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For large infrastructures, dynamic displacement measurement in structures is an
essential topic. However, limitations imposed by the installation location of the
displacement sensor can lead to measurement difficulties. Accelerometers are
characterized by easy installation, good stability and high sensitivity. For this
regard, this paper proposes a structural dynamic displacement estimation
method based on a one-dimensional convolutional neural network and
acceleration data. It models the complex relationship between acceleration
signals and dynamic displacement information. In order to verify the reliability
of the proposed method, a finite element-based frame structure was created.
Accelerations and displacements were collected for each node of the frame
model under seismic response. Then, a dynamic displacement estimation dataset
is constructed using the acceleration time series signal as features and the
displacement signal at a certain moment as target. In addition, a typical neural
network was used for a comparative study. The results indicated that the error of
the neural network model in the dynamic displacement estimation task was
9.52 times higher than that of the one-dimensional convolutional neural
network model. Meanwhile, the proposed modelling scheme has stronger
noise immunity. In order to validate the utility of the proposed method, data
from a real frame structure was collected. The test results showed that the
proposed method has a mean square error of only 5.097 in the real dynamic
displacement estimation task, whichmeets the engineering needs. Afterwards, the
outputs of each layer in the dynamic displacement estimationmodel are visualized
to emphasize the displacement calculation process of the convolutional neural
network.
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1 Introduction

With the development of structural health monitoring, the safety of some structures,
such as high-rise buildings [1, 2], bridges [3, 4], and rapid transit [5, 6], has gradually
attracted public attention. These structures may be affected by natural disasters such as
typhoons and earthquakes. These natural disasters could cause structural damage and even
lead to major accidents. Therefore, these structures are usually equipped with structural
health monitoring systems and a large number of sensors [7–10] are placed to monitor the

OPEN ACCESS

EDITED BY

Hairong Lin,
Hunan University, China

REVIEWED BY

Fuhong Min,
Nanjing Normal University, China
Wei Yao,
Changsha University of Science and
Technology, China

*CORRESPONDENCE

Yuanpeng He,
he.yuanpeng@outlook.sg

RECEIVED 08 September 2023
ACCEPTED 09 October 2023
PUBLISHED 18 October 2023

CITATION

Zhou X and He Y (2023), Dynamic
displacement estimation of structures
using one-dimensional convolutional
neural network.
Front. Phys. 11:1290880.
doi: 10.3389/fphy.2023.1290880

COPYRIGHT

© 2023 Zhou and He. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 18 October 2023
DOI 10.3389/fphy.2023.1290880

https://www.frontiersin.org/articles/10.3389/fphy.2023.1290880/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1290880/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1290880/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1290880/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1290880&domain=pdf&date_stamp=2023-10-18
mailto:he.yuanpeng@outlook.sg
mailto:he.yuanpeng@outlook.sg
https://doi.org/10.3389/fphy.2023.1290880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1290880


safety of the structure. The most common sensors used in structural
safety monitoring are accelerometers, fiber-optic gratings, strain
gauges, displacement gauges, and so on. However, structural
displacement monitoring has been a challenge in the monitoring
field. Due to the limitation of structural space, it is sometimes
difficult to find suitable locations for sensor installation, such as
dynamic displacement detection in bridges. Even if there is enough
space in the structure to install sensors, only relative displacement
can be measured. Acceleration is easier to monitor than
displacement. Furthermore, acceleration sensors can be connected
directly to the test point. In addition, acceleration sensors are small
and convenient and do not require a large installation space, so
acceleration monitoring is easy to implement in engineering
applications.

Despite the many difficulties in displacement monitoring, many
innovative monitoring methods based on certain sensors have been
proposed, such as lasers [11, 12], cameras [13, 14], radar [15], and global
positioning systems [16]. These methods have been widely used in real
structures, and even some sophisticated measurement devices such as
laser displacement sensors, total stations, and millimeter wave radars
have emerged. However, these displacement measurement devices still
require a large installation space. They can only measure the relative
displacement of the structure, and the actual displacement of the
structure is difficult to measure. For bridge deflection measurement,
it is impossible to build scaffolding on both sides of the bridge to install
the sensors. Therefore, the installation space is a key issue that restricts
the displacement measurement. In addition, there are many indirect
monitoring methods based on acceleration data. Theoretically, the
displacement signal can be obtained by double integration of the
acceleration signal. The monitoring of acceleration signals is very
easy to achieve, so some dynamic displacement measurement
methods based on acceleration signals have been proposed. However,
these methods may result in a continuous error trend in the
displacement signal. Various algorithms for eliminating the error
trend [17–20] have been extensively studied. The methods for
removing the error trend are mainly classified into three types: time-
domain integration, filtering, and frequency-domain integration. These
integrationmethods arefixed signal processingmethods that are not able
to adapt to changes in the environment and uncertainty in the data. In
complex and dynamic environments, these methods may not be able to
adapt and process data efficiently. They are mostly used for linear signal
processing and have limited ability to deal with nonlinear problems.
However, many phenomena in engineering are non-linear issues [21].
Machine learning methods are better able to cope with nonlinear
problems and improve performance by learning the nonlinear
relationships of the data. Compared to machine learning, they have
some limitations in terms of data dependency, feature design, adaptivity
and non-linear problemhandling. In addition, some neural networks are
devoted to address multimodal functional synchronization [22, 23] and
communication security [24]. Machine learning methods are more
flexible in dealing with different types of data and can automatically
learn features and patterns from data, making them more applicable in
dealing with complex and uncertainty-prone problems.

In recent years, Convolutional Neural Network (CNN) has
made great achievements in the field of object recognition. It is
widely used in various fields, such as image recognition [25–28],
medical diagnosis [29, 30], traffic safety [31, 32], crack detection [33,
34], pedestrian identification [35], and bolt loosening monitoring

[36, 37]. These research results show that convolutional neural
networks can accurately model numerous complex systems
relying on big data. Li et al. accurately identified concrete surface
cracks using a semantic segmentation algorithm based on
convolutional neural networks [38, 39]. According to the
semantic recognition results, they extracted the crack parameters
and analyzed the fractal characteristics of the surface cracks from
different specimens using image processing techniques. Zhang et al.
used a convolutional neural network to process the time-frequency
features of the seismic response, which were subsequently input into
a dynamic network to complete the signal classification [40]. The
convolutional neural network can deeply analyze the two-
dimensional time-frequency features, and the dynamic network
further improves the efficiency of signal processing [41]. All of
these monitoring methods are based on two-dimensional
convolutional neural networks, but one-dimensional convolutional
neural networks [42, 43] also have great advantages in data processing.
In recent years, convolutional neural networks have achieved
remarkable results in the field of image processing. Consequently,
the integration of CNNs and machine vision has become widely
prevalent. However, when it comes to extracting localized features in
image processing, the commonly employed approach is the
utilization of two-dimensional CNNs. One-dimensional
convolutional neural networks are commonly used to process
one-dimensional signals, such as acceleration signals. Two-
dimensional convolutional neural networks cannot directly
process one-dimensional signals. Of course, one-dimensional
signals can be converted into two-dimensional features, such as
time-frequency features for processing by two-dimensional
convolutional neural networks. However, one-dimensional
convolutional neural networks can directly extract features from
one-dimensional signals without additional conversion steps to
achieve good recognition results. In addition, convolutional
neural networks have the ability of autonomous learning. There
is a simple integral relationship between acceleration and
displacement at the same point. Although there is a trend term,
the convolutional neural network has a strong learning ability to
learn how to remove the trend term. In addition, the convolutional
neural network has the ability to extract data features and optimize
them without human intervention. Convolutional neural networks
are very effective in processing data.

In this paper, a new method for estimating dynamic
displacements of structures using one-dimensional convolutional
neural networks and acceleration is presented. The method is used
to estimate the dynamic displacement of a three-layer finite element
model and a three-layer steel frame. A typical neural network
algorithm provides a reference for the proposed CNN method.
Section 2 describes the neural network and convolutional neural
network used in this paper. A finite element model is designed in
Section 3. Under the effect of Wenchuan earthquake wave, the
acceleration signal and displacement signal of each node of the
model are collected to form a dataset. The data set is divided into
training set, validation set and test set. The training and validation
sets are fed into the neural network and the proposed convolutional
neural network. To validate the noise resistance of the proposed
method, four noise levels (i.e., 10%, 20%, 30%, and 40%) are added to
the acceleration signals to examine the robustness of the CNN to
noisy data. These data were directly fed into the training model,
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which was trained by the noise-free dataset. The results show that
the convolutional neural network is robust to noise. In Section 4, a
three-layer steel frame is constructed and the acceleration signals
and displacement signals of the nodes of the frame are collected by
acceleration sensors and displacement sensors. The training and
validation sets are fed into the proposed convolutional neural
network. The results show that the mean square error (MSE) of
the displacement estimation is 5.097, which can meet the
engineering needs. Subsequently, the output of each layer is
visualized to understand how the convolutional neural network
processes the data. Section 5 discusses the article. Section 6
summarizes the article.

2 Methodology

This paper presents a dynamic displacement estimation method
based on a one-dimensional convolutional neural network and
acceleration signals. The method uses acceleration signals and an
estimation model trained by a convolutional neural network to
estimate the dynamic displacement of the structure. The estimation
results of the neural network method can be used as a reference for
the proposed convolutional neural network method. The following
section describes the neural network and convolutional neural
network in detail. In this paper, a workstation is used to train
the model and computational frameworks such as TENSORFLOW
and KERAS are applied.

2.1 Neural network

Neural network algorithms are generated by modelling the
working of human neurons. A neural network generally consists
of an input layer, a hidden layer, and an output layer, as shown in
Figure 1. Sometimes, a neural network may have more than one
hidden layer. In a fully connected neural network, neurons between

two neighboring layers are connected exactly in pairs. The weights
refer to the strength or amplitude of the connection between two
neurons. During training, these connection weights are updated
until the global error of the network approaches a minimum. In the
parameter update calculation, this is typically done using a gradient
descent algorithm. The key to the gradient descent algorithm is the
calculation of the gradient, which tells us how to update the
parameters to minimize the loss function. Gradient descent
algorithms generally include Batch Gradient Descent, Stochastic
Gradient Descent and Mini-Batch Gradient Descent [44]. They
differ in the number of samples used each time the parameters
are updated. Gradient descent algorithms have the advantage of
being simple to implement and can be used to optimize a variety of
loss functions.

The neural network used in this paper consists of one input
layer, two hidden layers and one output layer, as shown in Tabel 1.
The number of neurons in the input layer is 50, the number of
neurons in the first hidden layer is 30, the number of neurons in
the second hidden layer is 20, and the number of neurons in the
output layer is 1. In general, the raw data usually has highly dense
features, and the complex features can be transformed into sparse
features. This can enhance the robustness of the features.
Therefore, introducing an activation function in the neural
network can improve the data sparsity. However, a large
proportion of sparsity can destroy the characteristics of the
data and affect the learning effect of the neural network. The
sparsity ratio of human brain is 95%. Due to the property of
Rectified Linear Unit (ReLU) (negative output of x is 0), Rectified
Linear Unit (ReLU) can be generated for alternate networks.
ReLU is shown in Figure 2. ReLU is a nonlinear activation
function that helps the neural network model to learn
nonlinear relationships. This is important for solving complex
problems and fitting nonlinear data. In addition, the output of
ReLU is 0 when the input value is less than 0. This means that
there will not be any negative signals passed to the next layer of
neurons. This sparse activation can help the network learn more
robust feature representations and reduce redundancy between
features [45]. Compared to other activation functions such as
sigmoid and tanh which have small gradients over positive
intervals, ReLU has constant gradients over positive intervals,
reducing the problem of gradient vanishing and facilitating the
training of the network.

The loss function is mainly used to measure the difference
between the predicted value and the actual value. When the
predicted value is closer to the actual value, the value of the loss
function is smaller. When the predicted value is closer to the actual
value, the value of the loss function is smaller. In neural networks,
the loss function is the mean square error (MSE), which is often used
in regression problems. The MSE can be calculated as the square of
the difference between the actual value and the predicted value. The
formula is as follows:

MSE � 1
n
∑
n

i�1
actuali − predictedi( )2 (1)

where n is the number of samples; actual is the actual value;
predicted is the predicted value; i is the i-th sample. In order to
comprehensively assess the impact of noise on the proposedmethod,

FIGURE 1
Neural network diagram.
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three evaluation metrics such as Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and R2 are also calculated.

MAE � 1
n
∑
n

i�1
actuali − predictedi

∣∣∣∣
∣∣∣∣ (2)

MAPE � 100%
n

∑
n

i�1

actuali − predictedi

actuali

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ (3)

R2 � 1 −
∑
n

i�1
actuali − predictedi( )2

∑
n

i�1
actuali −mean( )2

(4)

where mean represents the mean value of the real sample.

2.2 Convolutional neural network

The major difference between convolutional neural networks
and ordinary neural networks is the convolution operation. To
illustrate the advantages of convolutional neural networks, the
proposed convolutional neural network uses the same activation
function and loss function as the fully connected neural network.
The architecture of the convolutional neural network is different
from the fully connected neural network. Convolutional neural
network contains convolutional layer, maximum pooling layer,

flat layer and dense (fully connected) layer. Each neuron in a
neural network is connected to all the previous layers of neurons,
which leads to a large increase in the number of parameters.
Whereas in CNN only the inputs that are within the range of the
convolutional kernel will be selected for connection, which reduces
the number of parameters and increases the computational
efficiency. The detailed parameters of the convolutional neural
network are shown in Table 2.

2.2.1 Convolutional layer
The convolutional layer is an important part of a convolutional

neural network. The convolutional kernel extracts feature from the
input data. CNNs use the convolutional kernel to perform sliding
window operations on the input data, reducing the number of
parameters in the network by means of parameter sharing. This
makes CNNs more efficient in processing data with spatial and
temporal relationships and allows spatially localized features to be
extracted [46]. The convolution operation (⊗) starts from the top left
corner of the input data. The parameters of the convolution kernel
are multiplied with the parameters of the overlay region. The
product values are added together as the output of the
convolution operation. The convolution kernel is then shifted
one element to the right or down (stride is 1) for the next
convolution. The initial parameters of the convolution kernel are
randomly generated. During the training process, the parameters of

TABLE 1 Architecture of the neural network.

Layer Number of neurons Activation function Number of trainable parameters

Input 50 ReLU 2550

Hidden layer#1 30 ReLU 1530

Hidden layer#2 20 ReLU 620

Output 1 ReLU 21

FIGURE 2
Activation function.
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the convolution kernel are updated until the end of training. An
example of a convolution operation is shown in Figure 3.

2.2.2 Pooling layer
The pooling layer, also known as the down sampling layer, is

mainly used to reduce the size of the feature data. CNNs use a
pooling layer to reduce the spatial size of the feature map, to extract
the positional information of the features and at the same time to
preserve the most salient features in the feature map. Similar to
convolutional layers, pooling layers allow for parameter sharing.
This means that pooling operations performed in a local region use
the same parameters, which can effectively reduce the number of
parameters in the network and improve the computational
efficiency of the model. In addition, like convolutional layers,
pooling layers have a kernel. However, the pooling kernel does
not contain any parameters. The most common pooling operation is
maximum pooling. By selecting the maximum value within a local
region, maximum pooling captures the most salient features. It is
very effective in highlighting the most important and active features
in the data [47]. An example of the max pooling operation is shown
in Figure 4. For mean pooling, the input features can be smoothed by
averaging them to reduce noise and redundant information.

2.2.3 Flatten layer
In this paper, the input data to the network is one-dimensional

data. One convolutional kernel in the convolutional layer is
convolved with the input data to generate one-dimensional data
and multiple convolutional kernels are convolved with the input
data to generate multidimensional data. The input data of the dense
(fully connected) layer must be one-dimensional data. Therefore, the
multidimensional data is transformed into one-dimensional data by
the Flatten layer. The Flatten layer transforms the multidimensional
input data into one-dimensional vectors, allowing the subsequent
fully-connected layer to process the entire input. It is useful for
processing multidimensional data, and after converting the input
data into a one-dimensional form, the common neural network
architecture can be used in the fully connected layer.

3 Numerical simulation

3.1 Dataset generation

The finite element model was created by ABAQUS. Themodel is
a three-storey frame structure with a storey height of 4,500 mm and

TABLE 2 The parameters of the convolutional neural network.

Layer Input shape Output shape Kernel size Kernel number

Convolution 1-D (50,1) (46,6) 5 6

Convolution 1-D (46,6) (42,12) 5 12

Convolution 1-D (42,12) (38,64) 5 64

Convolution 1-D (38,64) (34,128) 5 128

Max Pooling 1-D (34,128) (17,128) 2 128

Flatten (17,128) (2176) None None

Dense 2176 (1) None None

FIGURE 3
Example of convolutional operation.
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a span of 7,200 mm. The beams and columns are made of Q235 steel.
The seismic intensity is 8°. The finite element model and node
numbers are shown in Figure 5.

The Wenchuan seismic waves are input into the finite element
model and then the acceleration and displacement signals of twelve
nodes (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 and 13) are collected. The
acceleration signals with a duration of 0.5 s at each node will be used
as inputs to the neural network and convolutional neural network.
The sampling frequency is 100 Hz, so the input data is a 50 ×
1 vector. The output of the network is the displacement signal (1 × 1)
at the end of the corresponding 0.5 s interval. The acceleration and

FIGURE 4
Example of pooling operation.

FIGURE 5
The finite element model and node number.

FIGURE 6
The MSE curves of the two methods. (A) NN. (B) CNN.
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displacement signals form the dataset. There are a total of
2,387 samples in this data set. The samples in the dataset are
then randomly arranged, with 1,600 samples as the training set,
400 samples as the validation set, and 387 samples as the test set.

3.2 Estimation result

In this section, the dataset is trained using a fully connected
neural network (NN) and the proposed convolutional neural
network (CNN)-based modelling approach, respectively. In
order to verify the advantages of convolutional neural network,
the proposed convolutional neural network uses the same
activation function and loss function as the fully connected
neural network. The activation function is ReLU and the loss
function is Mean Square Error (MSE). The MSE curves of the two
methods are shown in Figure 6. From the figure, it can be seen that
when the epoch is 200, the MSE curve of CNN remains basically
unchanged. When the epoch is 450, the MSE curve of NN remains
basically unchanged. This shows that CNN has stronger feature
extraction ability and only 200 epochs are needed to reach the
convergence state. The number of epochs for NN to reach the
convergence state is 2.25 times more than that of CNN. In CNN,
the MSE is 0.899 for the training set and 3.426 for the validation
set. In NN, the MSE is 22.386 for the training set and 24.198 for the
validation set. When the number of training epochs is less than 80,
the MSE of the NN is too large. In order to facilitate the
comparison of the effects from the two types of networks, MSE
comparisons from 80 epochs to 200 epochs were chosen for this
section, as shown in Figure 7. As can be seen from the figure, the
MSE of NN gradually decreases from 350 to around 50 whereas the
MSE of CNN is very small. As can be seen in the local figure, the
MSE of the CNN is only 1.5 when the epoch number is 140. In
contrast to NNs, CNNs have significant training efficiency and
accuracy in dynamic displacement estimation task.

There were 387 samples in the test set. The predicted displacements
are automatically generated by feeding these samples into the
displacement estimation model generated by the above two methods.
The predicted displacements based on the fully connected neural
network are shown in Figure 8. From the figure, it can be seen that
the predicted displacement curve based on the fully connected neural
network method partially overlaps with the actual displacement curve,
and the MSE of the test set is 29.489. It can be seen that the predicted
displacements generated by the fully connected neural network have a
good degree of overlap with the actual displacements.

The results of displacement prediction based on convolutional
neural network are shown in Figure 9. It can be seen that the
displacement curve predicted based on convolutional neural
network has a great overlap with the actual displacement curve.
The MSE of the test set is 3.096, which indicates that the CNN has
high accuracy in estimating the dynamic displacement of the
structure. For the same test set, the MSE of the convolutional

FIGURE 7
Comparison of the training loss curves between the two
networks.

FIGURE 8
The predicted displacement based on NN.

FIGURE 9
The predicted displacement based on CNN.
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neural network is much smaller than that of the fully connected
neural network, and the number of training episodes of the
convolutional neural network is also smaller than that of the
fully connected neural network. Therefore, compared with the
fully connected neural network, the proposed convolutional
neural network performs better in displacement estimation with
both higher estimation accuracy and higher modelling efficiency.

3.3 The effects of noise

Noise is inevitable in data acquisition systems. Meanwhile, disturbed
by the external environment, there are often more noise signals and
uncertainties in the sensor-based sensory data. In order to verify the noise
resistance of the proposed convolutional neural network, four noise levels
(i.e., noise-to-signal ratios of 10%, 20%, 30%, and 40%, respectively) are
added to the acceleration signals to investigate the robustness of the CNN
to noisy data. These data were directly fed into the trained dynamic

displacement estimation model, which was trained and updated from
noisy data samples. The dynamic displacement prediction results based
on convolutional neural network are shown in Figure 10. It can be seen
that the displacements predicted by the convolutional neural network still
have good accuracy under the influence of noise. Since the effects of the
four noise levels on the convolutional neural network are basically the
same, only the predicted displacements based on the test set for two noise
levels (10% and 40%) are shown in the figure. Four evaluation indicators
(MSE, MAE, MAPE, and R2) based on the test set for each of the four
noise levels are calculated in Table 3. These four-assessment metrics
change very little as the noise-to-credit ratio continues to increase.
Especially for R2, its value is always 0.991. The results showed that
the convolutional neural network is robust against noise. The noise of
data acquisition has little effect on it because the convolutional and
pooling layers in the convolutional neural network are similar to filters
and are more powerful than normal filters.

4 Physical model test

4.1 Dataset generation

In Section 3, acceleration and displacement signals are generated
by numerical simulation. The dataset is trained to estimate the
dynamic displacements. However, the data generated by numerical
simulation is idealized. The acceleration and displacement signals of
the actual structure are acquired by sensors. The data collected by
the sensors is incomplete and complex due to the noise and missing
data characteristics of the sensors. Therefore, it is necessary to verify
the effect of the proposed convolutional neural network on the
actual structure. The design of the actual frame structure is shown in
Figure 11. In the case where the real frame structure is subjected to
transient excitation, the acceleration and displacement signals of the
nodes are collected by piezoelectric accelerometers and laser
displacement sensors. The piezoelectric accelerometers and laser
displacement sensors are acquired at a frequency of 100 Hz. This
real dynamic displacement estimation dataset is formed in the same
way as in Section 3. The dataset contains a total of 2,333 samples, of
which 1,600 samples are used as the training set, 400 samples are
used as the validation set, and 333 samples are used as the test set.

4.2 Estimation result

The training set is fed into the proposed convolutional neural
network. The MSE curve is shown in Figure 12. It can be seen that

FIGURE 10
The predicted displacements based on test set with noise. (A)
10%. (B) 40%.

TABLE 3 Estimation error for test samples with varying degrees of noise.

Noise-to-signal
ratios (%)

MSE MAE MAPE (%) R2

0 3.096 1.032 19.2 0.991

10 3.115 1.030 18.8 0.991

20 3.106 1.041 19.3 0.991

30 3.121 1.039 19.4 0.991

40 3.124 1.037 19.3 0.991
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the MSE curve remains almost constant when the epoch is 250. This
indicates that the model has basically reached the convergence state.
TheMSE based on the training set is 5.097 and theMSE based on the
validation set is 10.770. The MSE value can satisfy the need of
engineering design.

The test set contains 333 samples and the test set is fed into the
dynamic displacement estimation model. The predicted and actual
displacements are shown in Figure 13. It can be seen that the
predicted displacement curves are in high agreement with the
actual displacement curves. The MSE based on the test set is
6.150. The results show that the displacement estimation method

based on convolutional neural network can accurately estimate the
displacement signal using the acceleration signal.

4.3 Visualization of the output

A neural network is similar to a black box. It is difficult to
understand and does not give direct visualization of the output. Data
processing in neural networks is invisible. Convolutional neural network
is one of the neural networks which also has this characteristic.
Therefore, in order to have a clearer understanding of how
convolutional neural networks process data, we have visualized the
output of the hidden layer of the convolutional neural network. The
proposed convolutional neural network consists of an input layer, four
convolutional layers, a pooling layer, a flattening layer and an output
(dense) layer. In convolutional neural network, convolutional and
pooling layers are the core components.

In this section, the output of the convolutional layer and the pooling
layer is visualized. The first sample data in the test set is shown in
Figure 14A, and the curve fluctuates between 150 and 1000 mm/s2. The
input data is passed to the first convolutional layer. The first
convolutional layer has 6 convolutional kernels. Each convolution
kernel processes the input data to produce a 46 × 1 vector.
Therefore, there are 6 vectors (46 × 1). One of the vectors is shown
in Figure 14B, where the curve fluctuates between 50 and 300. The
second convolutional layer has 12 convolutional kernels, and there are
12 vectors (42 × 1). One of the vectors is shown in Figure 14C, and the
curve fluctuates between 0 and 100. The third convolutional layer has
64 convolutional kernels and a total of 64 vectors (38 × 1). One of the
vectors is shown in Figure 14D, and the curve fluctuates between 3 and
16. The fourth convolutional layer has 128 convolutional kernels with
128 vectors (34 × 1). One of the vectors is shown in Figure 14E, and the
curve fluctuates between 0 and 2. As the data is processed through the
convolutional layers, the value of each data becomes smaller. The pooling
layer has 128 convolutional kernels and a total of 128 vectors (17 × 1).
One of the vectors is shown in Figure 14F, where the curve fluctuates
between 0 and 2. It can be seen that the pooling layer does not change the
value of the data, but reduces the amount of data. The data curve

FIGURE 11
Physical frame structure.

FIGURE 12
The MSE curves.

FIGURE 13
The predicted displacements and actual displacements.
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becomes smoother after the data is processed by the pooling layer. The
convolutional and pooling layers can also act as filters, so the
convolutional neural network has strong noise immunity. Although
the size of the output vector of the hidden layer is decreasing, the overall
shape of the original data is still well preserved.

The output of the pooling layer is a multidimensional vector. The
Flatten layer then converts the multidimensional vectors into one-

dimensional vectors. The Flatten layer rearranges the data into a one-
dimensional form, preserving the feature order of the multidimensional
vectors. This allows the subsequent Fully Connected layer to learn based
on the overall features of the input and to model the relationships
between the features. The one-dimensional vectors are fed into the fully
connected (dense) layer. Finally, an estimate of the dynamic
displacement is output. Table 4 shows the predicted and actual

FIGURE 14
The output of hidden layers. (A) input data. (B) output of 1st convolutional layer. (C) output of 2nd convolutional layer. (D) output of 3rd convolutional
layer. (E) output of 4th convolutional layer. (F) output of pooling layer.
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values of the first 10 samples in the test set. It can be seen that only the
sixth and ninth samples have an error greater than 10%, while the other
samples have an error between 0.15% and 9.30%. The average error is
6.69%, so the proposed method can meet the engineering needs.

5 Discussion

In this paper, a 1D convolutional neural network is used for data-
driven modelling of the complex relationship between acceleration
signals and dynamic displacements. The dynamic displacement
estimation method based on convolutional neural network is
verified by numerical simulation to be superior to the method
based on fully connected neural network in terms of accuracy,
stability and convergence efficiency. Noise is added to the test set
and these data are directly fed into the dynamic displacement
estimation model which is trained from noise-free data samples. It
is worth noting that the displacements estimated by the convolutional
neural network model still have good accuracy under the influence of
noise. Subsequently, a real frame structure is used to verify the
feasibility of the proposed method in real engineering applications.
Although the root-mean-square error of the predicted displacements
of the real structure is larger than the root-mean-square error of the
predicted displacements of the finite element model, the predicted
displacements of the real structure satisfy the engineering needs. This
is mainly due to the fact that the sensors are affected by many factors
when sensing the dynamic characteristics of the structure, and the
collected signals contain more noise and uncertainty. The results of
the output visualization of the convolutional neural network show
that the convolution operation not only reduces the amount of data,
but also reduces the data values. In addition, the convolutional and
pooling layers act as filters, which results in a convolutional neural
network with strong noise immunity.

6 Conclusion

In this paper, a dynamic displacement estimation method based
on convolutional neural network and acceleration is proposed. The
acceleration and displacement signals are trained to generate an

estimation model. The acceleration data is input into this
estimation model, and the displacement estimate can be output
automatically. Numerical simulations and physical model tests
verify the feasibility and stability of the method. Some important
results are obtained: the 1D convolutional neural network can
accurately model the complex relationship between acceleration
timing signals and displacement signals; the convergence efficiency
of the convolutional neural network is much greater than that of a
typical neural network when modelling the complex relationship
using the convolutional neural network. The updating efficiency of
the former is 2.25 times that of the latter; due to the existence of the
convolution kernel in the convolutional neural network, it can filter
the data and has a strong anti-noise ability; in this paper, the
visualization part at the end fully reflects the filtering effect of the
convolution kernel on the noise. The proposed method can easily and
quickly estimate the dynamic displacement of structures using
acceleration information. It also still shows good results in noisy
environments. However, the proposed method is affected by the
accuracy of the acceleration signal. To further improve the
accuracy of displacement estimation, multi-sensor fusion such as
accelerometers and strain gauges can be considered. In addition,
deep learning architectures based on multi-sensor fusion need to
be further explored.
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TABLE 4 The predicted error of test set.

Count Predicted value Actual value Error (%)

1 19.342 19.635 1.49

2 14.212 15.670 9.30

3 −25.742 −27.300 5.71

4 22.301 24.305 8.25

5 14.447 14.425 0.15

6 −5.952 −7.172 17.01

7 −3.662 −3.892 5.91

8 −24.783 −25.935 4.44

9 −23.849 −26.812 11.05

10 16.703 16.120 3.62
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