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We report an extensive numerical study and supporting experimental results on
the spectral characterization of optical aberrations in macroscopic fluidic lenses
with tunable focal distance and aperture shape. By using a Shack–Hartmann
wavefront sensor, we experimentally reconstruct the near-field wavefront
transmitted by the fluidic lenses, and we characterize the chromatic
aberrations in terms of Zernike polynomials in the visible range. Moreover, we
further classify the spectral response of the lenses using clustering techniques, in
addition to correlation and convolutionmeasurements. Experimental results are in
agreement with numerical results based on our theoretical model of the nonlinear
deformation of thin elastic membranes.
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1 Introduction

One of the most common ocular disorders worldwide, and the main cause of visual
impairment in children, is myopia. Elongation of the axial length in the eyes, which
characterizes medium and high levels of myopia, can increase the risk of severe ocular
pathologies, potentially leading to irreversible blindness. Most traditional adaptive eye-wear
based on fluidic lenses aim to correct refractive errors requiring medium dioptric power,
such as mild myopia, hyperopia, and other focus errors [5, 6]. On the other hand, refractive
errors other than focus, including coma, astigmatism, and higher-order aberrations, are
usually treated via astigmatic corrections [1–3], which are more difficult to achieve with
standard fluidic lenses. Moreover, in most cases, compounded errors are present, most
commonly presbyopia with focus defects, requiring multi-focal lenses, the limited
accommodation distance and highly restricted field-of-view of which can lead to high
loss of visual capacity [4]. Finally, patients with severe visual impairment due to glaucoma or
other visual traumas require large dioptric power corrections, necessitating thick organic
lenses, which are prone to high-order aberrations, in addition to being significantly
unattractive and unpractical. In a previous publication [7], we presented the first
macroscopic fluidic lens eye-wear prototype with high dioptric power (+25 D to
+100 D range) with optical aberrations below a fraction of the wavelength, which can
adaptively restore accommodation distance within several centimeters, thus enabling access
to the entire field-of-view. The lens is made of a PDMS-type elastic polymer which can
adaptively modify its optical power according to the fluidic volumemechanically pumped in.
Such a liquid lens exhibits a large dynamic range, and its focusing properties are
polarization-independent [8]. Additionally, we demonstrated that by tuning the lens
aperture, it is possible to address different optical aberrations, thus providing an
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additional degree of freedom for the lens design. Our design is
attractive for adaptive eye-wear, in addition to cellular phones,
cameras, optical zooms, or other machine vision applications
where large magnification can be required [9; 12–23; 26].

In this paper, we present an extensive numerical and
experimental spectral study of optical aberrations in macroscopic
fluidic lenses with high dioptric power, tunable focal distance, and
aperture shape [7], based on an empirical characterization of the
refractive index of thin elastic membranes, such as PDMS, according
to the Sellmeier model [10; 11]. Using a Shack–Hartmann wavefront
sensor, we experimentally reconstruct the near-field wavefront
transmitted by such fluidic lenses, and we characterize the
chromatic aberrations in terms of Zernike polynomials over the
visible wavelength range (λ = 400–650 nm) by using a
programmable LED source. Moreover, we further classify the
spectral response of the lenses using clustering techniques in
addition to correlation and convolution measurements.
Experimental results are in agreement with those of our
theoretical model of nonlinear elastic membrane deformation.

2 Theoretical model

2.1 Inclusion of gravity effects

We briefly recall the model used in [7] to simulate the fluid lens
surface shape without considering gravity effects. The equations
used are those derived by Berger [24] to determine the nonlinear,
large deformation of thin isotropic elastic plates.

∇4w − α2∇2w � q

D
, (1a)

∂u

∂x
+ ∂v

∂y
+ 1
2

∂w

∂x
( )2

+ 1
2

∂w

∂y
( )2

� α2h2

12
. (1b)

In these equations, w(x, y) is the local z-displacement of the
membrane, with the non-deformed state assumed to correspond
to the z = 0 plane; u(x, y) and v(x, y) are the local x and y
displacements, respectively; D is the membrane bending rigidity;
and h is its thickness. The magnitude q(x, y) corresponds to the
applied z-load, and α is a constant to be determined from the same
equations by imposing appropriate boundary conditions.

For the case of uniform load (constant q) and elliptic aperture,
analytical solutions of system 1) were obtained by the method of
constant deflection contour lines derived by Mazumdar [25]. If the
aperture in the plane z = 0 is an ellipse of x and y semi-axes a and b,
respectively, the z-displacement of the membrane is given by

w ς( ) � ΔV
πab

2γ γ 1 − ς2( )I1 2γ( ) + I0 2γς( ) − I0 2γ( )[ ]
γ2 + 2( ) I1 2γ( ) − 2γI0 2γ( ) , (2)

where ΔV is the volume of the liquid. The variable ς is defined as

ς2 � x2/a2 + y2/b2, (3)
and the constant γ is related to ΔV by

ΔV � πabh

														
3a4 + 2a2b2 + 3b4

√
a2 + b2

G γ( ), (4)
where

G γ( ) � γ2 + 2( ) I1 2γ( ) − 2γI0 2γ( )			
24γ

√ 																																		
3γ I1 2γ( )[ ]2 − 2I2 2γ( ) γI0 2γ( ) + 2I1 2γ( )[ ]√ . (5)

We now consider the effect of gravity when the (x, y) plane of the
lens aperture is vertical. In Eq. 1in the study by Berger load q has the
expression

q � q0 − ρg x sin θ + y cos θ( ),

FIGURE 1
Notation used in the model to include the effect of gravity on the
lens surface shape.

FIGURE 2
Notation used in the model for the ray tracing from a plane
wavefront incident on the plane surface of the lens to the refracted
wavefront W.
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where q0 is the load at the lens center (x = y = 0), ρ is the mass density
of the filling fluid, g is the acceleration of gravity, and θ is the angle
between the vertical direction and the y-axis (see Figure 1).

In the case that ρgL/q0 ≪ 1, with L as the characteristic length of
the lens pupil, we can treat gravity effects as a perturbation to the
case with uniform load q0, as previously obtained, and write

w � w0 + w1,
α � α0 + α1,

with w0 and α0 corresponding to the solution of the case with q = q0.
Linearization of Eq.1a in the perturbations w1 and α1 yields

∇4w1 − α20∇
2w1 − 2α0α1∇

2w0 � −ρg
D

x sin θ + y cos θ( ). (6)

For a clampedmembrane with no pre-stretching, u = v = 0 at ψ =
0, and so the integral of the linearized version of Eq.1b over the area
S0 of the lens aperture gives

∫
S0

∂w0

∂x

∂w1

∂x
+ ∂w0

∂y

∂w1

∂y
( )dxdy � α0α1h2

6
S0. (7)

We now consider the solution to Eq. 6 in the usual case in which
the membrane forces dominate: α20L

2 ≫ 1. In this case, except
extremely close to the membrane border, one has
|∇4w1|≪ |α20∇2w1|, and so it is easy to check that the solution to
Eq. 6 satisfying the boundary condition w1 = 0 at the border of the
membrane is given by

w1 � −2α1
α0

w0 − ρga2b2

2Dα20
1 − x2

a2
− y2

b2
( ) x sin θ

a2 + 3b2
+ y cos θ
3a2 + b2

( ). (8)

Using expression 8) in Eq. 7, one readily obtains α1 = 0 so that
the complete solution with the inclusion of gravity effects is

w � w0 − ρg

2Dγ2
a4b4 a2 + b2( )

3a2 + 2a2b2 + 3b4
1 − x2

a2
− y2

b2
( )

× x sin θ
a2 + 3b2

+ y cos θ
3a2 + b2

( ), (9)

where w0 is the solution previously obtained for uniform load, Eq.
2, and the constant γ is the one determined in that solution
using Eq. 4.

FIGURE 3
PDMS refractive index (n(λ)) vs wavelength (λ). The refractive
index is obtained by experimentally determining the Sellmeier
coefficients (B1, C1), resulting in n(λ)2 � 1 + B1λ

2

λ2−C1
, with B1= 1.0093 and

C1 [nm
2] = 13.185 [10].

FIGURE 4
(A) and (C)Density plots of acquired phase P (x, y) upon propagation over a distance zd = 3.5 cm, for λ = 600 nm. (B) and (D)Corresponding contour
plots. Top row: circular aperture with horizontal and vertical axes a = b = 1.7 cm. Bottom row: elliptic aperture with horizontal and vertical axes a = 1.3 cm
and b = 1.7 cm, respectively.
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2.2 Determination of the aberrations of the
fluid lens

In order to determine the aberrations of a fluid lens with one
plane surface, we consider a plane wavefront with normal
incidence on the plane side of the membrane, taken at z = 0
(see Figure 2). The corresponding rays, parallel to the z-axis of unit
vector ez, are then refracted according to Snell’s law when they
cross the membrane curved surface at z � w(x, y). The external
normal unit vector at that surface is given by (in Cartesian
components)

n � −wx,−wy,1( )										
1 + w2

x + w2
y

√ , (10)

where the subscripts x and y indicate derivatives with respect to the
corresponding coordinate.

The angle θi of the rays incident from inside the lens, relative to
the external normal direction at the corresponding point of the
membrane curved surface, is thus given by

cos θi � n · ez � 1										
1 + w2

x + w2
y

√ . (11)

The Snell law then determines the angle of the refracted ray
emerging from the lens, also relative to the normal direction, as

sin θr � nf

							
w2

x + w2
y

√
										
1 + w2

x + w2
y

√ , (12)

where nf is the index of refraction of the filling fluid, relative to that
of air.

The refracted ray is contained in the plane determined by
the normal unit vector n and the unit vector tangent to the
surface

t � ez − n · ez( )n
ez − n · ez( )n| | �

wx, wy,w2
x + w2

y( )																				
1 + w2

x + w2
y( ) w2

x + w2
y( )√ , (13)

so that the ray direction is given by the unit vector

kr � n cos θr + t sin θr. (14)
The explicit expressions of the Cartesian components of kr are

krx,y �
nf −

																			
1 + 1 − n2f( ) w2

x + w2
y( )√

1 + w2
x + w2

y

wx,y, (15a)

krz �
nf w2

x + w2
y( ) + 																			

1 + 1 − n2f( ) w2
x + w2

y( )√
1 + w2

x + w2
y

, (15b)

which are functions of the point (x, y) in the plane z = 0, at which the
ray originated.

In this way, a generic ray starting at the point (x, y) in the plane
z = 0 inside the lens is refracted at the point X0 � (x, y, w(x, y)) on
the membrane surface, and after traversing in air a distance L
reaches the point XL = X0 + krL so that (from now on, we do
not write the explicit dependence on (x, y) of w and of kr)

zL � w + krzL, (16)
and

FIGURE 5
Numerical simulations of optical aberrations based on the expansion of the wavefront in terms of Zernike polynomials over the visible range λ =
400 − 1,500 nm, for fluidic lenses with a circular aperture characterized by axes (a = 1.7 cm, b = 1.7 cm) (A), (B), (C), and (D), correspond to Zernike
coefficients in [μm] for polynomials of orders P0, P2, P3, P6, respectively. Zernike coefficients characterizing the remaining polynomials are negligible (≪
10–14). Further details are in the text.
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xL � x + krx
krz

zL − w( ), (17a)

yL � y + kry
krz

zL − w( ). (17b)

The phase at (xL, yL, zL) is thus

ϕL � ϕ0 +
2π
λ

nfw + zL − w

krz
( ), (18)

where ϕ0 is the phase of the front at z = 0 and λ is the wavelength in air.
From (18), we can determine the zW position of a wavefront of

given phase ϕW as

zW � w 1 − nfkrz( ) + krz
λ

2π
ϕW − ϕ0( ), (19)

to which correspond the (xW, yW) coordinates:

xW � x + krx
λ

2π
ϕW − ϕ0( ) − nfw[ ], (20a)

yW � y + kry
λ

2π
ϕW − ϕ0( ) − nfw[ ]. (20b)

These two relations can, in principle, be solved to give

x � x xW, yW( ), (21a)
y � y xW, yW( ), (21b)

which, if replaced in (19), give the wavefront geometry zW �
zW(xW, yW).

If this wavefront is analyzed at a position zA, we can, without loss
of generality, take this position as that of the image of the origin, x =
y = 0: zA � w0(1 − nfkrz0) + krz0 λ

2π (ϕW − ϕ0), where w0 � w(0, 0)
and krz0 � krz(0, 0) so that

λ

2π
ϕW − ϕ0( ) � zA − w0 1 − nfkrz0( )

krz0
, (22)

and analyze the deviation from a plane front: ΔzW = zW − zA, which
is conveniently written as

ΔzW � w 1 − nfkrz( ) − krz
krz0

w0 1 − nfkrz0( ) + krz
krz0

− 1( )zA. (23)

The corresponding (xW, yW) coordinates are written as

xW � x + krx
krz0

zA − w0 − nfkrz0 w − w0( )[ ], (24a)

yW � y + kry
krz0

zA − w0 − nfkrz0 w − w0( )[ ]. (24b)

In this way, Eqs 23, 24a, 24b give the wavefront geometry, analyzed
at z = zA, parameterized in terms of the (x, y) coordinates on the
plane at z = 0.

We further model the wavefront analyzer at z = zA as having a
circular aperture of radius rA so that the section of the wavefront
ΔzW(xW, yW) to be studied is expressed as
ΔzW(rAξ cos ϕ, rAξ sin ϕ), with 0 ≤ ξ ≤ 1, and decomposed in
Zernike polynomials in polar coordinates Zn(ξ, ϕ),

FIGURE 6
Numerical simulations of optical aberrations based on the expansion of the wavefront in terms of Zernike polynomials over the visible range λ =
400–1,500 nm, for fluidic lenses with an elliptic aperture characterized by axes (a = 1.5 cm, b = 1.7 cm) (A), (B), (C), and (D) correspond to Zernike
coefficients in [μm] for polynomials of orders P0, P2, P3, and P5, respectively. Zernike coefficients characterizing the remaining polynomials are negligible
(≪10–14). Further details are in the text.

Frontiers in Physics frontiersin.org05

Puentes and Minotti 10.3389/fphy.2023.1299393

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1299393


ΔzW � ∑
n

anZn ξ,ϕ( ), (25)

with

an � 1
π
∫2π

0
∫1

0
ΔzW rAξ cos ϕ, rAξ sin ϕ( )Zn ξ, ϕ( )ξdξdϕ. (26)

We have followed the standard OSA/ANSI indexing and
normalization scheme, used in the Shack–Hartmann wavefront
sensor, for which the first 15-term orthonormal Zernike circle
polynomials are as follows:

Z0 � 1,
Z1 � 2ξ sin ϕ,
Z2 � 2ξ cos ϕ,
Z3 �

	
6

√
ξ2 sin 2 ϕ,

Z4 �
	
3

√
2ξ2 − 1( ),

Z5 �
	
6

√
ξ2 cos 2 ϕ,

Z6 �
	
8

√
ξ3 sin 3 ϕ,

Z7 �
	
8

√
3ξ3 − 2ξ( )sin ϕ,

Z8 �
	
8

√
3ξ3 − 2ξ( )cos ϕ,

Z9 �
	
8

√
ξ3 cos 3 ϕ,

Z10 �
		
10

√
ξ4 sin 4 ϕ,

Z11 �
		
10

√
4ξ4 − 3ξ2( )sin 2 ϕ,

Z12 �
	
5

√
6ξ4 − 6ξ2 + 1( ),

Z13 �
		
10

√
4ξ4 − 3ξ2( )cos 2 ϕ,

Z14 �
		
10

√
ξ4 cos 4 ϕ.

3 Spectral response

In order to characterize the spectral response of the
polydimethylsiloxane (PDMS-type) elastic membrane used to
fabricate the fluidic lenses, we incorporate an empirical
expression for the refractive index of PDMS Sylgard 184, as
reported in [10]. The refractive index n(λ) decreases for
increasing wavelength λ, which is typical of glass and polymeric
materials. For the approximation of the dispersion across the entire
visible light spectrum, the Sellmeier dispersion model is used, which
describes the empirical relation between the refractive index n(λ)
and the wavelength λ, given by

n λ( )2 � 1 + B1λ
2

λ2 − C1

+ B2λ
2

λ2 − C2

+ B3λ
2

λ2 − C3

, (27)

where B1, B2, B3, C1, C2, C3 are the experimentally determined
Sellmeier coefficients. As reported in Ref. [10], B1 = 1.0093 and C1

[nm2] = 13.185. Due to the limited number of measurement points
(three wavelengths with eight measurements each), the second and
third Sellmeier coefficients are set to 0 [10]. A plot of the refractive
index vs wavelength within the range 400 nm–1,500 nm is presented
in Figure 3.

According to the theoretical model, the spectral response of the
phase P (x, y, λ) acquired by the beam upon propagation over a
distance zd can be expressed as

FIGURE 7
Numerical simulations of optical aberrations based on the expansion of the wavefront in terms of Zernike polynomials over the visible range
λ =400–1,500 nm, for fluidic lenses with an elliptic aperture characterized by axes (a =1.3 cm, b =1.7 cm) (A), (B), (C), and (D) correspond to Zernike
coefficients in [μm] for polynomials of orders P0, P2, P3, and P5, respectively. Zernike coefficients characterizing the remaining polynomials are negligible
(≪ 10–14). Further details are in the text.
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P x, y, λ( ) � 2π
λ

n λ( ) p w + zd − w( ) p kz λ( )[ ], (28)

where w is the local displacement in the z-direction and kz is
given by

kz λ( ) � 1 + w2
x + w2

y( )
n λ( ) w2

x + w2
y( ) + 																					

1 + 1 − n λ( )2( ) w2
x + w2

y( )√ . (29)

We performed numerical simulations of the phase acquired by
the beam upon propagation over a distance zd = 3.5 cm. Numerical
simulations are displayed in Figure 4. Density plots of P (x, y) for λ =
600 nm are displayed in Figures 4A, C. Figures 4B, D display the
corresponding contour plots. Simulations are reported for fluidic
lenses with circular apertures (top row: circular aperture with
horizontal and vertical axes a = b = 1.7 cm) and for fluidic lenses
with elliptic apertures (bottom row: elliptic aperture with horizontal
and vertical axes a = 1.3 cm and b = 1.7 cm).

3.1 Wavefront aberrations of a single
membrane

In order to characterize numerically the spectral response of
optical aberrations and compare directly with experimental data,
we expanded the wavefront aberrations of a single elastic

membrane in terms of Zernike polynomials up to order 14, for
a beam with wavelength λ) in the range 400–1,500 nm, thus
numerically characterizing the spectral response in the visible
and infrared domains. Even though we analyze wavefront
aberrations in terms of Zernike polynomials up to order 14, we
only display those coefficients for Zernike polynomials which are
not negligible, namely, P0, P2, P3, P6 (for circular apertures) and P0,
P2, P3, P5 (for elliptic apertures). The remaining Zernike
coefficients are all below 10–14, so they are not displayed in the
figures.

Numerical results of wavefront aberrations for fluidic lenses
with circular aperture (axes a = b = 1.7 cm) are displayed in Figure 5.
Figures 5A–D, correspond to normalized Zernike coefficients for
polynomials of orders P0, P2, P3, and P6, respectively. The remaining
polynomials are not reported because their coefficients are negligible
(≪ 10–14). Numerical results for the chromatic response of fluidic
lenses with elliptic apertures characterized by ellipse axes (a = 1.5
cm, b = 1.7 cm) and (a = 1.3 cm, b = 1.7 cm) are displayed in Figures
6, 7, respectively. Figures 6A–D and Figures 7A–D correspond to
Zernike coefficients for polynomials of orders P0, P2, P3, and P5,
respectively. The remaining polynomials are not displayed because
their coefficients are negligible. As it is apparent from numerical
results, the dependence of wavefront aberrations is of the general
form |1/λ|. Moreover, spectral fluctuations in wavefront aberrations
are within a fraction of λ.

FIGURE 8
(A) Experimental scheme for reconstruction of the wavefront transmitted by the fluidic lens prototype and characterization of the chromatic
response of optical aberrations using a collimated incoherent programmable LED source (ALIC Smart Life) and a Shack–Hartmann wavefront sensor
(Thorlabs WFS150-5C). Scheme of the fluidic lens prototype: (B) circular aperture (horizontal and vertical axes a = b = 17 mm) and (C) elliptic aperture
(horizontal axes (1,2) a1(2)= 15 (13) mm and vertical axis b = 17 mm). By tuning the aperture of the lens, it is possible to address different optical
aberrations.
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3.2 Fluidic lens prototype

As readily reported in a previous publication [7], the fluidic
lens consists of two layers of the elastic membrane of the
polydimethylsiloxane (PDMS-type). The two elastic films are
held together by an aluminum frame, sealed with the elastic
membrane. An optical fluid of refractive index matched to the
polymer, such as glycerol or distilled water, is injected between
the elastic layers. By increasing or decreasing the fluid volume
mechanically injected, it is possible to tune the focal distance
across several centimeters and adjust the optical power of the
lens. Furthermore, we tune one additional degree of freedom,
given by the shape of the aperture. By modifying the aperture
shape from circular (Figure 8B ) to elliptical (Figure 8C ), we can
introduce different optical corrections. The typical size for the
circular lens is given by a diameter d = 17 mm, and the elliptic
lenses have a major axis b = 17 mm and minor axes a = 15 mm
and a = 13 mm. Please note the axes labeling used in the
theoretical model is not necessarily the same as the axes
labelling used in the experimental setup. Further details

regarding the fabrication of the fluidic lens prototype are
reported in a previous article [7].

4 Experimental results

4.1 Wavefront reconstruction

In order to characterize the chromatic response of the light
field transmitted by the fluidic lenses, we reconstructed the
wavefront transmitted through the lenses using a
Shack–Hartmann wavefront sensor Figure 8A (Model Thorlabs
WFS150-5C, raw experimental data can be found at our GitHub
repository [27]). To this end, we used a collimated incoherent
RGB LED source (RGB: red–green–blue). Perfect collimation of a
polychromatic beam can never be achieved. Here, by collimation,
we refer to the fact that we verified the beam size did not diverge
significantly over large distances (3 m or more), and we also
confirmed that the wavefront impinging on the fluidic lenses was
nearly a plane wavefront so that we could use the internal

FIGURE 9
Experimentally reconstructedwavefront using a Shack–Hartmann sensor (Model ThorlabsWFS150-5C) and a collimated incoherent LED source. (A)
Reconstructed wavefront produced by a fluidic lens with a circular aperture. (C) Reconstructed wavefront produced by a fluidic lens with an elliptic
aperture. The qualitative difference in the wavefront due to the shape of the aperture is apparent. (B and D) Residual difference between measured and
reconstructed wavefronts. Further details on the Shack–Hartmann wavefront sensor are provided in [7].
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calibration of the Shack–Hartmann wavefront sensor, and all
measured wavefront aberrations could be ascribed to the fluidic
lenses themselves.

Shack–Hartmann wavefront sensors (SHWSs) enable
analyzing the shape of an incident beam’s wavefront by
dividing the beam into an array of discrete intensity points
using a micro-lens array. These data are then used to
reconstruct and analyze the shape of the wavefront using
Zernike polynomials. In addition to analyzing classical optics
phenomena, they are increasingly employed in applications
where real-time monitoring of the wavefront is required to
control adaptive optics with the intent of removing the
wavefront distortion before creating an image. In particular,
SHWSs enable two types of wavefront characterizations.
I) Direct measurement (not displayed in Figure 9): shows the
wavefront that is directly calculated from the measured spot
deviations using a 2-dimensional integration procedure.

II) Zernike reconstruction (left column in Figure 9): displays
the wavefront that is reconstructed using a selected set of the
determined Zernike coefficients. The advantages of Zernike
reconstruction are as follows: i) selecting only a few lower-order
Zernike modes for reconstruction smooths the wavefront surface
(noise canceling), ii) the lowest-order Zernike modes (for instance,
Z0 piston, Z1 tip, and Z2 tilt) are always present, but they are of less
interest. Using an appropriate reconstruction (e.g., starting from
Z3) can omit the Z0, Z1, and Z3 Zernike modes in order to see only
the higher-order modes. iii) If selecting particular Zernike modes,
they can be displayed and analyzed separately. Difference (right
column in Figure 9): displays the difference between the I) directly
measured wavefront and II) reconstructed wavefront and is
therefore an indicator of the fit error.

The incident field had a residual field curvature below λ/6. The
sensor was placed 10 cm apart from the fluidic lens, with an aperture
limited by the pupil size of the sensor itself, typically 3 mm in

FIGURE 10
(A–I)Measured aberrations in μm, in terms of coefficients of associated Zernike polynomials of order 0 to 14, for blue, green, and red LED light. First
column: blue LED source, (A) circular aperture (a = b = 1.7 cm), (D) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm) and (G) elliptic aperture 2 (a = 1.3 cm, b =
1.7 cm). Second column: green LED source, (B) circular aperture (a = b = 1.7 cm), (E) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (H) elliptic aperture 2
(a = 1.3 cm, b = 1.7 cm). Third column: red LED source, (C) circular aperture (a = b = 1.7 cm), (F) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (I)
elliptic aperture 2 (a= 1.3 cm, b= 1.7 cm). The agreementwith numerical simulations ismostly qualitative due to the spectral broadness of the LED source.
Further details are in the text.
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diameter. We reconstructed the wavefront produced by a circular
fluidic lens filled with Vmax = 6 mL corresponding to an optical
power (OP) = 50 D (Figure 9A) and by an elliptical fluidic lens filled
with Vmin = 4 mL corresponding to OP = 36 D (Figure 9C). The
qualitative difference in the wavefront due to the shape of the
aperture is apparent. Residual differences between the measured
wavefront and the reconstructed wavefront are displayed in Figures
9B, D). Further details on the Shack–Hartmann wavefront sensor
are provided in Ref. [7].

4.2 Measured Zernike coefficients

In order to experimentally characterize the spectral response of
optical aberrations in the central region of the fluidic lens prototype,
we use the experimental setup described in Figure 8A. A collimated
incoherent beam, produced by a programmable LED source (ALIC
Smart Life, 14W, Luminous Flux 1400 lm, λ = 400–1,045 nm)
propagates through the fluidic lens and is imaged by a
Shack–Hartmann wavefront sensor (Model Thorlabs WFS150-
5C), located at a distance of 2 cm from the fluidic lens, in order
to image the near-field wave produced by the lens. The area of the

beam to be characterized is determined by the aperture of the sensor
(typically 3 mm). We verified that the transverse profile of the beam
did not change significantly when tuning the wavelength of the
source across the entire spectral range. Spectral characterizations in
the visible range are mostly qualitative due to the broad spectrum
produced by the incoherent LED source.

Measured aberrations in μm, in terms of the coefficients
associated with Zernike polynomials of order 0 to 14, for red,
green, and blue LED illumination are displayed in Figures 10A-I.
First column: blue LED source, (A) circular aperture (a = b =
1.7 cm), (D) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (G)
elliptic aperture 2 (a = 1.3 cm, b = 1.7 cm). Second column: green
LED source, (B) circular aperture (a = b = 1.7 cm), (E) elliptic
aperture 1 (a = 1.5 cm, b = 1.7 cm), and (H) elliptic aperture 2 (a =
1.3 cm, b = 1.7 cm). Third column: red LED source, (C) circular
aperture (a = b = 1.7 cm), (F) elliptic aperture 1 (a = 1.5 cm, b =
1.7 cm), and (I) elliptic aperture 2 (a = 1.3 cm, b = 1.7 cm).

In order to quantify the agreement between experimental
results and numerical simulations, we calculated the distance
between measured Zernike coefficients for red–green–blue
(RGB) wavelengths. We considered three different distance
measures defined for two sets of data {a, b, c} and {x, y, z} in

FIGURE 11
Comparison between spectral distances between measured Zernike coefficients in μm, as quantified by three different distance measures, D1, D2,
and D3, for red–green–blue (RGB) wavelengths. Blue markers, magenta markers, and brown markers correspond to B–R distance, B–G distance, and
R–G distance, respectively. (A, B, and C) depict spectral distancesD1, D2, and D3 for fluidic lenses with circular apertures, respectively. (D, E, and F) depict
spectral distances D1,D2, andD3 for fluidic lenses with elliptic 1 aperture, respectively. (G,H, and I) depict spectral distancesD1,D2, andD3 for fluidic
lenses with elliptic 2 aperture, respectively. Further details are in the text.
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the following form: 1) Euclidean distance
D1 �

																						
|a − x|2 + |b − y|2 + |c − z|2

√
, 2) Canberra distance

D2 = |a − x|/(|a| + |x|) + |b − y|/(|b| + |y|) + |c − z|/(|c| + |z|),
and 3) Bray–Curtis distance D3 � (|a − x| + |b − y| + |c − z|)/
((|a + x| + |b + y| + |c + z|).

A brief comparison between the different distance measures
is in order: D1 corresponds to the “Pythagorean distance and is
the only measure that can be subject to a direct geometrical
interpretation; therefore, in this sense, it is the most intuitive one.
D2 and D3 distance measures are similar in essence as they are
both based on the algebraic concept of norm of a vector. They
differ in the normalization factor. While D2 normalizes each
element of the vector independently, D3 introduces a global
normalization factor, and is therefore less sensitive (larger in
modulus), as can be verified in Figures 11G, J. Note that D1 is not
normalized, and for this reason, it is typically larger in modulus
than D2 and D3. We did not include the Manhattan distance in
this analysis because it returned practically identical results to the
Euclidean distance. The usefulness of the Manhattan measure
was clearly revealed when employed in clustering techniques (see
Section 2.4; Figure 12).

Comparison between spectral distances for measured
Zernike coefficients in μm, for RGB wavelengths are

displayed in Figure 10. Blue markers, magenta markers, and
brown markers correspond to B–R distance, B–G distance, and
R–G distance, respectively. Figures 10A–C depict spectral
distances D1, D2, and D3 for fluidic lenses with circular
apertures, respectively. Figures 10D–F depict spectral
distances D1, D2, and D3 for fluidic lenses with elliptic
1 aperture, and Figures 10G–I depict spectral distances D1,
D2, and D3 for fluidic lenses with elliptic 2 aperture.
Distances are within a fraction of the wavelength, in
agreement with numerical simulations.

4.3 Partition into clusters

In order to further classify the spectral response of optical
aberrations, we partitioned the data into a predetermined
number of clusters (N) across the visible range (λ =
400–650 nm). More specifically, Zernike coefficients were
partitioned into subgroups (or clusters) representing proximate
collections of elements based on a distance or dissimilarity
function. In particular, we consider the Manhattan distance,
given by the sum of the absolute difference between the
elements. Identical element pairs have zero distance or

FIGURE 12
(A–I) Experimental clusters for average Zernike coefficients (〈PN〉) in the range λ = 400–650 nm, partitioned into a predetermined set of N clusters
with N = 2, 4, 6. First column: N = 2 clusters, (A) circular aperture (a = b = 1.7 cm), (B) elliptic aperture 1 (a =1.5 cm, b = 1.7 cm), and (C) elliptic aperture 2
(a = 1.3 cm, b = 1.7 cm). Second column N = 4 clusters, (D) circular aperture (a = b = 1.7 cm), (E) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (F) elliptic
aperture 2 (a = 1.3 cm, b = 1.7 cm). Third column: N = 6 clusters, (G) circular aperture (a = b = 1.7 cm), (H) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm),
and (I) elliptic aperture 2 (a = 1.3 cm, b = 1.7 cm). Further details are in the text.
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dissimilarity and are grouped into a given cluster, and all others have
positive distance or dissimilarity.

Clustering techniques provide for a robust quantitative tool
to classify large sets of data according to the distance between
the elements in the clusters. This, in turn, can enable to identify
emerging trends in experimental data. In addition, they can
enable quantitative comparisons between experiments and
numerical/theoretical predictions. Moreover, in our case, we
performed clustering techniques based on an alternative
distance measure, e.g., the Manhattan distance, which
provided for further insights into the way in which averaged
experimental data are grouped and distributed, according to
the input wavelength. For instance, from the clustering
analysis, one can infer that average positive and negative
Zernike coefficients are typically distributed with similar
probabilities, for all input wavelengths. Note that the
insights provided by clustering techniques are
complementary to the direct calculations of distances
between elements (Figure 11).

Experimental clusters for average Zernike coefficients (〈PN〉)
in the range λ = 400–650 nm, partitioned into a predetermined
set ofN = 2, 4, and 6 clusters, are presented in Figures 12A–I. First
column: N = 2 clusters. (A) Circular aperture (a = b = 1.7 cm), b)
elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (C) elliptic

aperture 2 (a = 1.3 cm, b = 1.7 cm). Second column N = 4 clusters.
(D) Circular aperture (a = b = 1.7 cm), (E) elliptic aperture 1 (a =
1.5 cm, b = 1.7 cm), and (F) elliptic aperture 2 (a = 1.3 cm, b =
1.7 cm). Third column: N = 6 clusters. (G) Circular aperture (a =
b = 1.7 cm), (H) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and
(I) elliptic aperture 2 (a = 1.3 cm, b = 1.7 cm). For N = 2, Zernike
coefficients can be classified into two main clusters,
corresponding to either an average positive amplitude 〈P2〉 =
+10 (blue dots) or an average negative amplitude 〈P2〉 = −2
(orange dots). Next, for N = 4, Zernike coefficients can be
classified into four clusters, one with an average positive
amplitude 〈P4〉 = +15 (blue dots), one with an average
negative amplitude 〈P4〉 = −15 (magenta dots), and the
remaining two with nearly vanishing amplitudes 〈P4〉 ≈ 0
(green and orange dots). Finally, for N = 6, Zernike
coefficients are classified into six clusters, one with an average
positive amplitude 〈P6〉 = +20 (blue dots), one with an average
negative amplitude 〈P6〉 = −20 (purple dots), and the remaining
four clusters with nearly vanishing amplitudes 〈P6〉 ≈ 0 (green,
orange, magenta, and red dots). The decreasing amplitude of the
average Zernike coefficients for decreasing the number of clusters
(N) can be ascribed to averaging over a broader range of
amplitudes since reducing N increases the diversity of the
elements.

FIGURE 13
(A) to (F) Normalized convolution (CN) and correlation (CR) between wavelength (λ) and measured Zernike coefficients (Ps). Left column: CN [nm2],
(A) circular aperture (a = b = 1.7 cm), (B) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (C) elliptic aperture 2 (a = 1.3 cm, b = 1.7 cm). Right column: CR
[nm2], (D) circular aperture (a = b = 1.7 cm), (E) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (F) elliptic aperture 2 (a =1.3 cm, b = 1.7 cm). Further details
are in the text.
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4.4 Convolution and correlation

Convolution (CN) and correlation (CR) measurements are robust
analytical tools that enable quantitative analyses of the interrelation
between two experimental magnitudes, in this case Zernike
coefficients vs wavelength. Specifically, CR/CN = +1 (-1)
represents a maximal positive (negative) interrelation, while CR/
CN = 0 represents no interrelation at all. Moreover, these methods
enable to identify emerging trends or salient features for specific
values of the measured quantities. In addition, they enable direct
contrast and comparisonwith other characterizationmethods, such as
clustering techniques, and with theoretical/numerical predictions.
From the CR and CN data, we can conclude that the correlation
between measured Zernike coefficients and wavelength is typically
medium CR/CN = +0.5 (-0.5), uniformly distributed between positive
and negative values for all wavelengths, with no specific wavelength-
dependent salient features. These results are in agreement with the
conclusions obtained from clustering techniques, and from numerical
predictions.

In both CN and CR, the basic idea is to combine a kernel list with
successive sub-lists of a list of data. The convolution of a kernelKrwith a
list us has the general form ∑rKrus−r, while the correlation has the
general form∑rKrus+r. In particular, for a kernel listKr= [x, y] and list of
data us = [a, b, c, d, e], the convolution (CN) results in the combined list

CN � bx + ay, cx + by, dx + cy, ex + dy[ ], (30)
while the correlation (CR) results in the combined list

CR � ax + by, bx + cy, cx + dy, dx + ey[ ]. (31)
We calculated the convolution (CN) and correlation (CR) between

the wavelength (λ) and themeasured Zernike coefficients (Ps), where s=
0, . . . , 14 labels the polynomial order in each sub-list. We consider a
kernel specified by the wavelength range Kr = [400, 450, 500, 550, 600,
650] in nm and a list of measured Zernike coefficients (Ps(λ)) in nm for
each different input wavelength λ) of the form us = [Ps(400), Ps(450),
Ps(500), Ps(550), Ps(600), Ps(650)]. A plot of the normalized correlation
(CR) and convolution (CN) is presented in Figures 13A–F. Left column:
CN [nm2]. (A) Circular aperture (a = b = 1.7 cm), (B) elliptic aperture 1
(a = 1.5 cm, b = 1.7 cm), and (C) elliptic aperture 2 (a = 1.3 cm, b =
1.7 cm). Right column: CR [nm2]. (D) Circular aperture (a = b =
1.7 cm), (E) elliptic aperture 1 (a = 1.5 cm, b = 1.7 cm), and (F) elliptic
aperture 2 (a = 1.3 cm, b = 1.7 cm). As a general trend, Zernike
polynomials display either a positive correlation with λ (CR/CN = +0.5)
or a negative correlation with λ (CR/CN = −0.5). Fluctuations on this
trend increase as the asymmetry in the ellipse axes increases. The
significant color spread indicates that there is no particular correlation,
neither positive nor negative, between the Zernike order (s) and
wavelength (λ).

5 Discussion

We have presented a comprehensive numerical and
experimental study of the spectral response of optical aberrations
in macroscopic fluidic lenses with high dioptric power, tunable focal
distance, and aperture shape [7]. Our investigation is based on an
empirical characterization of the optical and material properties of

thin elastic membranes, in particular of the refractive index of
polymers, such as PDMS, according to the first-order Sellmeier
model [10]. Using a Shack–Hartmann wavefront sensor, we
experimentally reconstructed the near-field wavefront transmitted
by such fluidic lenses, and we characterized the chromatic
response of optical aberrations in terms of Zernike polynomials
over the visible wavelength range (λ = 400–650 nm) using an
incoherent programmable LED source. Moreover, we further
classified the spectral response of the lenses using clustering
techniques, encountering that for a predetermined number of
clusters (N = 2, 4, 6), the Zernike coefficients characterizing the
spectral response can be classified in three main clusters over the
entire wavelength range: a cluster with positive Zernike coefficients, a
cluster with negative Zernike coefficients, and a cluster with nearly
vanishing Zernike coefficients. In addition, we performed correlation
(CR) and convolution (CN) measurements, finding that as a general
trend Zernike polynomials display either a positive correlation with λ

(CR/CN = +0.5) or a negative correlation with λ (CR/CN = −0.5).
Fluctuations on this trend increase as the asymmetry in the ellipse axes
increases. Experimental results are in agreement with our theoretical
model of the nonlinear elastic membrane deformation. A complete
characterization of the spectral response of optical aberrations for
coherent illumination will be presented in an upcoming work.
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