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Infectious diseases have constantly threatened human safety because the
diffusion of the susceptible and infected may make more individuals infected
and even die. In this paper, a modified SIR model with both external stimulus and
diffusion is considered to illustrate the dynamical mechanism of the periodic
outbreak and pattern formation. Firstly, we propose a modified SIR model based
on the propagation behaviour of infectious diseases to show the effects of the
different parameters and diffusion on the outbreak. The Hopf bifurcation and
multiscale methods are performed to analyze the stability of this model, which
explains the dynamical mechanism of the periodic outbreak. Then, the pattern
formation and Turing instability are discussed through comparison principles to
reveal the role of periodic disturbances and diffusion in selecting pattern
formation. Also, we find rich patterns that may occur when the frequency
modulation is close to the intrinsic frequency. Finally, our theoretical results
are verified by numerical simulation.
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1 Introduction

Infectious diseases have always been a threat to human safety because the diffusion of the
susceptible and the infected plays a vital role in spreading infectious diseases, which is hard to
get a perfect solution. And mathematical models have long been proposed to show the
evolution of infectious diseases [1–4]. The coronavirus outbreak has had an enormous
impact on the global economy. There was a global economic downturn and mass
unemployment. Many countries are already experiencing economic downturns due to
the COVID-19 pandemic. Many scholars made use of the existing data to model and
predict the development trend of the epidemic [5–7] and gave some suggestions on epidemic
control from the perspective of mathematics. Xiao et al. analyzed the piecewise incidence rate
in a SIR system to show the effect of threshold densities and control intensities on the
outbreak of infectious disease [8]. The equilibrium states were investigated based on a
Fourier analysis to show the dynamical mechanism of the seasonality of the disease in an
SEIR model with delay [9]. But some challenges in understanding the spread of infectious
diseases remain to be solved [10, 11]. An SISmodel with delays is studied to show the effect of
an awareness program on disease control through local stability, bifurcation analysis, and
realistic simulations [12]. And the optimal control of a SIR model was proposed to study the
existence, global stability, and backward bifurcation of the equilibrium [13], which is very
important for the prevention of infectious diseases. Then an SVEIR was developed with the
temporary immunity period to predict the dynamical behaviors and the evolution of the
infectious diseases in the long run [14]. Zheng et al. constructed a network-organized SIR
model to show the effects of the network structured entropy and diffusion on the bifurcation
and Turing instability. They explained the dynamical mechanism of the periodic outbreak
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and endemic diseases through wavenumber [15], after that, the
influences of directed network [16], driving factors [17] and time-
delay network [18] on the pattern formation of epidemic model are
given. Pattern formation provides new insight into the spread of
infectious diseases, and relationships between pattern formation and
the region of infectious diseases were introduced in the SIR reaction-
diffusion model, which provided an optimal control method for the
epidemic [19]. But some work on the SIR model with constant
stimulation from other areas should be done further.

The study of system stability is a basic problem [20–22], and
using pattern is an essential means to study stability. Patterns are
a cluster phenomenon that could describe the distribution of the
species, which had been used in biology, chemistry, population,
etc. [23]. Turing first tried explaining the dynamical and
biological mechanisms of pattern formation in the reaction-
diffusion system [24]. Subsequently, much work about pattern
and its dynamical behavior had been done [25–29]. It is found
that the localized interactions (diffusion) could induce the
spatial patterns in ecosystems through spatial self-
organization, which is beneficial to explain the mechanism of
regular pattern formation [30]. And a general delay was
considered to show the stability of a reaction-diffusion
population model through Hopf bifurcation [31]. Then
studies showed that Turing instability was easier to occur in a
stochastic activator-inhibitor system than the classic Turing
system [32]. Turing instability generally occurs when the
activator and inhibitor diffusion coefficients are sufficiently
different, which is not physical in some systems. Haas and
Goldstein found that Turing instability was more likely to
happen and physical when the diffusing species increases
[33]. Galbraith et al. showed that stochastic fluctuations could
induce the switching between ordered and disordered patterns
[34]. But how the external disturbance affects the pattern
formation through the occurrence of Turing instability is still
being explored.

The spread of infectious diseases is often disturbed by an
external stimulus (diffusion, environmental factor, external
input, vaccine, etc.), which may induce nonconstant
parameters. The differences between external stimulus and
prevention strategies could lead to the different distribution
of infectious diseases in some areas. Meanwhile, the periodic
behaviors and diffusion of the epidemic have always been an
important feature of infectious diseases and are still in the
research stage. To further study the effect of external stimulus
and prevention strategies on the spread of the epidemic in
different areas, we investigate the stability of a modified SIR
model through multiscale methods and comparison principles.
Firstly, a modified SIR model is proposed based on the actual
situation, which could describe the periodic outbreak of
infectious diseases through Hopf bifurcation. Then the form
of bifurcation is analyzed and derived by multiscale methods to
explain the function of parameters in the periodic behaviors.
Also, the condition of Turing instability is given through
comparison principles, which verifies the role of the
disturbance parameters and diffusion coefficients in selecting
pattern formation. Finally, numerical simulations are performed
to prove our theoretical results.

2 The modified SIR model and its
stability

Infectious diseases seriously threaten human health, which can’t
even be eliminated. Therefore, we have to consider the individuals’
coexistence and the epidemic. Meanwhile, the importation of the
infected will become the norm if the mortality stays lower. But the
epidemic will still affect individuals’ everyday life. Therefore, we
have to consider the effect of the imported on the SIR model based
on the existing model [1–4],

dS

dt
� b1 − b2S − b3SI

2 − θS,

dI

dt
� b2S + b3SI

2 − b4I − b5I,

dR

dt
� b4I − b5R,

(1)

where b1 is the birth of the susceptible, b2S represents the infected
induced by the imported (or the natural source), b3SI

2 is the infected
influenced by the local cases, b4 is the recovery, θ is the natural
mortality rate, b5 is the mortality rate caused by infectious diseases
and associated sequelae. Also, bi ≥ 0 (i = 1, . . . , 5) and system (1)
goes back to the most primitive version of SIR model [1–3] when
b2 = 0 holds.

In general, the mortality of the susceptible θ is very low in
comparison with the birth rate of the susceptible [35], which can be
negligible compared to the overall population. Hence, we investigate
the following system in this paper.

dS

dt
� b1 − b2S − b3SI

2,

dI

dt
� b2S + b3SI

2 − b4I − b5I,

dR

dt
� b4I − b5R,

(2)

where the only equilibrium point is

S* � b1 b4 + b5( )2
b1

2b3 + b2 b4 + b5( )2, I* �
b1

b4 + b5
, R* � b1b4

b4 + b5( )b5.

For convenience, system (1) can be reducible to system (3)
because dR

dt � b4I − b5R does not work in the stability of system (3).

dS

dt
� b1 − b2S − b3SI

2,

dI

dt
� b2S + b3SI

2 − b4I − b5I,
(3)

and the Jacobian matrix of system (3) at (S*, I*) is

J ]( ) � a11 a12
a21 a22

[ ],
where

a11 � −b3I*2 − b2 � − b1
2b3

b4 + b5( )2 − b2,

a12 � −2 S*I*b3 � −2 b12 b4 + b5( )b3
b1

2b3 + b2 b4 + b5( )2,

a21 � b3I*
2 + b2 � b1

2b3
b4 + b5( )2 + b2,

a22 � 2 S*I*b3 − b4 − b5 � 2 b1
2 b4 + b5( )b3

b1
2b3 + b2 b4 + b5( )2 − b4 − b5,
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and the characteristic equation is

|λE − J ]( )| � λ2 + α ]( )λ + β ]( ) � 0,

where ] (] is one of b1, b2, b3, b4 + b5) can be treated as the control
parameter,

α ]( ) � − 2 b1
2b3 b4 + b5( )

b1
2b3 + b2 b4 + b5( )2 +

b1
2b3

b4 + b5( )2 + b2 + b4 + b5,

β ]( ) � b1
2b3

b4 + b5
+ b2 b4 + b5( ).

It is easy to know that α(]c) = 0 and β(]c) > 0 cause the
occurrence of Hopf bifurcation [36]; Yang [37]. Meanwhile, the
frequency value is μc �

�����
β(]c)

√
. The critical value b11, b12 of b1 is

b11 �
b4 + b5( )

����������������������������������������
2b3 b4 + b5 − 2 b2 −

��������������������
b4 + b5( )2 − 8 b2 b4 + b5( )

√( )√
2b3

,

b12 �
b4 + b5( )

����������������������������������������
2b3 b4 + b5 − 2 b2 +

��������������������
b4 + b5( )2 − 8 b2 b4 + b5( )

√( )√
2b3

.

The critical value b21 of b2 is

b21 �
−2 b12b3 − b4 + b5( )3 +

�����������������������
8 b1

2b3 b4 + b5( )3 + b4 + b5( )6
√

2 b4 + b5( )2 ,

The critical value b31, b32 of b3 is

b31 �
b4 − 2 b2 + b5 −

��������������������
b4 + b5( )2 − 8 b2 b4 + b5( )

√( ) b4 + b5( )2

2b1
2 ,

b32 �
b4 − 2 b2 + b5 +

��������������������
b4 + b5( )2 − 8 b2 b4 + b5( )

√( ) b4 + b5( )2

2b1
2 .

The critical value of b4 + b5 meets

b2Z
5 + Z4b2

2 − b1
2Z3b3 + 2Z2b1

2b2b3 + b1
4b3

2 � 0,

where Z = b4 + b5.

dU

dt
� J ]( )U +N U( ), (4)

where

U � S, I( )T,
and

N U( ) �
−b3SI2 − b3b1 b4 + b5( )2I2

b1
2b3 + b2 b4 + b5( )2 +

2 b3SIb1
b4 + b5

b3SI
2 + b3b1 b4 + b5( )2I2

b1
2b3 + b2 b4 + b5( )2 +

2 b3SIb1
b4 + b5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

As an example, we take b2 (namely, ] = b2) as the control
parameter to derive the normal form through the multiscale
method, and assume

d

dt
� μc

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+/ ,

b2 − b21 � b22ε + b23ε
2 +/ ,

U � εU1 + ε2U2 +/ ,

(5)

where

Ui � xi

yi
( ), i � 1, 2( ).

Substituting (5) into (4), we divide them by the series for ε, and
obtain

O ε( ) : μc
∂

∂T0
E − J b21( )( )U1 � 0,

O ε2( ) : μc
∂

∂T0
E − J b21( )( )U2 � q2,

O ε3( ) : μc
∂

∂T0
E − J b21( )( )U3 � q3,

(6)

where

q2 � −b22Lε1U1 −Nε2 + ∂U1

∂T1
,

q3 � −b22Lε1U2 − b23Lε1U1 − b222Lε2U1 −Nε3 + ∂U1

∂T2
+ ∂U2

∂T1
,

Lε1 �
−1 2b1

2b3 b4 + b5( )3
b3b1

2 + b21 b4 + b5( )2( )2
1

−2b12b3 b4 + b5( )3
b3b1

2 + b21 b4 + b5( )2( )2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Lε2 �
0

−2b12b3 b4 + b5( )5
b3b1

2 + b21 b4 + b5( )2( )3
0

2b1
2b3 b4 + b5( )5

b3b1
2 + b21 b4 + b5( )2( )3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Nε2 � −Ne21y2
1 −Ne22x1y1

Ne21y2
1 +Ne22x1y1

( ),
Ne21 � b1b3 b4 + b5( )2

b4 + b5( )2b21 + b1
2b3

,

Ne22 � 2 b1b3
b4 + b5

,

Nε3 � −Ne31y1y2 −Nε22x1y2 −Ne22x2y1 − b3x1y2
1

Ne31y1y2 +Ne22x1y2 +Ne22x2y1 + b3x1y2
1

( ),
Ne31 � 2 b1b3y1y2 b4 + b5( )2

b4 + b5( )2b21 + b1
2b3

.

The general solution of the series for ε can be read

U1 � x1

y1
( ) � A

u1

v1
( )eiT + c.c., (7)

where u1 � 1, v1 � μci−a11
a12

, and

x2
1 � |Au1|2 + A2u2

1e
i2T + c.c.,

y2
1 � |Av1|2 + A2v21e

i2T + c.c.,

x1y1 � 1
2
|A|2 u1v1 + u1v1( ) + A2u1v1e

i2T + c.c.

The adjoint matrix of J (b21) is

J* b21( ) � a11 a21
a12 a22

( )eiT + c.c.

Based on (μc ∂
∂T0

E − J*(b21))u+ � 0,
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u+ � u+
1

u+
2

( )eiT + c.c.,

where u+1 � 1, v+1 � μci−a11
a21

,

a T( ), b T( )( ) � ∫2π

0
a* T( )b T( )dT,

u+, q2( ) � u+,−b22Lε1U1 −Nε2 + ∂U1

∂T1
( ).

Because (sin (nx), cos (nx)) is an orthogonal set, (u+, Nε2) = 0,
∂A
∂T1

� −b22(u+1 , v+1 )Lε1(u1, v1)A. Meanwhile, the amplitude A is
bounded, which means ∂A

∂T1
� −b22(u+1 , v+1 )Lε1(u1, v1)A � 0,

namely, ∂A
∂T1

� −b22 � 0,

U2 � x2

y2
( ) � u0

v0
( ) + u2

v2
( )ei2T + c.c.

Substituting U1, U2 into O (ε2), we solve

μc
∂

∂T0
E − J b21( )( )U2 � Nε2, (8)

and obtain

u0 � p1|A|2, v0 � p2|A|2, u2 � p3A
2, v2 � p4A

2, (9)
where

p1 � a12 + a22( ) Ne22 u1v1 + u1v1( ) + 2Ne21 v1| |2( )
2 a11a22 − 2 a12a21

,

p2 � − a11 + a21( ) Ne22 u1v1 + u1v1( ) + 2Ne21 v1| |2( )
2 a11a22 − 2 a12a21

,

p3 � v1 2 Ne21v1 +Ne22u1( )i − a12 + a22( ) Ne21v1 +Ne22u1( )( )
2 a11 + a22( )i − a11a22 + a12a21 + 4

,

p4 � −v1 2 Ne21v1 +Ne22u1( )i − a11 + a21( ) Ne21v1 +Ne22u1( )( )
2 a11 + a22( )i − a11a22 + a12a21 + 4

.

Substituting (7) and (9) into (8), and (u+, q3) = 0, we obtain

u+
1 , u

+
2( ) u1, v1( )T ∂A

∂T2
− b23 u+

1 , u
+
2( )Lε1 u1, v1( )TA

− u+
1 , u

+
2( ) −N1, N1( )T|A|2A � 0,

where

N1 � p2u1Ne22 +Ne22 p2u1 + u1Ne22 p4 +Ne22 p1v1+p1Ne22 v1 +Ne22 v1p3 + p2v1Ne31 + p2v1Ne31 +Ne31 v1p4+2 v1b3u1v1 + u1b3v1
2.

We can further rewrite it as

∂A

∂T2
� b23β1A + β2|A|2A,

where

β1 �
u+
1 , u

+
2( )Lε1 u1, v1( )T

u+
1 , u

+
2( ) u1, v1( )T , β2 �

u+
1 , u

+
2( ) −N1, N1( )T

u+
1 , u

+
2( ) u1, v1( )T .

Assume C = εA,

∂C

∂T
� b2 − b21( )β1C + β2|C|2C,

Suppose C = reiϕ,

dr

∂T
� b2 − b21( )Re β1( )r + Re β2( )r3,

dϕ

∂T
� b2 − b21( )Im β1( ) + Im β2( )r2, (10)

where Re (β1) > 0 means supercritical bifurcation occurs; Re (β1) < 0
means subcritical bifurcation occurs. Also, the above derivation
process and conclusion apply to b1, b3, b4 + b5.

3 The modified SIR model with both
periodic perturbation and diffusion

In this section, we consider the effect of the periodic
perturbation and diffusion on pattern formation and Turing
instability. The corresponding system is rewritten as

∂S

∂t
� b1 − b2 1 + γ cos 2 μc − ϕ( )t( )( )S − b3SI

2 + d1∇
2S,

∂I

∂t
� b2 1 + γ cos 2 μc − ϕ( )t( )( )S + b3SI

2 − b4I − b5I + d2∇
2I,

(11)
where γ is the perturbation amplitude, ϕ is the frequency
modulation.

S* �
b1 b4 + b5( )2

b1
2b3 + b2 1 + γ cos 2 μc − ϕ( )t( )( ) b4 + b5( )2, I* �

b1
b4 + b5

.

We perform a general perturbation [38, 39] of (11)

U � εV + U*,

where 0 < ε≪ 1, V � (z1, z2)T, U* � (S*, I*)T, and the term of O(ε)
reads

dV

dt
� JkV,

where

Jk � J11 − d1k
2 J12

J21 J22 − d2k
2[ ],

J11 � −b3I*2 − b2, J12 � −2 S*I*b3, J21 � b3I*
2 + b2,

J22 � 2 S*I*b3 − b4 − b5,

∇2V � −k2V.
Namely, the linearized dynamics of system (11) is

Dz1 � J11z1 + J12z2 − d1k
2z1,

Dz2 � J21z1 + J22z2 − d2k
2z2,

(12)

where D � ∂
∂t.

From (12), Dz1, z1 and Dz2, z2 can be represented as

Dz1 � k4z2 d1d2 − k2 z2 J11d2 + J22d1( ) −Dz2 d1( ) + z2 J11J22 − J12J21( ) −Dz2 J11
J21

,

z1 � d2k
2z2 − J22z2 +Dz2

J21
,

Dz2 � −k
4z1 d1d2 − k2 z1 J11d2 + J22d1( ) −Dz1d2( ) + z1 J11J22 − J12J21( ) −Dz1 J22

J12
,

z2 � d1k
2z1 − J11z1 +Dz1

J12
.

(13)
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We take the derivative of both sides of Eq. 12 when γ = 0, and
obtain

D2z1 − J11Dz1 − J12Dz2 + d1k
2Dz1 � 0,

D2z2 − J21Dz1 − J22Dz2 + d2k
2Dz2 � 0.

(14)

Substituting (13) into (14), one has

D2z1 + d1 + d2( )k2 − J11 − J22( )Dz1
+ k4d1d2 − k2 J11d2 + J22d1( ) + J11J22 − J21J12( )z1 � 0,

D2z2 + d1 + d2( )k2 − J11 − J22( )Dz2
+ k4d1d2 − k2 J11d2 + J22d1( ) + J11J22 − J21J12( )z2 � 0. (15)

According to the comparison principle [38, 39], Turing
instability occurs when a T (k2) < 0 holds.

T k2( ) � k4d1d2 − k2 J11d2 + J22d1( ) + J11J22 − J21J12 < 0, (16)
where the conditions of Turing instability in (16) bring into
correspondence with the literatureOuyang [23].

The critical value is

k2c �
J11d2 + J22d1

2d1d2
,

where Turing instability may occur when T(k2c )< 0.
We take the derivative of both sides of Eq. 12 when γ ≠ 0, and obtain

FIGURE 1
The stability and bifurcation diagram about b1 when b2= 0.1, b3=1, b4=1, b5=0.1. (A) The bifurcation diagram about b1 (b11=0.444 is the supercritical
Hopf bifurcation point, b12=0.944 is the subcritical Hopf bifurcation point). (B) System (1) is stable when b1=0.4< b11. (C) System (1) is periodic when b11<
b1=0.5< b12. (D) System (1) is stable when b1=0.4> b12.

FIGURE 2
The stability and bifurcation diagram about b2 when b1=1, b3=1, b4=1, b5=0.1. (A) The bifurcation diagram about b2 (b21=0.08 is the subcritical Hopf
bifurcation point). (B) System (1) is periodic when b2=0.05< b21.
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FIGURE 3
The stability and bifurcation diagram about b3 when b1=1, b2=0.1, b4=1, b5=0.1. (A) The bifurcation diagram about b3 (b31=0.197 is the supercritical
Hopf bifurcation point, b32=0.892 is the subcritical Hopf bifurcation point). (B) System (1) is stable when b3=0.1< b31. (C) System (1) is periodic when b31<
b3=0.5< b32. (D) The amplitude of the infected about b2, b3.

FIGURE 4
The stability and bifurcation diagram about b4+ b5 when b1=1, b2=0.1, b3=1. (A) The bifurcation diagram about b4+ b5 (1.135 is the supercritical Hopf
bifurcation point, 2.938 is the subcritical Hopf bifurcation point). (B) System (1) is periodic when 1.135< b4+ b5=2<2.938. (C) System (1) is stable when b4+
b5=3<2.938. (D) The amplitude of the infected about b2, b4+ b5.
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D2z1 − J11Dz1 −DJ11z1 − J12Dz2 −DJ12z2 + d1k
2Dz1 � 0,

D2z2 − J21Dz1 −DJ21z1 − J22Dz2 −DJ22z2 + d2k
2Dz2 � 0,

(17)

where

DJ11 � b2γ −2 μc + 2 ϕ( )sin 2 ϕ t − 2 μct( ),
DJ12 � −2 b3b1

2 b4 + b5( )3γ b2 −2 μc + 2 ϕ( )sin 2 t −μc + ϕ( )( )
γ b2 b4 + b5( )2 cos 2 t −μc + ϕ( )( ) + b4 + b5( )2b2 + b1

2b3( )2,
DJ21 � −b2γ −2 μc + 2 ϕ( )sin 2 ϕ t − 2 μct( ),
DJ22 � 2

b1
2b3 b4 + b5( )3γ b2 −2 μc + 2 ϕ( )sin 2 t −μc + ϕ( )( )

γ b2 b4 + b5( )2 cos 2 t −μc + ϕ( )( ) + b4 + b5( )2b2 + b1
2b3( )2.

Substituting (13) into (17) when J12J21 ≠ 0, one has

D2z1 + d1 + d2( )k2 − J11 − J22 − DJ12
J12

( )Dz1 + T1 k2( )z1 � 0,

D2z2 + d1 + d2( )k2 − J 11 − J22 − DJ21
J21

( )Dz2 + T2 k2( )z2 � 0,

(18)
where

T1 k2( ) � k4d1d2 − k2 J11d2 + J22d1( ) + J11J22 − J12J21 −DJ11 − DJ12d1k
2

J12
+ DJ12J11

J12
,

T2 k2( ) � k4d1d2 − k2 J11d2 + J22d1( ) + J11J22 − J12J21 − DJ21k
2d2

J21
+ DJ21J22

J21
−DJ22.

According to the comparison principle [38, 39], Turing
instability may occur when T1 (k

2) < 0 or T2 (k
2) < 0 holds. And

suppose

T t, k2( ) � min T1 k2( ), T2 k2( ){ }.

4 Results and discussion

Based on theoretical results, we choose b1 = 1, b2 = 0.1, b3 = 1,
b4 = 1, b5 = 0.1 as the default value in this paper. With the changing
of parameters, the modified SIR model (1) presents the periodic
behaviors, and the reaction-diffusion system (11) offers more
complex patterns. In this section, we mainly show the effects of
the parameters, diffusion coefficients, and periodic perturbation on
stability and pattern formation. The initial conditions (S (0), I (0))
are the stochastic disturbance of the equilibrium point. The finite
difference method is applied in our simulation.

S t + 1( ) � S t( ) + b1 − b2S t( ) − b3S t( )I t( )2( )dt,
I t + 1( ) � I t( ) + b2S t( ) + b3S t( )I t( )2 − b4I t( ) − b5I t( )( )dt, (19)

where the amplitude is max{I(t)} − min{I(t)} and dt = 0.1 is
time step.

4.1 The endemic and periodic outbreak

Although infectious diseases are a severe threat to humans, we
can’t eliminate them (SARS, Aids, etc.). The endemic or periodic
outbreak usually happens unless everyone is immune to the virus
(Variola virus). The presence of susceptible individuals is
fundamental to the spread of infectious diseases and could make
the infected continue to increase [Figure 1A]. Of course, endemic
and periodic outbreaks can happen. When the susceptibility rate is
relatively low, the endemic occurs [Figure 1B]. But the percentage of
people infected would be inadequate, so the herd immunity strategy
can be considered in this case. When the susceptibility rate becomes
more prominent, the periodic outbreak of infectious diseases

FIGURE 5
The stability and pattern formation when b1=1, b2=0.1, b3=1, b4=1, b5=0.1. (A) The dispersion equation T (k2) with k2. (B) The pattern formation when
d1=0.5, d2=0.1. (C) The pattern formation when d1=1, d2=0.1. (D) The pattern formation when d1=2, d2=0.1.
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FIGURE 6
The dispersion equation and pattern formationwhen b1=1, b2=0.1, b3=1, b4=1, b5=0.1, d1=0.7, d2=0.1. (A) The dispersion equation Tk(t) about k

2 and t
(min (T (t, k2))=0.0151>0) when ϕ =1.1, μc =1, γ =0.1. (B) The pattern formation when ϕ =1.1, μc =1, γ =0.1. (C) The dispersion equation Tk(t) about k

2 and t
(min (Tk(t))=−1.3945<0) when ϕ =1.1, μc =1, γ =1.5. (D) The pattern formation when ϕ =1.1, μc =1, γ =1.5.

FIGURE 7
The dispersion equation and pattern formationwhen b1=1, b2=0.1, b3=1, b4=1, b5=0.1, d1=0.7, d2=0.1. (A) The dispersion equation Tk(t) about k

2 and t
(min (Tk(t))=−2.1698<0) when ϕ =1.1, μc =1, γ =2. (B) The pattern formation when ϕ =1.1, μc =1, γ =2. (C) The dispersion equation Tk(t) about k

2 and t (min
(Tk(t))=−2.3955<0) when ϕ =1.4, μc =1, γ =2. (D) The pattern formation when ϕ =1.4, μc =1, γ =2.
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happens [Figure 1C], which may be like a seasonal cold. Also, the
periodic outbreak can be treated as the recurrence of infectious
diseases (like COVID-19), and some measures should be taken to
contain the damage. After the occasional outbreak, there will be
severe endemic diseases when the susceptibility becomes more and
more [Figure 1D], which also means the early vaccination strategy is
essential for prevention.

The external environment (the imported, physical factor,
human factor, viral properties, etc.) dramatically influences the
transmission behavior of infectious diseases. Seasonal changes
mainly affect the periodic behavior of influenza. When the
external environment has little effect on the diffusion of
infectious diseases, infectious diseases will vary with the external
environment rather than cause a lot of severe consequences. When
the external environment is dominant, the endemic occurs
[Figure 2A], which is difficult to avoid. And the modified SIR
model presents the periodic outbreak [Figure 2B] when b2 is
relatively tiny.

Infectivity is an inherent characteristic of infectious diseases,
and the transmission behavior is determined by external
conditions (the susceptibility rate, the recovery rate, etc.).
Although infectious diseases are highly contagious, they will
rapidly disappear when the susceptibility rate is lower, and the
recovery rate is higher. Therefore, the infectious rate does not
affect the equilibrium point [Figure 3A], but the stability will
vary with b3 [Figures 3B,C]. From Figure 3D, the endemic occurs
when the amplitude tends to zero, and the periodic outbreak
occurs when the amplitude is not zero. Also, the dynamic
behaviors of infectious diseases are the results of multiple

factors; maybe one or more factors determine the trend of
infectious diseases [Figure 3D].

Finally, we consider the role of the recovery and death rates
b4 + b5. From Figure 4, the effect of the recovery and death rates
is the same. But the recovery rate increase is always treated as the
ideal method to prevent the spreading of infectious diseases. A
lot of infected individuals will exist when the recovery rate is
lower and lead to endemic diseases [Figure 4A]. With the
increase of the recovery rate, some of those infected will
induce the periodic outbreak [Figure 4B]. Eventually, the
impact of infectious diseases will be less and less [Figure 4C],
even disappear. There’s no denying that the combination of b2,
b5 expands the range of parameters for periodic behavior
[Figure 4D]. If the model is given and the parameters bi, i =
1, 2, 3, 4, 5 are measured, the critical value of the bifurcation can
be obtained. And then periodic outbreak phenomenon can be
forecast through the bifurcation. Further, the purposeful human
intervention can be done before the disease develops into
periodic outbreaks in practice. Based on these numerical
analyses, the external environment b2 plays a vital role in the
generation of the periodic outbreak, which makes up for the
shortcomings of the classical SIR model.

4.2 The pattern formation induced by
diffusion

Diffusion is a common phenomenon in the spread of infectious
diseases. Initially, the epidemic may occur in one city and further

FIGURE 8
The dispersion equation and pattern formation when b1 = 1, b2 = 0.1, b3 = 1, b4 = 1, b5 = 0.1, d1 = 0.7, d2 = 0.1. (A) The dispersion equation Tk(t) about
k2 and t (min(Tk(t)) = −2.1642 < 0<0) whenmin(Tk(t)) = −2.1642 < 0. (B) The pattern formation when ϕ = 1.08, μc = 1, γ = 2. (C) The dispersion equation Tk(t)
about k2 and t (min(Tk(t)) = −2.1581 < 0) when ϕ = 1.05, μc = 1, γ = 2. (D) The pattern formation when ϕ = 1.05, μc = 1, γ = 2.
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spread to other areas. This diffusion process plays an important role
in the outbreak of infectious diseases. This section considers the
effect of diffusion and periodic perturbation on pattern selection. It
is well known that the necessary condition of Turing instability is T
(k2) < 0. From Figure 5A, the minimum of T (k2) < 0 gets smaller and
smaller as the diffusion parameter d1 increases. If T (k2) > 0 holds for
every k, system (11) is stable [Figure 5B]. When a k could make T
(k2) < 0, Turing instability occurs [Figures 5C,D]. Meanwhile, the
diffusion may lead to a different pattern selection [Figures 5C,D],
which is also consistent with the dynamic behavior of infectious
diseases.

Consider the pattern formation induced by the periodic
perturbation and diffusion. Some parameters vary over time in a
periodically perturbed system, which may lead to more complex
dynamics through the sign of T (t, k2)[Figure 6, Figure 7, Figure 8].
If T (t, k2) > 0 always holds [Figure 6A], the corresponding pattern
formation is uniform [Figure 6B]. If the disturbance amplitude makes a
T (t, k2) < 0 hold [Figure 6C], Turing instability, stripe and spot pattern
can occur [Figure 6D]. Especially γ = 2 [Figure 7A], the maze pattern
occurs [Figure 7B]. Namely, the disturbance amplitude could make the
distribution of infectious diseases reorganize, and the prevalence varies in
different regions. If ϕ = 0.5 [Figure 7C], the corresponding pattern
formation will become uniform again [Figure 7D], whichmeans ϕ play a
vital role in the pattern selection. Also, if we change μc from 0.1 to
0.4 [Figure 8A], the maze pattern occurs again [Figure 8B]. If we change
ϕ from 0.5 to 0.45 [Figure 8C], the stripe and spot pattern coexist
[Figure 8D]. From Figure 6 to Figure 8, we find that the pattern
formation results from the combined interaction of ϕ, μc, and γ. So
the periodic perturbation and diffusion could further explain why the
distribution of infectious diseases varies in different regions. Meanwhile,
under external factors, infectious diseases are more likely to break out
periodically.

5 Conclusion

External stimulus and diffusion are vital in spreading infectious
diseases, especially the periodic outbreak at the beginning. Still, the
periodic behaviors can’t be described in the classical SIR model. To
further study the effect of external stimulus and prevention strategies on
the spread of the epidemic in different areas, we investigate the stability of
a modified SIR model through multiscale methods and comparison
principles. Firstly, a modified SIR model is proposed to describe the
periodic outbreak of infectious diseases through Hopf bifurcation. The
form of bifurcation is analyzed and derived by multiscale methods to
explain the function of parameters in periodic behaviors. Then the
condition of Turing instability is given through comparison principles,
which verifies the role of the disturbance parameters and diffusion
coefficients in selecting pattern formation. Also, we find rich patterns
that may occur when the frequency modulation is close to the intrinsic
frequency. The external environment plays a vital role in the generation
of the periodic outbreak, which makes up for the shortcomings of the

classical SIR model. The periodic perturbation and diffusion could
further explain why the distribution of infectious diseases varies in
different regions. Meanwhile, under external factors, infectious diseases
are more likely to break out periodically. Our results provide a novel
method to show the outbreak mechanism of infectious diseases.
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