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Game theory can employ reinforcement learning algorithms to identify the
optimal policy or equilibrium solution. Potential-based reward shaping (PBRS)
methods are prevalently used for accelerating reinforcement learning, ensuring
the optimal policy remains consistent. Existing PBRS research performs message
passing based on graph convolution neural networks (GCNs) to propagate
information from rewarding states. However, in an irreversible time-series
reinforcement learning problem, undirected graphs will not only mislead
message-passing schemes but also lose a distinctive direction structure. In this
paper, a novel approach called directed graph convolution neural networks for
reward shaping φDCN has been proposed to tackle this problem. The key
innovation of φDCN is the extension of spectral-based undirected graph
convolution to directed graphs. Messages can be efficiently propagated by
leveraging a directed graph Laplacian as a substitute for the state transition
matrix. As a consequence, potential-based reward shaping can then be
implemented by the propagated messages. The incorporation of temporal
dependencies between states makes φDCN more suitable for real-world
scenarios than existing potential-based reward shaping methods based on
undirected graph convolutional networks. Preliminary experiments
demonstrate that the proposed φDCN exhibits a substantial improvement
compared to other competing algorithms on both Atari andMuJoCo benchmarks.

KEYWORDS

Markov decision process, reinforcement learning, directed graph convolutional network,
reward shaping, game

1 Introduction

Over the past few decades, game theory has utilized the concepts and methods of
reinforcement learning (RL) to solve decision-making problems [1]; [2]; [3]. An RL problem
can be seen as a game between individual decision-makers and the environment [4]; [5]. RL
can be expressed as a Markov decision process (MDP) [6]; [7]. Through interaction between
agents and the environment, RL is able to receive rewards and take actions to maximize those
rewards. During the training of RL, agents often encounter situations where they cannot
obtain rewards most of the time [8]; [9]. Providing rewards in a sparse environment makes
learning difficult for agents [10]. It is important to note that RL has always been hampered by
sparse rewards [11].
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Reward shaping is a widely used technique to address the
challenge of reward sparsity. The purpose of reward shaping is to
guide agents in learning through providing artificially designed
additional rewards. Nevertheless, artificially designed reward
functions may result in agents learning non-optimal policies in
certain situations. Therefore, potential-based reward shaping
(PBRS) is proposed in literature [12]. In this manner, the
optimal policy is maintained when the additional reward value
can be expressed in the differential form of a potential function.
Thus, PBRS effectively avoids the reward hacking problem while
addressing the sparse reward issue. On the other hand, RL
problems can be considered probabilistic inference problems in
hidden Markov models, where forward–backward messages can
be used for inference. According to existing research, the potential
function is defined in the probabilistic inference view of RL. The
probability of an optimal trajectory is usually defined as a
potential function under a given state. Due to the complexity
of computation, it is difficult to obtain the messages. As a
consequence, reward shaping using graph convolution
networks is developed since projections of functions on the
eigenspace of the graph Laplacian produce smooth
approximation with respect to the underlying state-space
topology of the MDP.

Previous research relies on a traditional spectral-based GCN to
leverage reward shaping [13], but often overlooks crucial temporal
dependencies between states. Sami et al. [14] employed a recurrent
neural network to record reward-shaping values at different times,
but the issue of temporal dependencies is not addressed essentially.
Their use of the undirected graph and symmetric Laplacian matrix
resulted in messages being interfered with and discarded in different
directions, which may lead to serious logical errors. From a macro
perspective, there are indeed some tracks that are sequential and
irreversible in the real world.

To tackle the aforementioned problem, we propose an approach
termed directed graph convolution neural networks for reward
shaping φDCN. Our approach extends spectral-based undirected
graph convolution to a directed graph which is built on a state
probability model of trajectory. The state transition matrix is
approximated by a directed graph Laplacian in the process of
reward shaping. Messages about states that are propagated on
this directed graph Laplacian serve to learn potential functions.
The incorporation of temporal dependencies between states makes
φDCN more suitable for real-world scenarios than existing potential-
based reward-shaping methods based on undirected graph
convolutional networks. We have demonstrated that φDCN
outperforms competitive baselines on both Atari [15] and [16]
benchmarks.

The main contributions are summarized as follows.

• We implement reward shaping through the message-
passing mechanism of directed graph neural networks
for the first time, which is more in line with the logic of
the real world.

• The stationary distribution of the classical directed graph the
Markov chain builds on is not necessarily unique since the
graph might not be necessarily irreducible and aperiodic. To
counteract this, we added a PageRank-based teleportation
back to each node.

• Experiments demonstrate that the performance of the
proposed φDCN exceeds that of the baseline algorithm on
the Atari and MuJoCo benchmark.

2 Related work

2.1 Reward shaping

Reward shaping is used to accelerate learning when the
environment only provides sporadic, incomplete, or delayed
rewards. Ng et al. [12] proposed an extended version called
potential-based reward shaping. Its most acclaimed characteristic
is its ability to ensure that the optimal policy remains unchanged, as
supported [12]. On this basis, there are two development paths of
potential-based reward shaping: a) potential-based advice [17]; [18]
and b) dynamic potential-based reward shaping [19]. Potential-
based advice adds state–action pairs into potential functions rather
than individual states. It is possible to vary the potential energy
function over time using the latter approach. [20] is a book about
reward shaping, which provides a detailed summary of the methods,
theories, and applications of reward shaping.

In addition to the potential-based reward-shaping methods,
other outstanding research studies on reward shaping also
embrace belief reward shaping, ethics shaping, and reward
shaping via meta-learning. These works are different from ours
as we utilize convolutional networks to leverage reward shaping. In
this sense, we focus more on the message-passing mechanism in the
network to learn the potential function.

2.2 Digraph convolution

Digraph convolution is a method for performing convolution
operations on a directed graph, which aims to comprehensively
analyze the topological structure of the graph and the feature
information of nodes or edges. Compared to undirected graph
convolutional networks, digraph convolutional networks have
the advantage of better reflecting the directional relationships
between nodes. [21] extended the graph convolutional kernel
originally designed for an undirected graph to a directed graph
by introducing a trainable binary gating mechanism. This
enables the model to regulate information dissemination
based on the directionality of edges. Moreover, Li et al.
proposed a new neural network architecture that can directly
process graph structured data [22], including graph convolution
operations for directed graphs. [23] proposed a new graph
convolution method called MixHop, which can simultaneously
consider the information of all neighboring nodes and handle
directed graphs.

Some GCNs are designed to adapt to directed graphs (digraphs)
by looking for structural patterns and reformulating the graph [24];
[25]. In addition to their limitations, these methods rely on pre-
defined structures and are not capable of handling complex
structures. Similar to our approach, another approach [26]
redefines the propagation scheme only for strongly connected
digraphs. In contrast, our approach is universally applicable to
digraphs, which is the most important difference.
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3 Background

3.1 Basic notions

As a mathematical expression, an MDP is represented by the
tuple 〈S, A, γ, r, P〉, where S is the state space, A is the action space, r
is the reward function, P is the transition probability matrix with
P(s′ | s, a) giving the probability of transitioning to state s′ when
action a is taken at state s, and γ ∈ (0, 1) is the discount factor. The
state–action trajectory of a policy can be modeled by τ = (s0, a0,
s1, a1.. . .).

The policy π value function is defined as follows:

Vπ
r s( ) � Eτ~π ∑∞

t�0γ
tr st, at( ) s0 � s|[ ]. (1)

The policy π action-value function is denoted as follows:

Qπ
r s, a( ) � Eτ~π ∑∞

t�0γ
tr st, at( ) s0 � s, a0 � a|[ ]. (2)

The policy π expected discounted return is defined as follows:

J π( ) � Eτ~π ∑∞
t�0γ

tr st, at( )[ ]. (3)
Algorithms that learn from RL can determine the optimal policy π*:

π* � argmaxπJ π( ). (4)
Hence, given the initial state s0 and its distribution d (s0), the
gradient of the J(π) over a parameterized policy πθ can be
expressed as

∂J θ( )
∂θ

� ∑
s
d s; θ( )∑

a

∂πθ a s|( )
∂θ

Qπθ s, a( ),
d s; θ( ) � ∑s0

d s0( )∑∞
t�0γ

tPπθ St � s S0 �| s0( ).
(5)

3.2 Control as inference

In existing studies, the RL problems have been translated directly
into probabilistic inference problems [27]; [28]. So we use probability
graph models to approximate RL. We then implement probabilistic
inference through a message-passing mechanism.When the states are
represented by nodes and the edges represent the transition
probability between two different states, MDPs were considered
probability graph models in previous RL research studies. As

shown in Figure 1, the RL structure approximates hidden Markov
models (HMMs). Taking this into account, we introduce a binary
variable O = 0 or 1 based on the action At and the state St. When Ot =
1, the state–action pair is optimal in time t.

In the probabilistic inference view of RL, the value function
Vπ(S) can be approximately inferred through a message-passing
mechanism. The forward–backward algorithm is an effective
approach for performing inference in an HMM. A backward
message is defined as β(St, At) � P(Ot: T|St, At), and a forward
message is defined as α(St, At) � P(O0: t−1|St, At)P(St, At), where
Ot:T is the observation variable from time t to the end.
Correspondingly, O0:t−1 is the observation variable from the
beginning to time t − 1. In the RL graph, given the current state
St, the backward message reflects the probability that the current
trajectory will lead to an optimal one in the future. This forward
message indicates the probability of a past optimal trajectory for the
current state St. By projecting maximum-entropy RL into
probability space, the mapping function f (·) can be determined. f
(·) maps rewards to a probability space by defining the distribution
of this optimality variable as P(O � 1|St, At) � f(r(St, At)).

As a result of recursion, the forward α(St, At) and backward β(St,
At) messages can be expressed as follows:

α St, At( ) � ∑
St−1

∑
At−1

P St St−1, At−1|( )P At( )P Ot−1 St−1, At−1|( )α St−1, At−1( ),
β St, At( ) � ∑

St+1
∑
At+1

P St+1 St, At|( )P At+1( )P Ot St, At|( )β St+1, At+1( ).

(6)

It should be noted that only the current state and reward are
visible, not the action space. So the potential function of PBRS is
designed in the state space. Once the actions are marginalized, we
redefine the forward message α(St) and backward message β(St) for
learning potential functions.

According to [12], the optimal policy will remain unchanged
after φDCN implements potential-based reward shaping. By replacing
the original reward function r (St, At) with a new reward function R
(St, At, St+1), potential-based reward shaping can guarantee the
optimal policy unchanged in RL:

R St, At, St+1( ) � r St, At( ) + F St, St+1( ). (7)
Here, F(St, St+1) is the shaping function calculated as follows:

F St, St+1( ) � γΦαβ St+1( ) −Φαβ St( ). (8)
Literature reports have shown that the propagated messages can be
used as potential functions [13]; [29]. Given the marginalized
messages α(St) and β(St), the potential function Φ(·) is defined as

Φαβ St( ) � α St( )β St( ). (9)
The potential function represents the probability of an entire
trajectory being optimal. A high-return pathway is indicated by
their likelihood.

4 Directed graph convolution neural
networks for reward shaping

A DCN utilizes directed graph convolution to propagate
messages α(St) and β(St). Here, we illustrate digraph Laplacian,

FIGURE 1
Graphical model with the variable Ot.
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network structure, and loss function. In addition, we present a
directed graph Laplacian. The structure of the directed graph
convolutional neural network is shown in Figure 2.

4.1 Digraph Laplacian

The spectral-based graph convolution is first extended to the
directed graph (digraph) by using the inherent relationship
between the graph Laplacian and the stationary distribution of
PageRank. Using the properties of Markov chains, we can solve
the problem in digraphs using the internal relationship between
graph Laplacian and PageRank. In a digraph G = (Vd, Ed), a
random walk on G is a Markov process with transition matrix
Prw � D−1

d Ad, in which Dd (i, i) = ∑jAd (i, j) is the diagonal degree
matrix and Ad is the adjacency matrix. The stationary
distribution of PageRank may not be unique if the transition
matrix is not necessarily irreducible and aperiodic, especially
when a graph contains isolated nodes in the periphery or can be
formed into a bipartite graph. Irreducibility means that there
exists a path between any two nodes in the network, while

aperiodicity means that the probability of returning to a node
after a certain number of steps is not periodic. If a graph contains
isolated nodes, then there is no path from those nodes to other
nodes in the network, and the matrix is not irreducible. Similarly,
if a graph can be formed into a bipartite graph, then there are no
links between nodes in the same partition, which means that the
matrix is not aperiodic.

Consequently, we slightly modify the random walk to PageRank
which makes teleporting back to each node possible. In this way, the
PageRank transition matrix Ppr is strictly irreducible and aperiodic,
which is defined as Ppr � (1 − μ)Ppr + μ

n1
n×n. It should be noted that

the variable μ is small enough. Thus, according to the
Perron–Frobenius theory [30], Ppr has a unique left eigenvector
ξpr which is strictly positive with eigenvalue 1.

The row-vector ξpr corresponds to the stationary distribution of
Ppr, and we have ξpr(i) = ∑i,i→jξpr(i)Ppr(i, j). According to the
equation, the ξpr of node i is the sum of all incoming
probabilities from node j to node i. Therefore, the ξpr and an
undirected graph degree matrix Du have similar properties. The
digraph Laplacian using PageRank ϕpr in symmetric normalized
format is defined as

Lpr � I − 1
2

Π
1
2
prPprΠ−1

2
pr + Π−1

2
prP

T
prΠ

1
2
pr( ), (10)

where we employΠpr � 1
‖ξpr‖1Diag(ξpr) to replace degree matrix Du

in an undirected graph. The definition is based on strongly
connected digraphs, so it is not universally applicable. To deal
with it, μ → 0 provides a generalized solution.

4.2 Loss function

One of the core characteristics of the GCN is that the message-
passing mechanism is built on the graph Laplacian. Currently, PBRS
is based on a traditional undirected GCN, where the undirected
graph convolution is defined as Zu � ~AuXW. ~Au represents the
normalized self-looped adjacency matrix of the undirected graph,
and W represents the weight. The GCN and its variants require the
undirected symmetric adjacency matrix Au as the input. This not
only aggregates features with incorrect weights but also discards

FIGURE 2
Network structure in φDCN. The trajectory in the MDP is defined as a graph, where each state is a node. The edge is the transition probability between
two nodes. This probability directed graph is the input of φDCN.

TABLE 1 Configuration for experiments.

Hyperparameter Value

Learning rate 2.5e-4

γ 0.99

Entropy coefficient 0.01

PPO steps 128

PPO clipping value 0.1

Mini batches 4

Processes 8

φDCN: μ 0.01

φDCN: λ 10

φDCN: δ 0.9
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structures in different directions. In the MDP with temporal
attributes, the undirected symmetric adjacency matrix Au cannot
be adopted. To approximate the transition matrix in the MDP, we

use the digraph Laplacian. Given a directed graph (digraph) G = (Vd,
Ed), the adjacency matrix is expressed as Ad � 0, 1{ }n×n, where the
number of nodes is denoted by n. X ∈ Rn×c denotes the node features,

FIGURE 3
Comparison of rewards per episodes between a2cw/our attention, HGT,ΦGCN, and φDCN on Atari. (A) Assault. (B) Beamrider. (C) Berzerk. (D) Amidar.
(E) Fishing Derby. (F) Frostbite. (G)Gopher. (H): IceHockey. (I) James Bond. (J)Ms. Pac-Man. (K)Q*bert. (L) Robo Tank. (M) SeaQuest. (N)Wizard Of Wor.
(O) Zaxxon.
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with c being the number of features. Using Eq. 10 to define the
digraph Laplacian, which is symmetric, we can then derive the
digraph convolution definition as follows:

Zd � 1
2

Π
1
2
pr
~PprΠ−1

2
pr + Π−1

2
pr
~P
T

prΠ
1
2
pr( )XW, (11)

where ~Ppr denotes a transition matrix with self-loops. Therefore, the
message propagated by φDCN is as follows:

mi � ReLU WT∑
j

1
2

Π
1
2
pr
~PprΠ−1

2
pr + Π−1

2
pr
~P
T

prΠ
1
2
pr( )

ij
mj( ), (12)

where the node j is a neighbor of node i and mj is a message from
node j.

Throughout φDCN, each state is represented by a node, while
edges represent the transition probability between these states.
Information about rewarding states is propagated through the
message-passing mechanism of a directed graph convolutional
network. In this paper, we propose a two-layer network as
follows:

φDCN � sof tmax
1
2

Π
1
2
pr
~PprΠ−1

2
pr + Π−1

2
pr
~P
T

prΠ
1
2
pr( )(

ReLU
1
2

Π
1
2
pr
~PprΠ−1

2
pr + Π−1

2
pr
~P
T

prΠ
1
2
pr( )XW 0( )( )W 1( )).

(13)
Then, we can express the loss function ℓ of φDCN as follows:

ℓ � ℓ0 + ηℓprop, (14)
where the parameter η is the weight assigned to the propagation
loss ℓprop. Here, the supervised loss ℓ0 is defined as the cross-
entropy between the prediction result Ŷ and the ground-truth
label Y, denoted by the symbol H(Y, Ŷ). Y represents the
probability that the path taken at the moment is the optimal
trajectory. It is worth mentioning that Ŷ, found at the output of
φDCN, is defined as a probability distribution φDCN(S). According
to the results of this study, we have calculated the supervised loss
ℓ0 as follows:

ℓ0 � H P O S|( ),φDCN S( )( ) � ∑SP O S|( )log φDCN S( )( ). (15)
A propagation loss implemented as a recursive case is identified as

ℓprop in Eq. 14. The recursive case of the message-passing mechanism
can be implemented by the propagation loss ℓprop as follows:

ℓprop � ∑vi,vj
~Advi,vj

φDCN Xvi( ) − φDCN Xvj( )����� �����2. (16)

4.3 Training

This paragraph describes the training process of φDCN. We
propagate information about rewarding states through the
message-passing mechanism of this directed graph convolution
neural network. Then, the potential function Φαβ(·) is learned on
propagated messages α(St, At) and β(St, At) (as in Eq. 9). Once the
potential function Φαβ(·) is learned, the new reward function R (St,
At, St+1) is calculated to accelerate RL by replacing the original
reward function r (St, At).

In this case, the combined value function Qπ
comb of RL can be

calculated using the sum of two value functions
Qπ

comb(s, a) � δQπ(s, a) + (1 − δ)Qπ
φ(s, a), where Qπ(s, a) �

E[∑tγ
tr(St,At)] is the original Q-value function and Qπ

φ(s, a) �
E[∑tγ

tr(St,At) + γφDCN(St+1) − φDCN(St)] is the reward-shaped
function. Two value functions can be weighted by the parameter δ.
In this paper, we execute reward shaping φDCN on the underlying
method PPO [31], which is a policy-based approach. The training
process of φDCN is described in Algorithm 1.

1: Create an empty digraph G

2: for Episode = 0, 1, 2, . . . do

3: while t < T do

4: Add transition (St, St+1) to digraph G

5: end while

6: if mod(Episode, N) then

7: Train φDCN on the digraph G

8: end if

9: Qπ
comb � μQπ + (1 − μ)Qπ

Φ

10: Maximize Eπ[∇log π(At |St)Qπ
comb(St ,At)]

11: end for

Algorithm 1. Directed graph convolution neural networks for reward

shaping.

TABLE 2 Mean reward for 10 training processes on Atari. The better result is
bolded.

Alien Amidar Assault

ϕGCN 1,385.2 406.2 4,845.1

φDCN 1,423.6 549.5 4,403.4

Beamrider Berzerk Breakout

ϕGCN 2,357.9 818.7 150.2

φDCN 2,631.1 973.3 164.2

Demon Attack Fishing Derby Frostbite

ϕGCN 9,807.9 −13.1 296.3

φDCN 12,448.6 12.5 305.2

Gopher IceHockey James Bond

ϕGCN 1,010.4 −5.4 511.2

φDCN 1,045.8 −5.7 519.2

Ms. Pac-Man Q*bert Robo Tank

ϕGCN 1,422.3 8,968.0 19.4

φDCN 1,754.4 8,551.5 18.9

SeaQuest Wizard Of Wor Zaxxon

ϕGCN 1,310.4 3,670.0 5,591.2

φDCN 1,459.1 4,054.2 6,134.0
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5 Experiment

5.1 Experimental setup

In the experiment, the benchmarks from Atari and MuJoCo are
adopted for evaluation.

Atari plays an important role in the field of RL [15]. Atari
includes many classic games, such as Pac-Man, Space Invaders,
Asteroids, and Pitfall. These games have become indelible symbols
in the history of electronic games. Atari games are widely used as test
platforms and benchmarks in the field of RL. Atari games have
diversity, complexity, and challenges, covering various types of
games, such as shooting, action, and adventure, at various
difficulty levels. Therefore, they are used to evaluate the
performance of the RL algorithm on complex tasks and help

researchers understand the advantages and limitations of the
algorithm.

MuJoCo is a physics engine and simulator, which provides
researchers and developers with an efficient and accurate
physical simulation environment for training and evaluating
RL algorithms [16]. MuJoCo provides a high-performance
physics simulation engine that can simulate the dynamics and
physical interactions of complex multi-joint robots and objects.
This allows researchers to quickly test and verify RL algorithms in
a simulation environment without the need for actual robots or
real environments. MuJoCo supports various types of tasks and
environmental settings, including robot control, object grasping,
and movement [32]; [33,34]. It also allows users to customize the
environment as needed to meet various research and application
needs.

For the two categories of games, Atari and Mujoco, Table 1
shows the hyperparameters in the φDCN. The hardware components
of our system include an RTX2070 GPU, CPU E5-2670V3, and
32 GB RAM.

We set ϕGCN as the baseline algorithm for comparison. In the
literature [13], ϕGCN has been experimentally demonstrated to have
better performance than others, such as the PPO [31], RND [35],
ICM [36], and LIRPG [37]. For the purpose of comparing the
proposed approach φDCN directly with other latest algorithms, PPO
+ RISE [38], a2c w/our attention [39], and HGT [29] are adopted as
contenders. For a fair comparison, all competing algorithms use the
default hyperparameters.

FIGURE 4
Delay rewards. Comparison of rewards per episode between HGT, PPO + RISE, ΦGCN, and φDCN on MuJoCo. (A) HalfCheetah. (B) Hopper. (C)
Walker2D. (D) Ant. (E) Swimmer. (F) Humanoid.

TABLE 3 Mean reward for 10 training processes onMuJoCo. The better result is
bolded.

HalfCheetah Hopper Walker2D

ϕGCN 3,543.9 1,550.4 2,413.5

φDCN 4,496.8 2,630.6 4,620.9

Ant Swimmer Humanoid

ϕGCN 3,660.1 116.6 625.7

φDCN 3,722.5 115.0 633.3
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5.2 Experimental results on Atari

Due to its reactive and hard-exploration nature, the Atari
benchmark is used for experiments. We repeat the experiment
10 times over ten million frames from each game in order to
assess the applicability and effectiveness of the proposed φDCN.

In this experiment, we use potential-based reward shaping
approaches HGT and ϕGCN as comparison methods, where HGT
is an extended version of ϕGCN. We notice that HGT mines the
logical correlations between states by enriching the propagated
messages. In addition, we also compare a2c w/our attention as it
is designed to improve exploration ability. However, a2c w/our
attention does not guarantee the invariance of the optimal
policy.

Figure 3 presents the mean rewards obtained from the
10 training processes using Atari tasks. In accordance with this,
the proposed φDCN demonstrated good improvements in most
games, including Ms Pac-Man, which displayed a 23% higher
reward than the baseline ϕGCN. It is also observed that similar
results are observed for Gopher, Demon Attack, and Amidar.
Based on the results given in Table 2, the φDCN approach
performs better than all other games in terms of improving
learning performance by an average of 12.3%. It is concluded
that reward shaping is enhanced by the message-passing
mechanism in directed graph convolutional networks. A further
analysis is conducted, with the results given in Table 2, which
demonstrates empirically that the use of a directed graph
Laplacian leads to performance improvement.

5.3 Experimental results on MuJoCo

In this experiment, we evaluate the performance of φDCN in
continuous control tasks. We considered six standard environments
inMuJoCo, namely, Ant, Humanoid, Hopper, Swimmer, Walker2D,
and HalfCheetah. In order to increase the difficulty of the
experiment, we used an environment with a delayed reward
version that makes reward sparse. In this setting, agents only
receive accumulated rewards for a period of time (20 steps),
rather than receiving rewards for each step. Here, we choose
ϕGCN, PPO + RISE, and HGT for comparison, which are
considered strong state-of-the-art baselines.

According to Figure 4, when φDCN is trained on delayed reward
environments, it is generally faster than baselines in all six MuJoCo
environments. Particularly, φDCN achieves significant performance
improvement in delayed reward environmental HalfCheetah,
Hopper, and Walker2D. Although our approach φDCN performs at a
similar level to ϕGCN which executes reward shaping through the
message-passing mechanism on undirected graphs, we have
surpassed the other two algorithms, namely, HGT and PPO + RISE.
It is evidenced from Table 3 that our proposed approach has achieved
much better rewards (37.1% higher) than the baseline ϕGCN. In this
study, it is evident that the performance of the φDCN is improved in
continuous control tasks. This suggests that the proposed approach

holds promise for accelerating RL in continuous control tasks when
rewards are sparse.

5.4 Ablation analysis

An ablation analysis is conducted to determine how the
directed graph Laplacian affects performance, as illustrated in
Table 2 and Table 3. It should be noted that the bold one is the
better one. The only difference between φDCN and ϕGCN is the
graph Laplacian, where φDCN is the directed graph Laplacian and
ϕGCN is the undirected graph Laplacian. According to this study,
directed graph convolution networks have significantly
improved performance in most of environments. Message
passing with directional attributes can improve its
performance. There is an improvement of 12.3% in the Atari
experiment as compared to ϕGCN. The generalizability of φDCN is
also demonstrated in several Atari tasks. Particularly in the
continuous control tasks (MuJoCo), the performance is
improved by an average of 37.1%.

6 Conclusion

Game theory utilizes the concepts and methods of RL to solve
decision-making problems. However, the challenge of sparse
rewards often exists in RL. Our proposed approach φDCN has
been shown to be more effective in this issue as the message-
passing mechanism of the directed graph Laplacian can be
utilized to accelerate RL. In preliminary experiments conducted
on Atari and MuJoCo, the proposed φDCN has demonstrated
substantial improvement over conventional graph convolutional
networks with an impressive increase of 12.3% and 37.1%
compared to competing algorithms in terms of rewards per episode.

Despite this, there are still some shortcomings in certain aspects
of φDCN, such as the high computational overhead of directed graph
convolution operations. We are planning to conduct further
research on this issue as the primary focus of our next project.
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