̂(x)〉ρϕ vanishes and every correlation function can
be written in terms of two-point correlators
W(x, x′) ≔ 〈ϕ̂(x)ϕ̂(x′)〉ρϕ, also known as the Wightman
function. Examples of quasi-free states include the vacuum state
|0〉 and the Kubo–Martin–Schwinger (KMS) state, described in
Section 2.2. Assuming that ρϕ is a quasi-free state, the post-
interaction state of the detector to the leading order in λ can be
calculated as follows:

ρD � Trϕ ρtot[ ] � p + δp( )|e〉〈e| + 1 − p − δp( )|g〉〈g| +O λ4( ),
(2.11)

where

δp � λ2σ 1 − p( )F Ω( ) − pF −Ω( )[ ], (2.12)
with

F Ω( ) � 1
σ
∫

R

dτ∫
R

dτ′ χ τ/σ( )χ τ′/σ( )e−iΩ τ−τ′( )W x τ( ), x τ′( )( )
(2.13)

being the response function, i.e., the probability to excite the ground
state |g〉 to |e〉. Similarly, F(−Ω) is the probability for the transition
|e〉 → |g〉. The quantity W(x(τ), x(τ′)) ≔ 〈ϕ̂(x(τ))ϕ̂(x(τ′))〉ρϕ is
the pullback of the Wightman function along the detector’s
trajectory x(τ). It should be noted that the odd powers in λ

vanish since the one-point correlators 〈ϕ̂(x)〉ρϕ are zero.

We note that ρD is the state of the detector after interacting with the
field once, while in the QOE, the detector interacts with the field twice.
Fortunately, Eq. 2.11 shows us that the density matrix ρD stays diagonal
after the interaction, meaning the final density matrix also remains
diagonal after the second interaction. Nevertheless, careful attention
must be paid to the switching timings of these two interactions.

2.2 KMS condition

In quantum mechanics, a thermal state is given by the Gibbs
state ρ � e−βĤ/Z, where β is the inverse temperature, Ĥ is the
Hamiltonian, and Z ≔ Tr[e−βĤ] is the partition function. In
quantum field theory, the notion of thermality is rigorously
defined by the KMS condition [28–30]. The argument given in
this section is given in Figure 1.

We consider a Wightman function in a field state ρϕ:

W τ, τ′( ) � 〈ϕ̂ x τ( )( )ϕ̂ x τ′( )( )〉ρϕ. (2.14)

It should be noted that the vacuum Wightman function
〈0|ϕ̂(x(τ))ϕ̂(x(τ′))|0〉 is a special case corresponding to ρϕ = |0〉〈0|.
The Wightman function satisfies the KMS condition with respect to
time τ at the KMS temperature β−1KMS ≡ TKMS if

W τ − iβKMS, τ′( ) � W τ′, τ( ). (2.15)
In addition, if the KMS condition is satisfied, then the

Wightman function is stationary; i.e., it only depends on the
difference in time: W(τ, τ′) = W(Δτ). We identify the KMS
temperature TKMS as the temperature of the quantum field.

The KMS condition is related to the so-called detailed balance
condition. For any function f(ω), the detailed balance condition at
temperature β−1 is given by

f −ω( ) � eβωf ω( ). (2.16)
It is known [31] that, assuming the Wightman function is

stationary, the KMS condition with respect to τ at temperature
β−1KMS is satisfied if and only if the Fourier-transformed Wightman
function,

FIGURE 1
Relationship between the KMS state and the response function.

1 Sometimes, quasi-free states are called Gaussian states in the literature.
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~W ω( ): � ∫
R

dΔτ W Δτ( )e−iωΔτ , (2.17)

satisfies the detailed balance condition (Eq. 2.16).
The detailed balance condition can be implemented into the

response function of a UDW detector. Suppose the Wightman
function satisfies the KMS condition and the switching function
χ(τ/σ) has a typical interaction duration time scale σ. The response
function (Eq. 2.13) can be written as

F σ Ω( ) � ∫
R

d�ω
2π

|~χ �ω( )|2 ~W Ω + �ω/σ( ), (2.18)

where �ω is a dimensionless variable and ~χ(�ω) is the Fourier
transform of the switching function χ(τ/σ). One can show that if
~χ(�ω) decays sufficiently fast as �ω increases (such as a Gaussian
switching), then the response function satisfies the detailed balance
condition in the long interaction limit [31, 32]:

lim
σ→∞

F σ −Ω( )
F σ Ω( ) � eβKMSΩ. (2.19)

Inspired by the detailed balance condition for the response
function (Eq. 2.19), one may define the effective temperature
Teff:

T−1
eff : � 1

Ω ln
F σ −Ω( )
F σ Ω( ) . (2.20)

The effective temperature is an estimator for the KMS
temperature of the field. In particular, if the Wightman function
obeys the KMS condition and the long interaction limit (σ → ∞) is
taken, then the effective temperature becomes the KMS temperature
due to Eq. 2.19.

3 Relativistic quantum Otto engine

3.1 Review: quantum Otto engine

In this section, we review the QOE following [3]. It should be
noted that the whole system is composed of a qubit and thermal
baths in the Gibbs state. In the following section, we take the
following protocol and apply it to the system composed of a
UDW detector interacting with a quantum scalar field in a quasi-
free state; i.e., we omit the assumption that the baths are in a thermal
state.

1. A qubit with energy gap Ω1 is prepared in an initial state
ρ0 = p|e〉〈e| + (1 − p)|g〉〈g|, where p ∈ [0, 1], as shown in Figure 2.

2. The qubit undergoes an adiabatic expansion (zero heat exchange:
〈Q1〉 = 0) to enlarge the energy gap from Ω1 to Ω2, where Ω2 >
Ω1. The Hamiltonian of the qubit is given by Ĥ(t) � Ω(t)|e〉〈e|,
and so, the work carried out on the qubit is

〈W1〉 � ∫ dt Tr ρ0
dĤ t( )
dt

[ ] � pΔΩ, (3.1)

where ΔΩ ≔ Ω2 − Ω1. The qubit’s state remains ρ0 due to the
quantum adiabatic theorem.

3. The qubit interacts with a bath at temperature TH. The qubit’s
Hamiltonian Ĥ � Ω2|e〉〈e|, is time independent and so, the work
carried out on the qubit is zero: 〈W2〉 = 0. After the interaction,
the state becomes ρ1 = (p + δpH)|e〉〈e| + (1 − p − δpH)|g〉〈g|. The
first law of thermodynamics yields the dissipated heat:

〈Q2〉 � Tr[ρ1Ĥ] − Tr[ρ0Ĥ] � Ω2δpH. (3.2)

FIGURE 2
Quantum Otto cycle.
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This is an isochoric thermalization process.

4. After isolating the qubit from the bath, an adiabatic contraction
of the energy gap from Ω2 to Ω1 is performed, while the state
remains ρ1. From the same calculation as in step 2, we have

〈Q3〉 � 0, (3.3)
〈W3〉 � − p + δpH( )ΔΩ. (3.4)

The work is extracted from the qubit in this process.

5. Next, another isochoric thermalization process is carried out: the
qubit interacts with a bath at a colder temperature TC(<TH). At
the end of the process, the state becomes ρ2 = (p + δpH +
δpC)|e〉〈e| + (1 − p − δpH − δpC)|g〉〈g|, and so,

〈Q4〉 � Ω1δpC, (3.5)
〈W4〉 � 0. (3.6)

The total extracted work and dissipated heat read

〈Wext〉 � −∑4
j�1

〈Wj〉 � δpHΔΩ, (3.7)

〈Q〉 � ∑4
j�1

〈Qj〉 � Ω2δpH + Ω1δpC. (3.8)

Assuming thatΩ2 >Ω1, the extracted work is positive if δpH > 0.

6. δpH + δpC = 0 is imposed to complete a thermodynamic cycle.
From this condition, Eqs 3.7, 3.8 yield 〈Q〉 = 〈Wext〉, which obeys
the first law of thermodynamics.

It is known that the positive work condition reads [2, 3] TC/Ω1 <
TH/Ω2 and the efficiency of the QOE is ηO: = 〈Wext〉/Q2 = 1 −Ω1/Ω2.

3.2 Work extracted by a UDW detector

Now, let us employ a UDW detector as the qubit in this process.
As mentioned previously, we do not assume that the baths are
thermal. Instead, we only assume that the quantum field is in a
quasi-free state, i.e., the one-point correlators 〈ϕ̂(x)〉ρϕ vanish.
Nevertheless, we continue using subscripts such as δpH and δpC
for convenience.

In this section, we consider a general scenario in which a UDW
detector following an arbitrary path in spacetime interacts with a
quantum field in a quasi-free state. Working perturbatively, we
derive the extracted work and the condition for it to be positive.

3.2.1 Relativistic quantum Otto engine
We first describe our QOE in the relativistic setting, as shown in

Figure 3.

• Step 1: Before the interaction, the detector with the energy gap
Ω1 is prepared in ρD,0 in (2.9).

• Step 2: One performs a quantum adiabatic expansionΩ1→Ω2

with Ω2 > Ω1. During this process, the detector does not
interact with the field.

• Step 3: Isochoric process. The detector interacts with the field
with a time dependence specified by a compactly supported
switching function χH[(τ − τH)/σH], where τH is the center of
interaction and σH(>0) is the interaction duration; its support
is supp(χH) = [τH − σH/2, τH + σH/2]. The state changes from
ρD,0 → ρD,1, where ρD,1 is given by Eqs 2.11–2.13, i.e.,

ρD,1 � p + δpH( )|e〉〈e| + 1 − p − δpH( )|g〉〈g| +O λ4( ), (3.9a)
δpH � λ2σH 1 − p( )FH Ω2( ) − pFH −Ω2( )[ ], (3.9b)

FH Ω2( ) � 1
σH

∫
R

dτ∫
R

dτ′ χH
τ − τH
σH

( )χH τ′ − τH
σH

( )e−iΩ2 τ−τ′( )W x τ( ), x τ′( )( ).
(3.9c)

Although we identified the switching function as a compactly
supported function, it is also possible to employ rapidly decreasing
functions such as Gaussian or Lorentzian functions. These are not
compactly supported, but the results remain unchanged when the
exponentially decreasing tails of these functions are disregarded. We
use these functions later in this section.

• Step 4: Adiabatic compression Ω2 → Ω1. Again, the detector
does not interact during this process, and so, the state
remains ρD,1.

• Step 5: Another isochoric process is implemented using χC
[(τ − τC)/σC] for the switching function. To ensure that the
interaction does not overlap with the previous isochoric
process, we ensure that the supports of the two switching

FIGURE 3
Each step in a relativistic QOE. The red and blue stripes indicate
the isochoric process, i.e., the interaction between the detector and
the field.
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functions are disjoint by implementing τH + σH/2 < τC − σC/2.
The state of the detector changes as ρD,1 → ρD,2, where ρD,2 =
(p + δpH + δpC)|e〉〈e| + (1 − p − δpH − δpC)|g〉〈g|. The quantity
δpC is

δpC � λ2σC 1 − p − δpH( )FC Ω1( ) − p + δpH( )FC −Ω1( )[ ]
+O λ6( ),

(3.10a)
FC Ω1( ) � 1

σC
∫

R

dτ∫
R

dτ′ χC
τ − τC
σC

( )χC τ′ − τC
σC

( )e−iΩ1 τ−τ′( )W x τ( ), x τ′( )( ).
(3.10b)

It should be noted that δpC contains λ4 terms since δpH is of the
order λ2. As in the traditional QOE, the work extracted reads
〈Wext〉 = δpHΔΩ.

• Step 6: Finally, we impose the condition δpH + δpC = 0 to
complete a thermodynamic cycle.

Since 〈Wext〉 only depends on δpH, it may appear that the
cyclicity condition does not affect this value. However there is a
subtlety. If we assume that an experimenter can freely choose a value
of p ∈ [0, 1] at the beginning of the cycle, this means that the
experimenter has to adjust the response functions FH(± Ω2) and
FC(± Ω1) in such a way that the cyclicity condition is satisfied. On
the other hand, if we allow the response functions to take any value,
then the population p has to be adjusted accordingly.

3.2.2 When p is free to choose
We first require the cyclicity condition, δpH + δpC = 0, to close the

thermodynamic cycle. Since δpC contains terms of order O(λ4), we
omit these by imposing 1≫ δpH/p for a given p( ≠ 0). This reduces to

p≫
λ2σHFH Ω2( )

1 + λ2σH FH Ω2( ) + FH −Ω2( )[ ]. (3.11)

In particular, if the long interaction limit σH → ∞ is taken, we
obtain

p≫
1

1 + lim
σH→∞

FH −Ω2( )/FH Ω2( )
� 1

1 + lim
σH→∞

eΩ2/Teff
H

. (3.12)

Thus, for long interaction duration, Teff
H /Ω2 ≪ 1 is required.

Moreover, as a special case of a detector with a rapidly
decreasing switching function interacting with the quantum field
in the KMS state, this reads

p≫
1

1 + eΩ2/TKMS
H

. (3.13)

Nevertheless, if the interaction duration is finite, then λ ≪ 1 is
sufficient for our perturbative analysis.2

Under this restriction, the cyclicity condition for any p ∈ (0, 1]
leads to

σCFC Ω1( ) 1 − p

p
− FC −Ω1( )

FC Ω1( )( ) � −σHFH Ω2( )

× 1 − p

p
− FH −Ω2( )

FH Ω2( )( ).
(3.14)

That is, one has to tune the response functions so that this equality is
satisfied.

We then consider the positive work condition in the case where
the value of p is chosen freely by an experimenter. The work
extracted (Eq. 3.7) is

〈Wext〉 � λ2σH 1 − p( )FH Ω2( ) − pFH −Ω2( )[ ]ΔΩ, (3.15)
and the positive work condition is (1 − p)FH(Ω2) − pFH(−Ω2)> 0,
i.e., (1 − p)/p>FH(−Ω2)/FH(Ω2). We note that
FH(−Ω2)/FH(Ω2)> 1 since the de-excitation probability is higher
than the excitation probability, thereby implying p ∈ (0, 1/2). This is
consistent with previous work [13], where the Unruh QOE with a free
p can extract work only when 0 < p < 1/2. The condition can be
written in terms of the effective temperature (Eq. 2.20):

ln
1 − p

p
( )−1

< Teff
H

Ω2
, 0<p< 1/2( ). (3.16)

It should be recalled that in the long interaction duration,
Teff
H /Ω2 ≪ 1 is required, which means that Eq. 3.16 tells us that

p ≪ 1 needs to be chosen if we wish to extract positive work in the
long interaction limit within the perturbation theory.

It should be noted that if the positive work is extracted while the
cyclicity condition is satisfied, then FC(± Ω1) has to obey
(1 − p)/p<FC(−Ω1)/FC(Ω1) since the response functions are
non-negative and the positive work condition requires
(1 − p)/p>FH(−Ω2)/FH(Ω2). Therefore, within the perturbation
theory,

〈Wext〉> 0 fromQOE0
Teff
C

Ω1
< ln

1 − p

p
( )−1

< Teff
H

Ω2
. (3.17)

The opposite is not always true since the inequality does not
necessarily imply the cyclicity condition (3.14). In addition, the
statement (3.17) does not hold without the cyclicity condition.
Nevertheless, by contraposition, if Teff

H /Ω2 >Teff
C /Ω1 is violated,

then positive work cannot be extracted or the cycle is not closed.
The inequality Teff

H /Ω2 >Teff
C /Ω1 generalizes the positive work

condition found in [2, 3], by replacing bath temperatures with
effective temperatures. Specifically, effective temperatures reduce to
the KMS temperatures when the pullback of the Wightman function
along a trajectory satisfies the KMS condition and when the detector,
with a rapidly decreasing switching function, interacts with the field
for a long time. In this particular scenario, the work extracted becomes

〈Wext〉 ≈ λ2σHFH Ω2( ) 1 − p 1 + eΩ2/TKMS
H( )[ ]ΔΩ. (3.18)

3.2.3 When p is adjusted
Let us focus on the case where p is initially adjusted and derive

the work extracted. We again assume that p ≠ 0 and p≫ δpH so that
the terms higher than λ4 can be omitted in δpC. From the cyclicity
condition, we can solve for p, which reads

2 To be precise, one has tomake λ a dimensionless quantity since it has units
of [Length](n−3)/2 in (n + 1) dimensions.
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p � σHFH Ω2( ) + σCFC Ω1( )
σH FH Ω2( ) + FH −Ω2( )[ ] + σC FC Ω1( ) + FC −Ω1( )[ ]. (3.19)

By inserting p into Eq. 3.7, we obtain

〈Wext〉 � λ2σHσC
FH Ω2( )FC −Ω1( ) − FH −Ω2( )FC Ω1( )

σH FH Ω2( ) + FH −Ω2( )[ ] + σC FC Ω1( ) + FC −Ω1( )[ ]ΔΩ.
(3.20)

The extracted work is positive if and only if

FH Ω2( )FC −Ω1( )>FH −Ω2( )FC Ω1( ). (3.21)
We find that the positive work condition (Eq. 3.21) can be

written in terms of the effective temperature defined by Eq. 2.20 as

Teff
C

Ω1
< Teff

H

Ω2
. (3.22)

Again, we are not necessarily assuming that the field is in the
KMS state, and so, the effective temperature is not necessarily the
KMS temperature. If the field is in the KMS state and the detector
with a rapidly decreasing switching function interacts with the field
for a long time (σH, σC→∞), the effective temperature becomes the
KMS temperature, leading to

TKMS
C

Ω1
< TKMS

H

Ω2
, (3.23)

which is the condition found in [2, 3]. The extracted work in this
case is

〈Wext〉 � λ2σHσC
eΩ1/TC − eΩ2/TH( )FH Ω2( )FC Ω1( )

σH 1 + eΩ2/TH( )FH Ω2( ) + σC 1 + eΩ1/TC( )FC Ω1( )ΔΩ.
(3.24)

Therefore, Eq. 3.23 is a special case of Eq. 3.21 [and equivalently
(Eq. 3.22)] when the response function obeys the detailed balance
condition (Eq. 2.19). In other words, the condition (Eq. 3.21) [or
alternatively (Eq. 3.22)] is applicable to any scenario, even when the
detector is not thermalized.

In summary, we showed that within the perturbation theory, the
positive work condition is associated with Teff

C /Ω1 <Teff
H /Ω2. If p is

not fixed and the cycle is closed by adjusting the response functions,
Teff
C /Ω1 <Teff

H /Ω2 is a necessary condition to extract positive work.
On the other hand, if we instead adjust p to close the cycle while the
response functions are not fixed, then this condition is necessary and
sufficient. This recovers the traditional QOE positive work condition
[2, 3] as a special case. It should be noted that our results hold not
only for a quantum field in the KMS state but also for any quasi-free
state in curved spacetime. The use of the effective temperature is
similar to that in other papers such as [33].

4 Examples

We now demonstrate our results in (3 + 1)-dimensional
Minkowski spacetime. Throughout this section, we use a
Gaussian switching function

χ τ − τj( )/σ)[ ] � e− τ−τj( )2/2σ2 , j ∈ H,C{ }, (4.1)

where τj is the center of the Gaussian and σ > 0 is the characteristic
Gaussian width, which has the units of time.

4.1 Inertial detector in the thermal quantum
field

Consider (3 + 1)-dimensional Minkowski spacetime. We aim to
examine the extracted work (Eq. 3.20) by coupling an inertial UDW
detector to a KMS state of the field to explore the basic properties of
the work extraction.

TheWightman function in a thermal state of a massless field can
be written as [34]

Wβ x, x′( ) � WM x, x′( ) +Wth x, x′( ), (4.2)
whereWM is the Wightman function in the Minkowski vacuum and
Wth is the contribution from the thermal state:

WM x, x′( ) � − 1
4π2

1

t − t′ − iϵ( )2 − |x − x′|2, (4.3a)

Wth x, x′( ) � ∫
R3

d3k

2π( )32|k|
ei|k| t−t′( )−ik· x−x′( ) + c.c.

eβ|k| − 1
. (4.3b)

Here, ϵ is the UV cutoff and β = T−1 is the inverse KMS temperature
of the field.

Assuming the Gaussian switching (Eq. 4.1), the response
functionF β(Ω) of an inertial detector in the thermal bath reads [34]

F β Ω( ) � FM Ω( ) + F th Ω( ), (4.4)
where

FM Ω( ) � 1
4πσ

e−Ω
2σ2 − ��

π
√

Ωσerfc Ωσ( )[ ], (4.5a)

F th Ω( ) � e−Ω
2σ2σ

π
∫∞

0
dk

ke−k
2σ2 cosh 2Ωσ2k( )

eβk − 1
(4.5b)

are the response functions for an inertial detector in the Minkowski
vacuum and the thermal contribution, respectively. It should be
noted that it does not depend on the center of the Gaussian
switching since the Wightman function is time-translation
invariant. We assume that the interaction durations are the same:
σH = σC ≡ σ.

4.1.1 Case: free choice of p
We first consider the case where p is freely chosen, as discussed

in Section 3.2.2. We plot 〈Wext〉/λ2σ defined in Eq. 3.15 as a function
of interaction duration σ when TH = 2, Ω2 = 3, p = 0.315 and Ω1 = 1
in Figure 4Ai. The dashed line represents the asymptotic value,
limσ→∞〈Wext〉/λ2σ, given by Eq. 3.18. We observe that the work can
be extracted when the interaction duration is short, but as σ

increases, extraction becomes exponentially difficult. This
behavior can be explained by examining the positive work
condition (Eq. 3.16) in Figure 4Aii. The figure shows that the
positive work condition is satisfied when σ is small enough.
When σ → ∞ is taken, the effective temperature becomes the
KMS temperature: Teff

H /Ω2 → TH/Ω2 � 2/3 in Figure 4Aii.
Moreover, based on the discussion in Section 3.2.2, the
perturbative analysis is valid in this limit when TH/Ω2 ≪ 1,
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which is not the case in our scenario. Nevertheless, the perturbative
analysis is valid in the figure as long as λ ≪ 1.

Although 〈Wext〉/λ2σ > 0 for some σ, the thermodynamic
cycle is not closed. The cyclicity condition (Eq. 3.14) when σH =
σC reads

FC Ω1( ) 1 − p

p
− FC −Ω1( )

FC Ω1( )( ) � −FH Ω2( ) 1 − p

p
− FH −Ω2( )

FH Ω2( )( ).
(4.6)

We plot each side of this equation in Figure 4Aiii, fixing TC = 1
and other parameters (except σ) so as to find an optimal interaction
duration σ such that the two curves cross. This point in the figure
represents the scenario when the cyclicity condition is satisfied. As
one can see, the positive work condition in Figure 4Aii and the
cyclicity condition in 4Aiii are not satisfied at the same time; hence,
the work extracted does not come from a genuine QOE. In fact,
Figure 4Aii shows us that Teff

C /Ω1 >Teff
H /Ω2, and the statement

(Eq. 3.17) implies that either work cannot be extracted or that
the thermodynamic cycle is not closed.

Meanwhile, we can find a set of parameters that enables us to
extract positive work from a closed QOE. This scenario is shown in
Figure 4B, where TH = 4 is chosen. Figure 4Bi shows that the
extracted work is positive for all σ, which is consistent with the
positive work condition examined in Figure 4Bii. This time, from
Figure 4Biii, there exists a value of σ that satisfies the cyclicity
condition while 〈Wext〉/λ2σ > 0. Moreover, Figures 4Bii, iii exemplify
the statement (Eq. 3.17): if positive work is extracted from a genuine
QOE, then the effective temperatures satisfy
Teff
C /Ω1 < 1/ ln[(1 − p)/p]<Teff

H /Ω2, but the opposite is not
always true.

4.1.2 Case: adjusted p
We now consider the QOE described in Section 3.2.3. We first

note that an inertial detector in the Minkowski vacuum (i.e., zero
temperature: TH = TC = 0) cannot extract work from vacuum

FIGURE 4
Extracted work and conditions for a UDWdetector in a KMS state of a thermal quantum field for (A) TH = 2 and (B) TH = 4. Here,Ω2 = 3, TC = 1, and p=
0.315 in units ofΩ1. (Ai) and (Bi) depict 〈Wext〉/λ2σ as a function of the interaction duration σ in units ofΩ1. The dashed line indicates the asymptotic value.
The positive work condition is examined in (Aii) and (Bii), and the cyclicity condition is investigated in (Aiii) and (Biii). Negative values mean that work is
carried out on the system (i.e., the UDW detector).
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fluctuations since the condition (3.21) cannot be satisfied no matter
whatΩ and σ are. We then consider the KMS temperatures TH, TC ≠
0 and compute the extracted work 〈Wext〉/λ2σ. The interaction
duration σ is divided so that the perturbative analysis is
valid—otherwise, the extracted work 〈Wext〉/λ2 monotonically
increases with σ without an upper bound. In Figure 5A, we plot
the extracted work 〈Wext〉/λ2σ as a function of σ with various TH.
Here, quantities are in units of the energy gapΩ1 at the beginning of
the cycle, and we fix Ω2/Ω1 = 3 and TC/Ω1 = 1. We observe that the
detector cannot extract positive work when the interaction duration
is too short (i.e., σΩ1≪ 1), while 〈Wext〉/λ2σ asymptotes to a number
at σΩ1 ≫ 1. This is the opposite behavior of the result shown in
Figure 4, and it can be attributed to the difference between the
positive work conditions given by Eqs 3.16, 3.22. In the case of free p,
as shown in Figure 4B, Teff

H /Ω2 is compared to a constant value. In
contrast, for Figure 5, Teff

H /Ω2 is compared to another effective
temperature Teff

C /Ω1 as depicted in Figure 5B.
The asymptotic value for each curve is depicted by the dashed

line in Figure 5A, which is evaluated from (3.24). This confirms that,
at the long interaction duration, the detailed balance condition for
the response function (2.19) is satisfied. In addition, we observe that
the work extracted when (TH/Ω1,Ω2/Ω1) = (2, 3) and (3,3) is always
negative, whereas it is possible to extract positive work from the
system with (TH/Ω1, Ω2/Ω1) = (4, 3). This can be understood from
the condition (3.23); when the detailed balance condition (2.19) is
satisfied (σΩ1≫ 1 in this case), the detector can extract positive work
when the temperature of the baths and the energy gap obey (3.23).

4.2 UDW detector in circular motion

The Unruh QOE utilizes the thermality caused by the Unruh
effect at the temperatures TH = aH/2π and TC = aC/2π with aH > aC in
the protocol described in Section 3 [13]. However, as mentioned
previously, a linearly accelerating UDW detector is not ideal for
extracting thermodynamic work since it requires a tremendous
amount of acceleration a as well as a huge space to let the detector

travel long distances. Instead, we aim to employ a UDW detector in
circular motion, which not only allows us to confine the detector in a
compact space but also requires less space to acquire some
temperatures compared to the linear acceleration case. Moreover,
the Wightman function along a circulating detector’s trajectory does
not satisfy the KMS condition. Our general expression for the
extracted work (3.15) and (3.20) as well as the positive work
condition (3.16) and (3.22) can still be applied to such a scenario.

We consider the circular trajectory of the UDW detector, which
is given by

x τ( ) � t � γτ, x � R cos ωγτ( ), y � R sin ωγτ( ), z � 0{ }. (4.7)
Here, R( > 0) is the radius of the circle,ω is the angular velocity of the
detector, and γ � 1/

��������
1 − R2ω2

√
. One can introduce the proper

acceleration of the detector, whose magnitude a is given by
a = Rω2γ2, as well as the speed of the detector v = Rω(≤1). Using
these relations, one can write γ, ω, v in terms of a and R as follows:

ω �
���������

a

1 + aR( )R
√

, (4.8a)

γ � ������
1 + aR

√
, (4.8b)

v �
������
aR

1 + aR

√
. (4.8c)

In order to calculate the response function (2.13), one needs to
have an expression of the pullback of the Wightman function along
the trajectory (4.7). We consider a minimally coupled, massless
quantum scalar field in (3 + 1)-dimensional Minkowski spacetime.
The Wightman function in the Minkowski vacuum is given by Eq.
4.3a. Inserting (4.7), we obtain the pullback of the Wightman
function:

W x τ( ), x′ τ′( )( ) � − 1
4π2

1

γ2 Δτ − iϵ( )2 − 4R2 sin2 ωγΔτ/2( ), (4.9)

where Δτ ≔ τ − τ′. Since the Wightman function is a time-
translation invariant, the response functions do not depend on
the switching time.

FIGURE 5
(A) Extractedwork 〈Wext〉/λ2σ as a function of the interaction duration σ in units ofΩ1. Here, TC =1. The dashed lines are thework extracted (3.24) after
the detailed balance condition is satisfied. (B) Effective temperature divided by the energy gap in the case of TH = 4 and Ω2 = 3 in (A). The positive work
condition is satisfied when Teff

C /Ω1 <Teff
H /Ω2. Negative values mean that work is carried out on the system (i.e., the UDW detector).
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4.2.1 Extracted work
From the aforementioned Wightman function, we can

numerically calculate the response functions and the work
extracted for the detector in circular motion. In Figure 6, we plot
〈Wext〉/λ2σ as a function of σ in units of the energy gap Ω1 in step 1.
Figures 6A, B show the cases where p is freely chosen and tuned,
respectively. In both figures, we set Ω2/Ω1 = 1.01, RΩ1 = 1, and aC/
Ω1 = 1, and each figure includes the curves for aH/Ω1 = 2 and 3.

As in the case of the inertial detector in a thermal bath, theQOEwith
a free p (here p= 1/20) extractsmoreworkwhen the interaction duration
is short [Figure 6A], whereas if p is tuned to close the cycle, the opposite
behavior holds [Figure 6B]. However, we find that in the latter case,
unlike in Section 2.2, the extracted work does not reach a maximum at
large σ. Instead, there exists a maximum at σΩ1 ≈ 1. Nevertheless, we
confirm that this behavior is contingent on the choice of parameters.

We then plot 〈Wext〉/λ2σ as a function of the radius of the circle,
log10R, in units of Ω1 in Figure 7. Here, we set Ω2 = 2, σ = 1, aC = 1,
and each figure includes curves for aH = 3, 4, and 5. As mentioned
before, Figure 7A corresponds to the QOE with p = 1/20, while
Figure 7B depicts the result with a tuned p. Both figures exhibit a
similar pattern; a detector orbiting with a small radius R has
difficulty extracting work, and 〈Wext〉/λ2σ is maximized as R
increases, eventually asymptoting to some value at R → ∞.
Thus, the radius R of the orbit must be optimized to extract the
maximum amount of work.

4.2.2 Fixed acceleration
Although the analytic expression for the effective temperature

for a circulating detector, Tcirc, cannot be obtained in general, one
can impose an additional assumption to obtain the exact form of

FIGURE 6
Extractedwork 〈Wext〉/λ2σ by a detector in circularmotion as a function of the interaction duration σ in units ofΩ1. Here,Ω2 = 1.01 and aC = 1. (A)Case
where p is adjustable and p = 1/20; (B) case where p is tuned to complete the cycle. Each figure contains aH = 2 and aH = 3.

FIGURE 7
Work extracted by a circulating UDW detector as a function of the radius log10Rwhen (A) p is adjustable (chosen to be p = 1/20) and (B) p is tuned to
complete the cycle. Here, Ω2 = 2, σ = 1, and aC = 1 in units of Ω1. Each figure contains three cases of aH: aH = 3, 4, and 5. It should be noted that negative
values correspond to work carried out on the system (i.e., the UDW detector).
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Tcirc. Suppose that the detector is circulating at high speed v ≈ 1
(i.e., ultrarelativistic regime), which can be realized by taking a large
radius R. The effective temperature in this case is known to be
[24, 27]

Tcirc � |Ω|
ln 1 + 4

�
3

√ |Ω|
a exp 2

�
3

√ |Ω|
a( )[ ] ∈ a/4 �

3
√

, a/2 �
3

√( ). (4.10)

While the effective temperature Tcirc increases with a, it is also
possible to enhance the temperature by enlarging the energy gap Ω
with fixed acceleration. That is, for a given a, Tcirc(Ω2) > Tcirc(Ω1) if
Ω2 > Ω1. We then ask if the detector circulating at high speed with a
fixed acceleration a can extract positive work by manipulating the
effective temperature by adjusting the energy gap.

The answer to this inquiry is negative. To see this, it is easy to
check that, for a given a > 0,Ω2 >Ω10 Tcirc(Ω2)/Ω2 < Tcirc(Ω1)/Ω1,
which violates the necessary condition for positive work, (3.16) and
(3.22). Thus, we find that, for any p ∈ (0, 1), it is impossible to extract
positive work from a UDW detector in circular motion at v ≈ 1 by
fixing a. This is one example of the feature of quantum heat engines:
TC < TH does not necessarily guarantee the extraction of positive
work in quantum heat engines, but rather, one should consider TC/
Ω1 < TH/Ω2, where Ω1 < Ω2.

5 Conclusion

Inspired by the Unruh quantumOtto engines, we considered the
QOE in a general setting utilizing a UDWdetector interacting with a
quantum scalar field. While the original QOE considered a qubit
thermalized in thermal baths, we assumed that 1) the field is in a
quasi-free state, not necessarily in a KMS thermal state and 2) the
detector follows an arbitrary trajectory in curved spacetime. Using a
perturbative method, we derived the extracted work (3.15 and 3.20)
in terms of the response function of the UDW detector. In addition,
we found that the condition for extracting positive work can be
expressed in terms of the effective temperature perceived by the
detector (3.16 and 3.22). These formulas are applicable to various
scenarios outside (thermal) equilibrium. As a particular case, if the
field is in the KMS state and the detector with a rapidly decreasing
switching function interacts with it for a long time, the response
function obeys the detailed balance condition, which makes the
effective temperature identical to the KMS temperature. The
condition (3.22) then becomes the positive work condition (3.23)
originally found by [2, 3].

Using the formula for the extracted work, we explored two
concrete examples: an inertial detector in the KMS state and a
circulating detector in the Minkowski vacuum.

In the scenario of an inertial detector in thermal baths, we
numerically examined the effect of the interaction duration. The
relationship between the extracted work and the interaction
duration is drastically changed by the choice of the detector’s
initial state. Nevertheless, the extracted work asymptotes to the
value that corresponds to thermal equilibrium as the interaction
duration increases.

Another example involves a circulating detector in the
Minkowski vacuum. The motivation for this scenario comes from
the previously proposed Unruh QOE [13], in which the thermal

baths are generated by the Unruh effect. However, utilizing a linearly
accelerating UDW detector in the Unruh QOE is not practical for
several reasons, such as the work necessary for acceleration and the
requirement for a large space. The circulating detector, on the other
hand, circumvents these issues. Moreover, the QOE with a
circulating detector can be adequately examined only when our
general framework is employed. The Wightman function pulled
back along the circular trajectory does not satisfy the KMS
condition, which suggests that the use of the effective
temperature is necessary.

The work extracted by the circulating detector showed behavior
similar to that of the inertial detector in a thermal bath. However, we
found that there exist optimal values for the interaction duration and
radius of the orbit to extract maximum work. Furthermore, we
showed that the detector cannot extract work with a fixed
acceleration due to the violation of the positive work condition.

An interesting extension to our work would involve exploring
quantum heat engines using non-quasi-free states. In particular,
coherent and squeezed states—which are not quasi-free—are of
particular interest in a variety of settings. It would be interesting to
see how a non-vanishing one-point correlator contributes to the
cycle.
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