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Pre-emptive vaccination has been proven to be the most effective measure to
control influenza outbreaks. However, when vaccination behavior is voluntary,
individuals may face the vaccination dilemma owing to the two sides of vaccines.
In view of this, many researchers began to use evolutionary game theory tomodel
the vaccination decisions of individuals. Many existing models assume that
individuals in networks use the Fermi function based strategy to update their
vaccination decisions. As we know, human beings have strong learning capability
and they may continuously search for the optimal strategy based on the
surrounding environments. Hence, it is reasonable to use the reinforcement
learning (RL) strategy to reflect the vaccination decisions of individuals. To this
end, we here explore a mixed updating strategy for the vaccination decisions,
specifically, some individuals called intelligent agents update their vaccination
decisions based on the RL strategy, and the other individuals called regular agents
update their decisions based on the Fermi function. We then investigate the
impact of RL strategy on the vaccination behavior and the epidemic dynamics.
Through extensive experiments, we find that the RL strategy plays a double-edged
sword role: when the vaccination cost is not so high,more individuals arewilling to
choose vaccination if more individuals adopt the RL strategy, leading to the
significant suppression of epidemics. On the contrary, when the vaccination
cost is extremely high, the vaccination coverage is dramatically reduced,
inducing the outbreak of the epidemic. We also analyze the underlying reasons
for the double-edged sword role of the RL strategy.
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1 Introduction

The spreading of large-scale epidemics, such as the Severe Acute Respiratory Syndrome
(SARS), Avian influenza and Corona Virus Disease 2019 (COVID-19), not only seriously
endangers human health, but also causes huge economic losses. Therefore, how to develop
effective strategies to suppress the spreading of epidemics has always been an important
issue. It has been proven that vaccination is the most successful intervention against the
spread of epidemics, increasing life expectancy, and decreasing morbidity [1,2]. When
considering the voluntary vaccination principle, an individual’s vaccination decision may
depend on the perceived risk of infection, cost of infection, cost of vaccination, and the
vaccination behaviors of other individuals [3–5]. Thus, whether to take vaccination or not
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represents a dilemma: vaccination protects not only those who are
vaccinated but also their neighbors. In this case, many others in the
community can also be benefited, so they have less incentive to be
vaccinated. This scenario naturally leads to the “free-riding”
problem commonly observed in public goods studies [6–8].

Inspired by these facts, researchers have investigated the impacts
of vaccination behaviors on the epidemiological models within the
game-theoretical framework [9–12]. For instance, Bauch et al. [9,10]
analyzed the collective behavior of voluntary vaccination for various
childhood diseases within a game-theoretic framework, and found
that this voluntary strategy can not lead to the group-level optimum
due to the risk perception pertaining to the vaccine and the effect of
“herd immunity”. The imitation dynamics inherent in the strategy-
updating process was considered in the game-based vaccination
model in Ref. [13], where the oscillations of vaccine uptake can
emerge under some specific conditions, such as the change of disease
prevalence or a high perceived risk of vaccine. Vardavas et al. [14]
studied the effects of voluntary vaccination on the prevalence of
influenza based on a minority game, and they demonstrated that
severe epidemics could not be prevented unless vaccination
programs offer incentives.

Since complex network provides an ideal and effective tool to
describe the spreading of epidemics among populations, more works
begun to study the voluntary vaccination behaviors within the
network science framework [15–18]. For example, Perisic et al.
studied the interplay of epidemic spreading dynamics and individual
vaccination behavior on social contact networks. Compared to the
homogeneously mixing model, they observed that increasing the
neighborhood size of the contact network can eliminate the disease if
individuals decide whether to vaccinate by accounting for infection
risks from neighbors [19]. Mbah et al. considered the effects of both
imitation behavior and contact heterogeneity on vaccination
coverage and disease dynamics, and they found that the imitation
behavior may impede the eradication of infectious diseases [20]. Fu
et al. developed a network-based model to explore the effects of
individual adaptation behavior and network structure on
vaccination coverage as well as final epidemic size. Their findings
indicate that the network structure can improve vaccination
coverage when cost of vaccination is small; conversely, the
network structure inhibits vaccination coverage when cost of
vaccination is large [12]. Recently, a great deal of study has also
focused on the impacts of various factors on individual vaccination
behavior, such as perception [21], stubborn [22], social influence
[23], different subsidy strategies [16,24,25], strategy conformity
[15,26], anti-social behavior [27], hypergraph structure [28] and
so on.

Given that individuals may have no complete information of the
entire network and are not completely rational, the Fermi function
based rule is often used to characterize the vaccination decision of
individuals, i.e., the probability that individual i adopts individual j’s
strategy is determined by their current payoff differences and the
rationality level of individuals [12,16]. Nevertheless, the Fermi
function based rule only considers the difference of the current
payoffs, without fully considering the strong learning capability of
human beings. In fact, individuals can continuously interact with the
environment and then search for the best policy for themselves.
Reinforcement learning (RL) is an aspect of machine learning where
an agent tries to maximize the total amount of reward it receives

when interacting with a complex, uncertain environment, and it
utilizes a Q-table to record and update the values for each state-
action pair [29]. In practical scenarios, the number of state-action
pairs is not fixed, so the deep reinforcement learning (DRL) was
proposed to solve the problem [30]. As a pioneering work of DRL,
the deep Q-network (DQN) algorithm is a representative method
and has garnered widespread attention in recent years [31,32].

Motivated by the above considerations, in this work, we consider
a mixed updating strategy for vaccination decision of individuals
composed of Fermi function strategy and RL strategy, and then
study the impact of such a mixed strategy on the vaccination
behaviors and epidemic dynamics. Specifically, we divide
individuals in networks into two categories: one group of
individuals update their vaccination decisions based on Fermi
function (referred to as regular agents), while the other group of
individuals update their vaccination decisions based on RL strategy
(referred to as intelligent agents). Since each individual’s local
information is flexible and dynamically changing, such as the
number of neighbors, vaccinated neighbors or infected neighbors,
we utilize DQN algorithm to update the decisions of intelligent
agents. Experiments demonstrate that the RL strategy plays a
double-edged sword role in vaccination behavior as well as
epidemic dynamics. When the vaccination cost is not very high,
a higher proportion of intelligent agents promotes vaccination
coverage, leading to a dramatic reduction in the epidemic.
However, when the vaccination cost is very high, the presence of
intelligent agents can hinder the willingness to vaccinate, leading to
an outbreak of the epidemic.

The rest of this paper is structured as follows. In Sec. 2, the
descriptions of our model are introduced. In Sec. 3, main
experimental results are presented and analyzed. Finally, the
conclusions are summarized in Sec. 4.

2 Proposed model

We study the vaccination dynamics for the prevention of the flu-
like disease, in which individuals in networks must make vaccination
decision before the onset of each epidemic season. Due to the
periodic outbreaks of flu-like diseases and the limited validity of
the vaccines, individuals who receive vaccinations can only gain
immunity to the disease during the current season. In this situation,
we also model the vaccination dynamics as a two-stage iterative
process [12]: the first stage is a public vaccination campaign, in
which individuals determine whether to vaccinate or not based on
the previous season’s conditions. The second stage is the epidemic
season stage, where vaccinated individuals cannot be infected, while
unvaccinated individuals face a certain probability of being infected.
In previous studies, individuals within social networks relied on the
Fermi function to decide whether to vaccinate or not. In this work,
we assume that some individuals update their vaccination decisions
using the DQN method. As illustrated in Figure 1, the overall
architecture of our proposed model can be subdivided into four
steps: the initialization process, the decision-making process, the
epidemic spreading process, and the payoff calculation process,
where the last three steps repeatedly iterate until convergence or
a given number of iterations. It should be noted that, the step 2 and
step 4 correspond to the first stage of the two-stage iterative process,

Frontiers in Physics frontiersin.org02

Kan et al. 10.3389/fphy.2023.1320255

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1320255


i.e., public vaccination campaign, where individuals make decisions
based on the calculated payoffs. The step 3 is the epidemic season
stage of the two-stage iterative process, after this step the payoff of
each node can be calculated. Below, we provide detailed
explanations for each of them.

2.1 Initialization process

In initialization phase, a proportion ρ of the total number of
nodes in the network is randomly selected as the intelligent agents/
nodes (i.e., updating vaccination decision based on DQN), and the
other nodes are the regular agents/nodes (i.e., updating vaccination
decision based on Fermi function). Once the categories of these
nodes are established, they remain unchanged throughout the entire
process. Meanwhile, we randomly select one-third of nodes to be
vaccinated to begin the iterative process. After that, individuals need
to use Fermi function or DQN method to decide whether to
vaccinate or not based on the prior season’s information, such as
the vaccination status, epidemic infection situation, payoffs of
individuals, and so forth.

2.2 Decision-making process

Since we consider a mixed updating strategy composed of the
Fermi function and the DQNmethod, we will respectively introduce
the details of them.

2.2.1 Fermi function based strategy
The regular nodes determine whether to vaccinate or not based

on the Fermi function. In detail, for a regular node i, updates his/her
vaccination decision by randomly choosing one of its immediate
neighbors, say j, compares their costs, and adopts the strategy of j
with the following probability [16]:

πi→j � 1

1 + e−β Pj t( )−Pi t( )( ) (1)

where Pi(t) defined in Eq. 5 represents the payoff of individual i in
the previous season, and β quantifies the uncertainty in the decision-
making process [12]. In this work, we fix β = 10. Node i will adopt
the strategy of neighbor j with a probability πi→j, and it will retain its
own strategy with a probability 1 − πi→j.

2.2.2 DQN based strategy
The intelligent nodes decide whether to vaccinate or not based

on the DQN method. The specific steps are illustrated in Figure 2.
We employ an ϵ − greedy strategy, which means randomly selecting
an action with a probability of ϵ and choosing the action with the
highest Q-value with a probability of 1 − ϵ.

The overall process of predicting the Q-values for actions can be
divided into three steps. In the first step, all intelligent agents are
encoded, and they can be categorized into three types: a) vaccinated
and get immunity; b) unvaccinated and not being infected; c)
unvaccinated and being infected. We encode these three
categories as (1, 0, 1, 0, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0)
respectively. The first two digits of the code represent vaccination

FIGURE 1
Overall architecture of the proposed model.
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status, while the following three digits represent immunity,
infection, and non-infection, respectively. It is important to
emphasize that the encoding method for intelligent agents is not
unique. Similar to Ref. [33], we also define a virtual node to represent
the global information of the network. And the encoding with the
largest number of individuals in three categories (i.e., a, b and c) is
defined as the encoding of the virtual node, meanwhile, the
neighborhood of the virtual node is the entire network.

In the second step, we utilize a Graph Neural Network (GNN) to
generate their embedding representations for the encoded intelligent
agents. The specific process is defined as follows [34]:

h l−1( )
N v( ) � ∑

j∈N v( )
h l−1( )
j (2)

and

h l( )
v � ReLU W1 · h l−1( )

v ,W2 · h l−1( )
N v( )[ ]( ), (3)

where h(l−1)N(v) represents the aggregated features of the neighbors of
node v at the (l − 1) − th convolutional layer, with N(v) being the
neighborhood set of node v. ReLU represents the non-linear
activation function. Eq. 2, 3 represent a single layer of graph
convolution. During the convolution process, the virtual node
aggregates information from its neighbors, its neighbors do not
aggregate information from the virtual node.

In the last step, we need to predict the Q-values for the actions
that intelligent agents may potentially undertake in a given state.
Let [zi, zg] be the state of intelligent node i, where zi and zg

represent the embeddings of node i and the virtual node,
respectively. zi and zg also represent the local information of
node i and global information, respectively. There are two
situations in which node i may take action: taking vaccination
or not. We encode it as A = {a1, a2} = {[1, 0], [0, 1]}. We then input
the state and action into a Multilayer Perceptron (MLP) to
predict the current state of node i and the Q-values of
potential actions, namely,:

y � WT
4 · ReLU WT

3 · zi, zg, aj[ ]( ), (4)

where aj (j = 1 or 2) represents the actions that intelligent node imay
take, and Wi (i = 1, 2, 3, 4) in Eq. 3, 4 are the learnable parameters.
The action with the highest Q-value prediction result among all
possible actions is chosen. The training process and loss function of
DQN are defined in Sub Section 2.5.

2.3 Epidemic spreading process

We use the Susceptibility-Infection-Recovery (SIR) model to
simulate the epidemic spread process, with a transmission rate of λ
and a recovery rate of μ [35]. In the beginning of each epidemic
season, a small proportion of unvaccinated individuals are randomly
selected as initial infection seeds I0. Vaccinated individuals will not
be infected in the upcoming season. The epidemic evolves until there
are no more newly infected individuals.

FIGURE 2
The whole process of Q-network. The encode module is to encode nodes in the network. The graph embedding module is responsible for
representing both local and global information related to nodes through graph embeddings. The Q-values prediction module predicts the Q-values for
an node’s states and actions, allowing the selection of the action with the highest Q-value for the node’s current state.
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2.4 Payoff calculation process

When the epidemic season ends, it is necessary to calculate the
payoffs of individuals in the previous season. Let CV and CI be the
cost of vaccination and infection, respectively. Without loss of
generality, one can set c = CV/CI as the relative cost of
vaccination with 0 < c < 1. Namely, the cost of infection is 1.
Further let Pi(t) be the payoffs of node i in the t − th season,
according to the costs of vaccination and infection, one has

Pi t( ) �
−c, vaccination;
−1, infected;
0, free − rider.

⎧⎪⎨⎪⎩ (5)

2.5 DQN training process and loss function

Next, we will introduce the training process and loss function of
DQN. The overall training process of DQN is depicted in Figure 3.
Intelligent agents can obtain the current season’s state st and the
chosen action at based on the previous season’s infection situation.
Meanwhile, each intelligent agent can obtain its payoff according to
their vaccination decision and whether to be infected or not, i.e., as
defined in Eq. 5, which can be treated as the reward value rt for (st,
at). Similarly, based on the current season’s infection situation, we
can obtain the state st+1 for the next season, and this process
continues iteratively. We define (st, at, rt, st+1) as an experience
and store it in a fixed-size experience pool. We regard the experience
of five seasons as an episode of DQN.

We need to define two identical models: one is the Q-network,
and the other is the Target Q-network. After a fixed number of C
episodes, the parameters of the Q-network are copied to the Target
Q-network. To update the parameters of the Q-network, small
batches of experiences from the experience pool are randomly

selected. We then need to compute the loss for each experience
and then update the parameters of the Q-network through the Back-
Propagation algorithm. The loss function consists of two
components. The first component is the network embedding loss,
which is defined as:

LE � ∑N
i,j

Aij‖zi − zj‖ � 2tr ZTLZ( ), (6)

whereN andAij are the size and the adjacencymatrix of the network,
respectively. zi and Z represent the embedding vector of node i and
the matrix formed by embedding vectors of all nodes, respectively,
and L is the Laplacian matrix. tr(·) denotes the trace of a matrix.

The second part is the Q-value prediction loss. For each
experience, the objective of the Q-value prediction loss is to
minimize the reward error between the predicted and actual
values, which is described as:

LQ � rt + γ ·max
a∈A

Qt st+1, a( ) − Q st, at( )( )2

, (7)

where the predicted reward value Q(st, at) is predicted by the
Q-network based on the state and action, and the current reward
value rt plus γ · maxa∈AQt(st+1, a) from the Target Q-network is
regarded as the actual reward value. γ represents the reward discount
factor, which is used to balance the importance of future and current
rewards. The overall loss for each experience is defined as a
combination of LE and LQ with a balancing parameter α, i.e.,

L � LQ + α · LE. (8)
The specific steps of the above process are outlined in Algorithm

1. The first line represents the initialization process for classifying
individuals into intelligent or regular agents. Lines 3–14 depict how
nodes with different categories decide whether to take vaccination
based on various decision rules. Lines 15–16 simulate the epidemic

FIGURE 3
Training process of DQN.
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season, in which SIR model is used to model the spreading of
epidemic, and line 17 indicates the payoff calculation process.

Input: The intelligent agents proportion ρ, the initial

infection seed I0 = 5, the season number 2000;

Output: The fraction of vaccination/infection/free-

riders;

1: Number N · ρ of nodes are randomly selected as the

intelligent agents, and the rest are the regular

agents;

2: for t = 1 to 2000 do

3: if node is intelligent agents then

4: if t < = 1500 then

5: Decide whether to vaccinate according to

Q-network, and the parameter Θ of Q-network

is updated;

6: else if t > 1500 then

7: Decide whether to vaccinate according to

Target Q-network;

8: end if

9: else if node is regular agents then

10: The decision rule is the Fermi function, as

shown in Eq. (1);

11: end if

12: if t%50 == 0 then

13: The parameter of Target Q-network is updated

as Θ̂ � Θ;
14: end if

15: The unvaccinated individuals are randomly

selected as initial infection seeds I0;

16: epidemic spreads via the SIR model until there are

no new infected individuals;

17: The payoffs of individuals are calculated;

18: end for

19: Calculate the fraction of vaccination/infection/

free-riders based on the Target Q-network.

Algorithm 1 Algorithm for the model.

3 Experiment

In this section, we investigate the impacts of different
proportions of intelligent agents on the vaccination behaviors
and the epidemic dynamics.

3.1 Experimental setup

Our experiments are employed on three types of networks: the
Barabási-Albert (BA) network with m = 3 (number of edges with
which a new node attaches to existing nodes) and N = 2000 [36], the
Erdős-Rényi (ER) random network with average degree 〈k〉 = 6 and
N = 2000 [37], and a real-world Email network [38]. The GNN has
2 embedding layers with a dimensionality of 64 for the embeddings.
As in Ref. [33,39], the reward discount factor γ, the size of the
experience pool, and the ϵ for ϵ − greedy strategy are set as 0.99,
10000, and 0.05, respectively. We conduct a total of 2000 seasons,

with the initial 1500 seasons designated for model training, followed
by the subsequent 500 seasons for testing. Meanwhile, the
Q-network’s parameters are copied to the Target Q-network for
every fixed 50 seasons. In all experiments, without specification, the
balancing parameter is α = 0.01, the recovery rate is μ = 0.25 and the
initial infection seed I0 = 5.

3.2 Experimental results

Figure 4 presents the heatmap results regarding ρ and c on the
BA network, demonstrating their impacts on the fraction of
vaccination (Figures 4A, C) and the fraction of infection (Figures
4B, D). Several observations can be concluded from Figure 4: Firstly,
when the cost of vaccination c is not so high, such as c < 0.6 for λ =
0.10 (Figures 4A, B) and c < 0.8 for λ = 0.18 (Figures 4C, D), the
fraction of vaccination increases with the value of ρ, leading to the
reduction of the infection. In particular, when ρ is close to 1, almost
all nodes take vaccination, giving rise to the complete extinction of
epidemic; Secondly, when the cost of vaccination c is very high, such
as c = 0.9, the opposite phenomenon happens, larger value of ρ
induces lower level of vaccination, yielding higher level of infection.
The result is also universal for different values of λ. Based on the two
observations, one can conclude that the RL based strategy plays a
double-edge sword role in the vaccination behavior and the
epidemic dynamics. Thirdly, by comparing Figure 4A with
Figure 4C, it is found that the fraction of vaccination for the case
of λ = 0.18 is generally higher than that of λ = 0.10 when the values of
ρ and c are not so large. That is to say, higher risk of infection
encourages more individuals to take vaccination.

To validate the universality of our observations, we conduct
experiments on the ER network (Figures 5A–C) and the Email
network (Figure 5D–F) as well. To reflect the double-edge sword
role of RL based strategy more clear, the fraction of vaccination,
infection and free-riders as the function of ρ are shown in Figure 5.
Similar to the results on the BA network, the double-edge sword
role of RL based strategy can be observed in Figure 5. In other
words, the existence of the intelligent agents has a beneficial impact
on suppressing the spreading of epidemic when the cost of
vaccination is not very high, whereas, it has a detrimental effect
otherwise. As we know, taking vaccination is a better choice when
the cost of vaccination is low, however, taking vaccination is
almost unnecessary when the cost of vaccination is also equal
to the cost of infection. Under different situations, intelligent
agents prefer to select so-called “better choice” for themselves,
therefore, the double-edge sword role of RL strategy is explainable.

To further elucidate the findings, we define V(k) as the
vaccination ratio among nodes with degree k, and let PV(k),
PN(k) and PA(k) be the average payoffs of vaccinated nodes,
unvaccinated nodes, and of all nodes with degree k, respectively.
First, the experimental results for λ = 0.18 and c = 0.1 (low
vaccination cost) on the BA network are presented in Figure 6.
When ρ = 0 (i.e., without intelligent agents), Figure 6A indicates that
the vaccination ratioV(k) is proportional to the degree k. The reason
is that the nodes with a higher degree are more susceptible to
infection since they have a greater number of neighbors, thus nodes
with higher degrees exhibit a greater inclination towards choosing
vaccination.When ρ = 0.5, a notable increase in the vaccination ratio
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is observed compared to Figure 6A, especially for nodes with lower
degrees (Figure 6B). Because the majority of nodes in the BA
network are of low degree, it leads to a significant improvement
in the vaccination coverage. When ρ = 1.0, it can be observed that all
nodes have a high probability of vaccination, all exceeding 0.95
(Figure 6C). This results in a high overall vaccination coverage in the
entire network. Figures 6D–F display the average payoffs of nodes
with different degree k in various states. Overall, the average payoffs
of unvaccinated nodes decreases with degree k, it is because nodes
with lower degrees have a lower probability of being infected.
Furthermore, the payoffs of vaccinated nodes significantly
surpass unvaccinated nodes. As a result, individuals are more
willing to get vaccination. This also explains why, in situations
with a relatively low vaccination cost, the introduction of intelligent
agents can encourage more nodes to take vaccination. Figures 6D–F
also demonstrate that the average payoff of all nodes PA(k) increases
with ρ, which indicates that the presence of intelligent agents also
contributes to an overall increase in group benefits when c is
relatively small.

Figure 7 displays the experimental results for λ = 0.18 and c =
0.9 (high cost of vaccination) in the BA network. When ρ = 0

(Figure 7A), the vaccination ratio V(k) still increases with the
degree k, however, owing to the higher cost of vaccination, its
growth trend is slower than that shown in Figure 6A. In addition,
the vaccination ratio V(k) decreases dramatically as ρ increases to
0.5 (Figure 7B) and further to 1.0 (Figure 7B), especially for the
case of ρ = 1, the values of V(k) are almost equal to zero for
different degree k. The observations imply that the presence of
intelligent agents further lower the vaccination proportion when
the vaccination cost is extremely high. The average payoffs of
nodes with different degrees in different states are further
illustrated in Figures 7D–F, they also imply that the average
payoffs of unvaccinated nodes decrease with degree k. However,
differing from the scenario with low vaccination cost, the average
payoff of unvaccinated nodes with lower degrees, such as degree
value is 3 or 4, is higher than that of vaccinated nodes. It is
because the vaccination cost is extremely high (i.e., average
payoff is very low), while the average payoff of unvaccinated
nodes with lower degrees is not very small owing to the lower
infection risk of them. One can also observe that the average
payoff of all nodes PA(k) decreases with the value of ρ. This
indicates that in scenarios with high vaccination cost, the

FIGURE 4
Experimental results on the BA network. (A, B) are heatmaps depicting the fractions of vaccination and infection, respectively, with transmission rate
λ = 0.10. (C, D) are heatmaps depicting the fractions of vaccination and infection, respectively, with transmission rate λ = 0.18.
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FIGURE 5
Experimental results on the ER and Email networks. (A–C) show the results for the ER network with vaccination cost set to c =0.1, 0.5, and 0.9,
respectively. (D–F) display the results for the Email network with vaccination cost set to c= 0.1, 0.5, and 0.9, respectively. The transmission rate is λ= 0.18.

FIGURE 6
Vaccination ratio and payoffs of nodes with different degrees. (A–C) are the vaccination proportion V(k) for ρ=0.0,0.5 and 1.0 respectively. (D–F) are
the average payoffs of nodes in different states for ρ = 0.0, 0.5 and 1.0 respectively. The cost of vaccination is c = 0.1.
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presence of intelligent agents not only reduces the vaccination
coverage but also leads to a decrease in overall group benefits.

Finally, we conduct the sensitivity analysis regarding the
balancing parameter α, and the experimental results are shown in
Figure 8. By varying the values of α from 1 to 1e-4, and one can
observe that different values of α have minor impact on the fraction
of vaccination, no matter c = 0.1 (Figure 8A) or c = 0.9 (Figure 8B).
This indicates that the double-edged sword role of RL based strategy
is robust to the value of α.

4 Conclusion

In this work, considering the strong learning capability of human
beings, we introduced a mixed updating strategy for the vaccination
decision of individuals. Specifically, we categorized individuals in the
social networks into two groups: regular agents make vaccination
decisions based on the Fermi function, primarily considering the
difference in current payoffs, while intelligent agents’ vaccination
decisions are determined by the RL strategy, which relies on local

FIGURE 7
Vaccination ratio and payoffs of nodes with different degrees. (A–C) are the vaccination proportion V(k) for ρ=0.0,0.5 and 1.0 respectively. (D–F) are
the average payoffs of nodes in different states for ρ = 0.0, 0.5 and 1.0 respectively. The cost of vaccination is c = 0.9.

FIGURE 8
Sensitivity analysis of the balancing parameter α on the BA network. (A) is for c =0.1. (B) is for c = 0.9. Here the transmission rate is λ = 0.18.
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and global information. Since individuals’ local information in the
network is flexible and dynamic, we have further integrated the DQN
algorithm into the RL strategy for intelligent agents. By varying the
proportion of intelligent agents in networks, we found that under
appropriate vaccination cost, increasing the proportion of intelligent
agents can lead to a significant improvement of vaccination and an
effective suppression of epidemic, also inducing an increase of the group
benefits. Nevertheless, when the vaccination cost is extremely high, we
observed an inverse relationship between the proportion of intelligent
agents and vaccination coverage, which consequently leads to a decrease
in the group benefits. That is to say, intelligent agents have a double-
edged sword effect on vaccination behaviors and group benefits in
pursuit of maximizing their own utilization. The findings enrich our
understanding on the interplay of the human behavioral responses and
epidemic spreading, and may also provide some insights for
policymakers regarding the protection and control of epidemics.

There are a number of ways our methods can be extended in future
work. For instance, we can consider more decision options for
individuals, the incomplete effectiveness of vaccines, the subsidy of
vaccines, the distinct structures of epidemic transmission and the
vaccination decision updating process, and so on. In addition, we
mainly focus on the repeated season model, namely, the vaccination
decision should be repeatedly made before each epidemic season. In
many situations, the decisions of individuals are often made before or
during one emerging diseases. In this case, we should adjust our model
to characterize the interplay of the vaccination behavior and the
epidemic dynamics for the single season model [40].
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