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X-ray detection for personal dosimetry requires sensitive, stable and non-toxic
materials. At the same time, scalability onto large-area and flexible substrates is
emerging as a desirable property. To satisfy these requirements, novel materials to
be employed as the active layer of direct X-ray detectors are needed. In this search
for easy-processability, large area, efficient and non-toxic materials for direct
X-ray detection, we assess the performance of a layered metal-organic
chalcogenide [AgSePh]∞, recently proposed as representative of a novel
excitonic semiconductors platform. Here we demonstrate that [AgSePh]∞ can
be successfully applied as direct ionizing radiation detecting layer, reaching
sensitivities up to (180 ± 10) μCGy−1 cm−2 and competitive limit of detection
down to (100 ± 30) nGy s−1. Moreover, it offers good stability and reproducibility of
detection after 100 Gy of irradiation and upon bending to a curvature radius
of 5 mm.
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1 Introduction

The research of novel materials able to detect high-energy radiation is a long-lasting
topic due to its impact on many diverse fields, spanning from astrophysics to health
diagnostic, and security screening. In the last decade, new quests such as scalability onto large
and flexible surfaces, low production cost and low-power consumption are emerging.
Moreover, additional properties, such as low toxicity, are highly desirable in specific
applications such as personal dosimetry during radiation medical treatments or in
radiation harsh environments.

For these reasons, the scientific community has recently explored novel materials, and
the use of thin films instead of bulky and rigid single crystals as active layers has been put
forward [1]. Among inorganic semiconductors, amorphous selenium (a-Se) and
polycrystalline Cadmium Zinc Telluride (poly-CZT) represent the benchmark for the
development of large-area ionizing radiation detectors [2]. In the last few years, the new
materials class of metal halide perovskites (MHP) has been deeply investigated to harness
their exceptional optoelectronic properties [14]. MHP offer several advantages such as the
high attenuation fraction and excellent transport properties (i.e., high mobility-lifetime
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product µτ) which lead to outstanding detecting efficiency [1,3–6].
They can be deposited from solution by low-cost fabrication
techniques, compatible with flexible polymeric substrates and
easy scalable onto large and curved surfaces [7,8]. The main
issue related to MHP is the presence of water-soluble lead,
which raises concerns related to their use as personal
dosimeters. Besides, the fabrication processes of these materials
use highly-toxic solvents not compatible with environmental
sustainability. To tackle these issues, MHPs with alternative
elemental compositions and different fabrication procedures are
under study. For instance, green solvents are being tested and lead-
free compounds such as MA3Bi2I9 [9,10], Cs2TeI6 [11],
Cs2AgBiBr6 [65] are emerging as promising X-ray detection
candidates. Nevertheless, devices fabricated with these materials
are based on rare elements (e.g., Bi, Te) and present several stability
issues under operating conditions: environmental factors, such as
humidity, oxygen, temperature, and light, significantly affect
material’s stability by inducing phase transitions or segregation,
crystal decomposition and erratic current-voltage characteristics.
Finally, ion migration is a well-known but still unsolved problem
related to this material platform that induces dark current drifts
during prolonged biasing [12,13]. A possible alternative toward
lead-free low toxic detectors is the employment of organic
semiconducting materials as active layers. This approach has
already demonstrated good results for different types of
radiation (e.g., X-rays [14–20], protons [21,22], neutrons [23]).
However, in organic semiconductors the ionizing radiation
absorption rate is very poor due to the low-Z of the
constituents, which limits the active layer stopping power and
ultimately, the detectors’ quantum efficiency.

In the last few years, many studies have shed a spotlight on the
peculiar excitonic and optoelectronic properties of self-assembled
hybrid quantum wells materials (i.e., highly confined layered
materials). Layered MHPs are the most studied among low
dimensional hybrid materials for the detection of high energy
radiation [24–26,73] because of their high attenuation fraction and
potentially high charge carrier mobilities. Despite the excellent
performances already reported in literature for this class of
materials, the intrinsic instability of the ionic lattice and the
presence of toxic elements urged the search for alternative
materials. Among other low dimensional hybrids, the covalently
bound coordination polymer silver benzeneselenolate [AgSePh]∞
[27–33] has been recently re-discovered as a direct bandgap
semiconductor with good optoelectronic performances. This
compound is part of a new material class of 2D quantum
confined metal-organic chalcogenides materials (MOCs) that
offer a simple fabrication via wet chemistry and whose light
absorption and emission can be chemically tuned thanks to
their peculiar 2D excitonic properties [29,33,34]. These
materials are air-stable and do not contain potentially
hazardous metals. In 2021, the MOCs strong absorption
coefficient and good electrical transport properties have been
leveraged to demonstrate the application of [AgSePh]∞ in near-
UV photo-detection [27]. Here, further exploring the light matter
interaction in the MOC material class, we investigate the response
of [AgSePh]∞ in the high energy photon range (i.e. 40 kVp)
implementing a new X-ray detector able to overcome many of
the limits imposed by the present technologies.

2 Results and discussion

In Figure 1A the sketch of the co-planar X-ray photodetector
based on [AgSePh]∞ is illustrated. The device was fabricated on a
flexible 125 µm thick PEN (poliyethylene naphtalate) substrate. The
gold charge-collecting electrodes were thermally evaporated onto
the plastic substrate. The active layer was made by [AgSePh]∞
deposited following the 3-steps procedure described in a previous
work [28]. Briefly, a silver thin-film (200 nm thick) was thermally
evaporated onto the pre-patterned devices; subsequently, the silver
was oxidized by O2 plasma treatment and it underwent chemical
transformation into the final product upon exposure to
benzeneselenol vapors at 90°C in an inert atmosphere (for more
details see Materials and Methods section). The characterization of
the chemical composition and the optoelectronic properties of the
final [AgSePh]∞ film has been already reported in literature [28].
The optical image of the pixel area (1 mm × 1 mm, channel lengths
L = 5 µm or L = 40 µm) and the atomic force microscopy (AFM)
map reported in Figure 1B show the nanocrystalline morphology of
the deposited film. The tested active layers present a thickness of
2 µm and nanocrystals lateral sizes is about 300 nm. Figure 1B shows
the good uniformity and high film coverage over the entire area of
the pixel. The fabrication procedure took place at low temperature
(T < 100°C), compatible with polymeric substrates, leading to the
realization of flexible devices (see Figure 1C). A typical current-
voltage IV) curve of the device in dark conditions is reported in
Figure 1D. The lack of hysteresis and the electrical dark conductivity
of (344 ± 5) pS cm−1 [27] are comparable to what previously reported
in literature for similar devices fabricated on PEN substrate. Here
the electrical conductivity has been calculated considering the
geometrical dimensions of the device (channel length L = 40 μm,
widthW = 23 mm, active layer thickness = 2 µm) and the linear fit of
the IV curve reported in Figure 1D and plotted in linear scale.

Thanks to the presence of high-Z elements as silver and
selenium, [AgSePh]∞ presents an X-ray stopping power much
higher than silicon and organic layers, as it is reported in
Figure 2A. For a 1 µm thick active layer of [AgSePh]∞ the
attenuated fraction of 15.2 keV photons (i.e., the energy mean
value of the radiation spectrum produced by a W-target X-ray
tube biased at 40 kVp) is 0.9%, a much higher value than for
organic semiconductors (e.g., TIPS-pentacene, 0.01%) and slightly
lower than for standard inorganic semiconducting materials (e.g.,
CZT 3%, CdTe 2%, Se 4%) and hybrid perovskites (2%–3%). This
feature is very promising towards the development of efficient X-ray
dosimeters to be employed in the medical field, since it provides high
attenuation of high energy radiation keeping the low toxicity related
to the absence of lead.

We characterized the devices under X-rays produced by a
W-target tube kept at 40 kVp and varying the dose rate by
changing the current in the range [100–500] µA. Figure 2B
shows the dynamic response of the detector for three different
bias conditions (i.e. 5, 10, 20 V). The sample was irradiated by
subsequent irradiation cycles (10 s ON, 10 s OFF) at four different
dose rates (255, 526, 930, 1,330 μGy s−1). For each dose rate, three
consecutive identical irradiation cycles were performed to test the
repeatability of the detector response. We calculated the
photocurrent as the variation of the current flowing in the device
channel when the X-rays are turned ON (ION) and the dark current
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(i.e., when X-rays are turned OFF, IOFF). In Figure 2C, the induced
photocurrent as a function of the dose rate is reported for the three
voltages. The sensitivity of the detector to the X-rays can be
extracted as the slope of the linear fitting curve. The sensitivity is
one of the most relevant parameters that describe the detecting
performance of a device and for a linear detector (i.e., the detecting
response is linear with the radiation intensity) can be expressed by
the following equation:

Sensitivity � ION − IOFF
Dose Rate

The maximum measured value of sensitivity per unit area is S =
(180 ± 10) μC Gy−1 cm−2 (when an electric field of 5,000 V m−1 is
applied and a pixel area of 1 mm2 is considered). Considering this
operation conditions, this sensitivity value is comparable with the
ones reported for full-organic and hybrid perovskite thin film-based
X-ray detectors and higher than the sensitivity of a-Se and poly-
CZT, which represent the inorganic benchmarks for large area
ionizing radiation detection [1,20,35].

Figures 2C, D show the detector response as fabricated and
after 6 months stored in dark ambient conditions (i.e., air, room
temperature). The samples do not present any degradation due to
the aging and the detector performance remains constant with a
sensitivity variation within 10% with respect to the pristine device
values. The excellent stability represents a further great advantage
of this sensing material platform. Other materials such as MHPs

present comparable X-ray efficiency but poorer stability if not
encapsulated and stored in ambient conditions which limits their
employment in real applications. For MHPs single crystals (SC),
the longest ageing studies reported so far are of about 6 months by
Kovalenko et al. (non-incapsulated MAPbI3 SC, efficiency
degradation 12%) [36], and 2 months by Liu et al. (MA3Bi2I9
SC, photocurrent degradation 9.2%) [37] and by Wei et al.
(MAPbBr3 SC) [38]. For MHP polycrystalline films Zhao et al.
reported a MAPbI3 membrane which showed an unchanged
sensitivity after 6 months of storage in nitrogen [39] and
Glushkova et al. demonstrated stability after 9 months ageing of
a MAPbI3 film encapsulated with PDMS (Polydimethylsiloxane)
[8]. Only the last year, Fraboni et al. reported a record stability
(97% after 630 days) for two different perovskite films
(i.e., MAPbI3 and FAxMA1–xPbI3) deposited using starch as
templating agent [40].

The proposed detector is demonstrated to be radiation tolerant
up to a tested total dose of 100 Gy air kerma. As it is shown in
Figure 3A, the variation of the photocurrent response remains
constant (within 5%) up to this total irradiation, which
corresponds, for instance, to the typical value delivered for
6.7 million of full-mouth dental radiographies [41]. The Limit of
Detection (LoD) represents the lowest detectable dose that a device
can detect. Under the assumption that noise is dominated by dark
current shot noise, the LoD value can be defined [42] as the dose of
radiation that induces a signal three times higher than the electrical

FIGURE 1
X-Ray detectors based on [AgSePh]∞ nanocrystalline films. (A) Sketch of the detector architecture. The [AgSePh]∞ is synthesized on the top of two
planar interdigitated gold electrodes thermally evaporated onto a 125 µm-thick PEN foil. (B) Optical image of the pixel area (left, scale bar 250 µm) and
AFM image of the nanocrystalline film on the device conductive channel (right). (C) Picture of the flexible device. (D) Current-voltage (IV) curve of the
photoconductor in the dark condition (channel length L = 40 μm, width W = 23 mm). The arrows indicate the forward and reverse sweeps.
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noise (i.e., root mean square of the dark current). We calculated the
LoD using the following equation:

LoD � 3 ×RMS

Sensitivity

The LoD is (100 ± 30) nGy s−1 and it is reported in Figure 3B for
a sample biased at 20 V.

In Figure 4 the LoD value estimated by these samples is
compared with the state of the art for detectors based on organic
semiconductors [15,43–48] and perovskites active layers in the form
of single crystal [3,4,37,38,49–62] or polycrystalline films
[9,10,63–72]. Moreover, in the graph it is highlighted the
performances achieved by lead-free materials. The [AgSePh]∞-
based detector offers a limit of detection lower than most of the

FIGURE 2
X-ray detector characterization. (A) Simulated attenuated fraction of different materials at 15.2 keV photons (mean photon energy in the here
employed irradiation conditions: X-rays produced by a Tungsten-target X-ray tube kept at 40 kVp) as a function of the layer thicknesses. (B) Dynamic
photocurrent response induced by four different dose rates [255–1,330] mGy s−1 keeping the sample biased in three different conditions (5, 10, 20 V). The
same irradiation cycle (10 s ON/10s OFF) has been repeated for three times to test the repeatability of the detecting response. The yellow shadow
indicates the period of X-rays ON. (C) Photocurrent induced by different dose rates reported for the three polarization conditions. These data are
reported for the sample as fabricated (solid symbols) and after 6 months stored in ambient conditions (open symbols). The sensitivity is calculated as the
slope of the fitting curves. (D) Variation of the sensitivity reported for the three bias voltages.

FIGURE 3
Radiation hardness and Limit of Detection (LoD). (A) Radiation hardness test. The sample has been irradiated until a total absorbed radiation dose of
100 Gy. The photocurrent induced in the device has been monitored after each 5 Gy and its variation respect the pristine is reported. (B) Signal to Noise
Ratio reported as a function of the Dose Rate. The signal is the photocurrent induced by each dose rate and the noise is the Root Mean Square of the dark
current. The sample has been biased at 20 V. The red symbol is the lowest detectable dose LoD = (300 ± 10) nGy s−1.
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lead-free detectors reported in Figure 4. This result makes this
material very promising for possible employment in the medical
field where conformable and portable detectors based on low toxic
materials able to detect low doses of radiation are required. For
instance, typical dose rate used for diagnostics is about
5 μGy s−1 [73].

The mechanical flexibility tests of the devices fabricated on PEN
substrates are shown in Figure 5. The samples were mounted in the
stretching tool depicted in Figure 5A and they were bent gradually at
different curvature radii (CR), starting from the flat condition to
CR = 0.17 cm (see Figure 5B). The sample was irradiated at each CR

and the X-ray induced photocurrent has been measured. In
Figure 5C the variation of the photocurrent with respect to that
achieved in the flat condition is reported as a function of the
curvature radius and it results within 25% for CR > 0.5 cm. At
smaller curvature radii, the photocurrent gradually decreases and at
the lowest curvature radius CR = 0.17 cm it is about 30% of the initial
value. After this fatigue test, the sample was irradiated again in the
flat condition and the collected photocurrent totally recovered,
suggesting that the photocurrent decrease is due to reversible
mechanical factors other than to a permanent damage of the
active layer.

FIGURE 4
Limit of Detection–State of the Art. Limit of Detection (LoD) reported in literature for metal halide perovskite single crystals (red) [3,4,37,38,49–62],
organic semiconductor single crystals (green) [43–45], perovskite films (blue) [9,10,63–72], organic semiconductor films (blue light) [15,46–48] and
[AgSePh]∞ nanocrystalline films (yellow) X-ray detectors. The black shadows indicate the lead-free materials.

FIGURE 5
Flexibility tests. (A) Photographs of the sample bent at different curvature radius starting from the flat condition until CR = 0.17 cm. (B) Photocurrent
variation percentages versus Curvature radius.
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3 Materials and methods

3.1 Devices fabrication

Metal contact patterning on substrates was performed by
thermal evaporation of Cr/Au evaporation (1.5 nm and 35 nm,
respectively) on PEN substrates after maskless optical lithography
(SU8 photoresist) to pattern interdigitated electrodes. The electrodes
were designed to implement a device channel length of 5 or 40 μm
with a fixed channel width of 30 mm.

The [AgSePh]∞ nano-crystal (NC) film synthesis started with
200 nm-thick silver films thermally evaporated on PEN substrates
with pre-patterned metal contacts. The samples were then exposed
to O2 plasma at a pressure of 0.4 mbar with a nominal power of 10W
for 1 min to form AgO. A Diener Electronic Femto Plasma asher was
used. Subsequently, the silver oxide films were exposed to a chemical
vapor process. Benzeneselenol (97%, Sigma Aldrich) was introduced
into a nitrogen glove box in a Teflon-lined 22 mL vial next to the AgO
covered substrate. The sealed vial was transferred in a pre-heated oven
at 90°C. The reaction yielded [AgSePh]∞ after 4 h. All the samples were
rinsed in acetone and then with isopropyl alcohol to remove the
unreacted organo-chalcogen reagent and N2 dried in a box, overnight.

3.2 X-ray detection experiment

The samples have been tested as X-ray detectors by monitoring the
current flowing in the channel of the device under irradiation cycles.
The samples have been electrically connected to a Source Meter Unit
(Keithley 2614B) and they have been closed in a shielded metallic box
during the measurements to screen them from electromagnetic noise
and visible light. During the irradiation tests, the samples have been
continuously biased, and the variation of the current has been
monitored. As X-ray source, we employed a W-target X-Ray tube
kept at 40 kVp (15.2 keV mean energy of the spectrum) and with an
anodic current spanning in the range [100–500] µA. The samples have
been irradiated by subsequent irradiation cycles (10 s X-ray ON//10s
X-ray OFF) at different dose rates (from 6 μGy s−1 up to 1,330 μGy s−1).
The photocurrent induced has been calculated as the difference between
the current flowing in the sample when the X-Rays are turned ON and
the dark current.

3.3 Electrical characterization

Electrical characterization has been performed with a dual
channel Keithley 2614B SourceMeter, using triaxial cables (that
ensure low noise down to 100 fA and low parasitic capacitance)
and custom made Labview software. All measurements are carried
out keeping the device in dark in a metal Faraday cage to reduce
electrical noise and avoid light-induced photogeneration in the
organic semiconductor.

3.4 AFM measurements

AFM measurements: AFM measurements are performed on
a Park NX10 system using PPP-NCHR tips (Nanosensors) in

non-contact mode and applying adaptive scan-rate to slow
down scan speed at crystallite borders. The area scan is
20 μm × 20 µm.

3.5 Bending tests

Mechanical tests have been performed by mounting the
samples on a custom stretcher tool. The samples have been
kept at different curvature radius (CR = [flat–0.17] cm) while
they have been electrically characterized in dark condition and
under X-rays.

4 Conclusion

We reported the fabrication and testing of a novel direct X-ray
detector based on a quantum confined metal-organic
chalcogenide. A nanocrystalline film of silver benzene
selenolate [AgSePh]∞ was synthesized on metal contacts and
used as the active layer in a planar photodetector
configuration. The MOC offers several advantages with respect
other materials candidate for direct X-ray detection: 1) it is
processable at low temperature onto polymeric and flexible
substrate by easily scalable fabrication techniques; 2) it presents
a high attenuation fraction thanks to the high-Z elements,
avoiding the presence of lead and providing low toxicity level
due to the presence of low-toxic elements, highly desirable in
medical field; 3) it is shows good shelf-life stability, with only a
10% of X-ray response degradation after 6 months of storage in
ambient conditions. We leveraged these unique properties to
demonstrate high MOC X-ray detector performances:
sensitivity = (180 ± 10) μC Gy−1 cm−2, LoD = (100 ± 30)
nGy s−1, radiation hardness up to 100 Gy, and good mechanical
stability down to a curvature radius of 5 mm. Our results suggest a
new application for an underexplored class of sustainable low-
dimensional hybrid material that provides exceptional
optoelectronic properties, excellent to be exploited for flexible
and large-area X-Ray direct detectors.
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