& frontiers | Frontiers in Physics

’ @ Check for updates

OPEN ACCESS

Yilin Qu,
Northwestern Polytechnical University,
China

Mengxi Zhang,

Tianjin University, China

Xudong Li,

Chinese Academy of Sciences (CAS),
China

Yanming Xu,
Xuyanming@ustc.edu

04 November 2023
24 November 2023
06 December 2023

Chen X, Huang Y, Zhou Z and Xu Y (2023),
FEM/Wideband FMBEM coupling based
on subdivision isogeometry for
structural-acoustic design

sensitivity analysis.

Front. Phys. 11:1333198.

doi: 10.3389/fphy.2023.1333198

© 2023 Chen, Huang, Zhou and Xu. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics

Original Research
06 December 2023
10.3389/fphy.2023.1333198

FEM/Wideband FMBEM coupling
based on subdivision isogeometry
for structural-acoustic design
sensitivity analysis

Xiuyun Chen?, Yajun Huang?, Zhongbin Zhou® and Yanming Xu*

*Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, School of
Architecture and Civil Engineering, Huanghuai University, Zhumadian, China, ?College of Intelligent
Construction, Wuchang University of Technology, Wuhan, China

A computer simulation approach known as the isogeometric (IGA) method may
directly use the surface information of geometric model. In 3D computer graphics,
Loop subdivision surfaces are a common method for creating complicated
shapes. In this study, we propose a coupling algorithm that utilizes Loop
subdivision surfaces and a direct differentiation method for the computation of
acoustic-fluid-structure interaction and the performance of structural-acoustic
sensitivity analysis. This algorithm combines the finite element method (FEM) and
wideband fast multipole boundary element method (FMBEM). Because of that the
proposed method is of a great ability of integrating the numerical calculation and
computer-aided modeling, the current technique can deliver results quickly and
accurately. The numerical prediction of the effects of vibrating structures with
arbitrary shape within sound field is made feasible by the FEM/Wideband FMBEM
technique. Calculation examples are provided to show the applicability and
effectiveness of the suggested method.
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1 Introduction

The elastic structures in heavy fluid resulting in acoustic radiation or scattering is a
common issue in underwater acoustics. It is possible to give the analytical solutions of the
issues with acoustic fluid-structure interaction phenomenon while the structure is with
simple boundary conditions and geometry [1,2]. However, as it comes for real-world issues
which usually have complex geometries, providing an analytical solution becomes harder
and even impossible, thus effective simulation techniques are needed.

FEM is extensively utilized to study the dynamic behavior of issues involving fluid-
structure interactions, acoustics, and structures. The FEM has several drawbacks for
modeling infinite domains, though. Because it offers good accuracy and simple mesh
generation, BEM has been widely employed to calculate acoustic issues. The Sommerfeld
radiation condition [3] is met, especially for external acoustic issues. The Galerkin technique
has been frequently used in BEM implementation to solve the boundary integral problem
numerically [4]. However, the collocation approach, has historically been popular in the
engineering field. Hence, the coupled FEM/BEM technique [5,6] is suitable for studying
fluid-structure interaction problems. However, the high computational expense remains a
challenge when performing coupling analysis of underwater structural-acoustic problems
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using the FEM/Conventional BEM (CBEM) algorithm. This is
primarily because CBEM generates a dense and non-symmetric
coefficient matrix. Many techniques have been used to speed up the
integral problem solution, including fast multipole method (FMM),
the adaptive cross approximation methodology and fast direct
solver. Martinsson and Rokhlin [7,8] introduced the fast direct
solver, which works well for issues requiring moderately ill-
conditioned matrices and immediately builds a compressed
The adaptive
approximation methodology [9], developed by Bebendorf and

factorization of the matrix inverse. Ccross
Rjasanow, has the capability to generate blockwise low-rank
approximations from the BEM matrices. This methodology is
particularly suitable for problems that require a large number of
iterations. FMM [10-12] has been developed to reduce memory
requirements while speeding up the solving of the CBEM system of
equations. In reality, the Helmholtz equation has two versions of the
Fast Multipole Method (FMM), namely, the original FMM and the
diagonal form. However, it is well-known that both of these versions
tend to fail outside of their optimal frequency ranges in some
manner. On the other hand, the aforementioned issues can
potentially be resolved by utilizing wideband FMM [13-18]. This
advanced technique combines the original FMM with the diagonal
form FMM, leading to more efficient solutions. Therefore, the
challenges related to large-scale fluid-structure interaction
problems can be effectively resolved through the utilization of the
coupling approach based on FEM/fast multipole boundary element
method (FEM/FMBEM) [19-23]. Furthermore, this study proposes
the utilization of the FEM/Wideband FMBEM coupling method to
tackle the intricate problems associated with fluid-structure
interactions.

Through the use of appropriate software, FEM and BEM may be
implemented—a process known as computer-aided engineering
(CAE). Nowadays, industry 4.0 and digital twin technologies are
being developed with the use of CAE simulation. The models created
by CAD software must, however, be transformed into simulation-
ready models as part of the preprocessing stage used by modern
CAE. The CAE’s most time-consuming manual intervention phase,
the geometric model data transfer stage produces geometry
The
numerical simulation using isogeometric analysis [24-26] with
boundary element method (IGABEM) [27,28] is suggested as a

solution to this issue. By using IGABEM, geometric mistakes and

inaccuracies. integration of geometric modeling and

time-consuming preprocessing steps may be avoided and numerical
simulation can be carried out straight from the precise models. Since
its inception, IGABEM has been used to address a variety of issues,
including those related to elastic mechanics [27-30], potential issues
[15], [31], fracture mechanics [32,33],
electromagnetics [34-39], and structural optimization [40-46].

In addition to the benefits already discussed, IGABEM offers
significant benefits for modelling acoustics issues. Numerous

wave-resistance

engineering fields have found extensive use for acoustics,
including noise control, underwater navigation using sonar,
seismology,
numerical

ultrasound medical  purposes,

Numerous

imaging  for
electroacoustic communications, etc.
simulation techniques have significant challenges when it comes
to acoustics for that the sound wave may travel through semi-infinite
domains. By shifting the acoustic field from a semi-infinite domain

to the boundary of the domain, IGABEM can get around this
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problem. Simpson [16,47] applied IGABEM to acoustics.
Acoustic optimization [37,48,49] with IGABEM was studied.

In the framework of the IGABEM, several sorts of geometric
modeling approaches have been extensively researched. The ability
to build multi-resolution geometries with complex forms and
topologies makes the subdivision surface approach among them
very promising [51-56]. There are two types of subdivision surfaces:
Catmull-Clark and Loop method. Structure-acoustic interaction
[1,57,58] and acoustic optimization [59-63] were both addressed
using IGABEM based on Loop subdivision surfaces. The goal of the
current effort is to merge Loop subdivision surfaces with IGABEM
for sensitivity analysis. Additionally, we’ll speed up the solution
process using wideband FMM.

Designers are increasingly considering passive noise management
by altering the geometry of the construction. Particularly for thin shell
structures, this structural-acoustic optimization has considerable
promise for minimizing radiated noise [64]. Acoustic design
sensitivity analysis is a crucial component in the process of acoustic
design and optimization, as it allows for understanding the effect of
geometry changes on the acoustic performance. In a comprehensive
(651,
optimization for passive noise reduction were discussed. The global

review by Marburg advancements in structural-acoustic
finite difference method (FDM) has been extensively employed for
structural-acoustic optimization due to its ease of implementation
[66-69]. However, this approach doesn’t work so well, particularly
while considering several design elements simultaneously. To get over
this issue, employ the adjoint variable approaches [70,71] or the direct
differentiation method [72]. The sensitivity analysis for interaction issues
is widely recognized as the most time-consuming step in gradient-based
optimization. In our study, we aim to accelerate the calculation process
by employing a direct differentiation approach for structural-acoustic
sensitivity analysis in the FEM/Wideband FMBEM method.

In this study, we propose the incorporation of wideband
FMBEM in the coupling of structural-acoustic sensitivity analysis
and present the formulation for sensitivity analysis in the coupled
FEM/BEM analysis. We advocate for the adoption of coupled FEM/
Wideband FMBEM to address fluid-structure interaction problems
and conduct structural-acoustic sensitivity analysis. To eliminate the
geometry inaccurices, Loop subdivision scheme is applied to the
sensitivity analysis of an underwater fluid-structure coupling
problem. Through the computation of various numerical
examples, we have demonstrated the accuracy and effectiveness
of the proposed strategy.

2 Structural-acoustic coupling
deduction

2.1 Subdivision scheme

In computer animation and graphics, it is of great advantages of
using Subdivision surfaces [73,74] since their emergence in the
1970s. They may also be accessed in most industrial CAD solid
modeling applications. Subdivision surfaces are frequently
mentioned as a technique for continually fine-tuning and
smoothing a control mesh so a smooth limit surface could be
produced. They may also be regarded as the extension of splines

to arbitrarily linked meshes for FEM and BEM.
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Vertex point Edge point
1 X, X,
S1 The weight distribution used to compute new control points.
Mesh refinement with one quadrisection Mesh refinement with two quadrisections
FIGURE 1

Templates for vertex and edge points with regular and irregular shapes.

A rough polygon mesh is transformed into a smooth surface
using subdivision techniques. The creation of a smooth surface using
subdivision method—which is usually classified as interpolating
schemes—involves a constrained, repeating refinement process
that starts with an initial control mesh. Due to the refinement
characteristic inherited from splines, all control meshes generated
during subdivision refinement accurately represent the same spline
surface.

The structural-acoustic coupling analysis in this study is carried
out utilizing the Loop subdivision scheme [59]. The quadrisection
refinement of a triangular mesh in a construction of loop subdivision
is shown in Figure 1. A vertex’s valence is the edges number that link
it. When N = 6, a vertex is considered regular, and when N # 6, it is
considered irregular. Each triangle is split into four smaller triangles
by adding a new vertex at the middle of each edge. As indicated in
Egs 1, 2, the positions of new vertices and edge points may be
determined from the previous level.

N
Xk = gva + 3 fo.‘, (1)

iv
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where

iv is the i-th vertex point

i.e., is the i-th edge point

In reality, there are too many nodes, making it impossible to
achieve smooth surfaces with few subdivisions. Another method for
creating limit surfaces for any degree of refinement is to create an
elementwise map using linear combinations of Box-splines basis
functions on triangular control meshes. For further details, please
refer to Chen et al.[59].

2.2 BEM analysis

Vip(x)+Kkp(x)=0, (3)
px) = g(x) x €T,
q(x) = aig;c)) =ipwv(x) x €Ty, (4)
p(x) =zv(x) x €T,
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where

p is sound pressure

k is wave number

n is external normal direction of the boundary
q is normal derivative of p

i is imaginary unit, i = \/:_1

p is structural density

w is frequency of the incoming force
v is normal velocity

z is acoustic impedance

T, is Dirichlet boundary condition
T, is Neumann boundary condition
I, is Robin boundary condition

() is known function given on the border

Equation 3 describes a acoustic wave which is time-harmonic in
the Helmholtz equation, and Eq. 4 serves as an expression for the
boundary conditions. A boundary integral equation (BIE) specified
on the T’ can be created from Eqs 3-5.

cp@)+ [ Fey)p(I() = [ 6 a0, ©

where

x is source point

y is field point

c(x) is 1/2 if the boundary T is smooth in the vicinity of the source point x
p(x) is intensity of the incoming wave at source point x

p(y) is sound pressure at field point y

G(x, y) is Green’s function

q(y) is normal derivative of p(y)

F(x, y) is normal derivative of G(x, y)

Equations 6, 7 gives the expression of Green’s function for
acoustic problems in two and three dimensional problems,

respectively.
G(x,y) = SHY kr) ©
X,y 1o ),
eikr
G(X, }’) = 4_717" (7)
r= Iy - x|.

When the boundary I' is smooth around the source point x, the
derivative of the integral representation in Eq. 5 with respect to the
outer normal can be expressed as Eq. 8.

1 oF (x, G (x,
5400 + L%‘v(wdf (»)= L%q(y)df(y)- (8)
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It is common knowledge that applying a single Helmholtz
boundary integral equation to issues involving external boundary
values may be challenging due to nonuniqueness. In order to
effectively solve the nonuniqueness problem, the Burton-Miller
approach [75]—which is a linear combination of Eqs 5, 8—is
used in this study. The computation of the singular boundary
integrals introduced by Eqs 5, 8 can also be performed directly
and efficiently using the Cauchy principal value and the Hadamard
finite part integral method [72].

If the boundary T is divided into elements, the system can be
obtained [76] and can be expressed as Eq. 9 by assembling the
equations for collocation points located in the center of each
element.

Hp = Gq + p;; )

where

H is the coefficient matrix of the vector p
G is the coefficient matrix of the vector q

pi is the nodal pressure caused by the incoming wave

2.3 FEM analysis

The complete structural-acoustic simulation approach was
described by Fritze et al. [6], and related expressions are supplied
here. The structure response is determined by analyzing of
frequency-response under the assumption that a harmonic load
performs on the structure. Equation 10 derives the linear system of
structural-acoustic equation.

(K +i0C — w’M)u = f (10)

where

K is stiffness matrix

i is imaginary unit, i = V=1

w is excitation frequency of the harmonic load

C is damping matrix

M is mass matrix

u is nodal displacement vector

f is complete excitation

It is crucial to take into account that, because of damping, the
steady-state response may have the same frequency as the applied
load but a different phase angle. To handle non-harmonic
imposed loads, the time-dependent forces can be examined in
the frequency domain, enabling the use of Eq. 10. To address the
effect of acoustic pressure on structural surfaces, a coupling
matrix is introduced. This matrix facilitates the transfer of the
structural nodal load from the fluid effect to the fluid nodal
Then, Eq. 11
complete excitation, combining the acoustic load and the

pressure. could be wused to express the

structural load.
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incident wave

Field point

The sphere model.

Mesh of the sphere model.

FIGURE 2
The sphere model and its mesh plot. (A) The sphere model. (B)
Mesh of the sphere model.

f= Csfp + fs,
Cir = f, N'nNqdr, (1)

where

Cqs is coupling matrix

p is fluid nodal pressure

Cyp is acoustic load

f, is structural load

N; is interpolation function for structural domain

N¢ is interpolation function for fluid domain

n is external normal direction of the structural surface

T is interaction surface between the structural and fluid domains

The structural nodal load from the fluid effect is directed to fluid
nodal pressure via the coupling matrix Cy. The nodal displacement
could then be obtained from Eq. 10, as shown in Eq. 12.

u=(K+iwC-*M)'f. (12)

2.4 FEM-BEM coupling analysis

The exact formulas of FEM/BEM modeling were published by
Fritze et al. [6], and related expressions are supplied in this part. The
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continuity constraint over the interaction surface—as shown in Eq.
13—connects the governing equations as illustrated in the above
section. Then, the normal velocity v may be written as a function
with the displacement u, according to Eq. 14.

q = —iwpv, (13)
v = iwS ' Cgu, (14)
s=| ., NiNdr,

Cg, = C.

We can get Eq. 15 by inserting Eqs 13, 14 into Eq. 9.
Hp = w’pGS™'Cgou + p;. (15)

Equations 10, 11, 15 can be connected to form a equation system, as
shown in Eq. 16.

K+iwC- M -Cg ||u| | £ (16)
-0’pGS'C;,  H [|p] |p]’

The direct iterations on Eq. 16 converge rather slowly, and
directly solving the system equation would demand far more
computational power and storage space. We present the
following method as an alternative to utilizing an iterative solver
to resolve the above non-symmetric linear equation. The coupled
boundary element equation (6) shown in Eq. 17 may be obtained by
putting Eq. 12 into Eq. 15.

Hp - GWCyp = GWIS; + p,,
W = w*pS'C A, (17)
A =K +iwC - 0*M.

By using a sparse direct solver, the equation linear system in Eq. 17
could be solved. To speed up the solution, FMM and the Generalized
Minimum Residual (GMRES) iterative solver are used.

In this study, Loop subdivision is introduced in the model
discretization in order to realize the FEM-BEM coupling and the
ensuing sensitivity analysis.

3 Sensitivity analysis for shape design

Finding the optimum design parameters specifying the
intended form of the given structure under specified
restrictions is the aim of shape optimization. Calculating the
gradients of stated cost functions is done using shape design
sensitivity analysis. The direction in which to look for the best
values of the design variables may then be decided using the
acquired gradients. As a result, the first and most crucial phase
in the design and optimization of acoustic shapes is often
acoustic form sensitivity analysis [72,77]. The direct method
utilizes the chain rule of differentiation to compute the
sensitivity of the performance function. This process begins
with determining the sensitivity of the variables before
proceeding to compute the performance function sensitivity.
Because it is so directly tied to the analytical process, this
strategy is quite popular.

By differentiating Eqs 5, 8 with respect to any arbitrary design
variable, assuming that the boundary I' is smooth around the source
point x, we can derive Eqs 18, 19.
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model. (A) Sound pressure at (10,0,0). (B) Sensitivity to radius at
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FIGURE 7

Sound pressure and sensitivity at point (50,0,0) for submarine
model. (A) Sound pressure at (50,0,0). (B) Sensitivity to thickness at
(50,0,0).

principal value and the Hadamard finite part integral
method [72].

By differentiating Eq. 17 with respect to the design variable, the
sensitivity analysis for shape design using the coupling FEM-BEM
can yield Eq. 22.

Hp - GWCyp = GX + GY - Hp,
X = W(Csfp + fs))
Y= W(Csfp +1,)+ W(Csfp + fs),

W= wz,)(s'*lcfsA*1 £ SCAT + s*cfsA'*l).

(22)

Since the matrices are full and asymmetric, it takes a lot of
computing time to directly solve Eq. 22 using conventional BEM.
However, it is possible to speed up the computational process using
FMM and GMRES. The matrix-vector products in Eqs 17, 22 are
accelerated using wideband FMM, and the FEM-BEM coupling
formula and the associated sensitivity equation are solved using the
iterative solver GMRES.
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Sound pressure and sensitivity at point (100,0,0) for submarine
model. (A) Sound pressure at (100,0,0). (B) Sensitivity to thickness at
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4 Numerical examples

Several numerical tests are conducted to examine the validity
and dependability of the established methodology in this section. In
each case, the FEM uses shell elements whereas the discontinuous
linear boundary elements are applied for acoustic analysis. All
calculations are performed using a customized internal Fortran
95/2003 algorithm.

4.1 Sphere with an incoming sound wave

This sound field of an thin
spherical shell that is centered at location (0, 0, 0), while
accounting for an incoming sound wave with an amplitude

section examines the

of 1.0 in positive x direction, as shown in Figure 2. The
following are the materials and geometrical elements used in
this example.
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FIGURE 9

Sound pressure and sensitivity at point (150,0,0) for submarine model. (A) Sound pressure at (150,0,0). (B) Sensitivity of sound pressure to thickness at

(150,0,0).

Radius 4.0 m
thickness  0.04 m
elasticity modulus ~ 2.10 x 10" Pa

Poisson’s ratio 0.3

structural density ~ 7.86 x 10° kg/m’

fluid density  1.00 x 10° kg/m’

sound velocity in water  1.482 x 10’ m/s

Figure 3 gives the results at position (10, 0, 0). Figure 3A displays
the analytical and numerical solutions. The GMRES implementation
with the wideband FMM technique is employed to accelerate the

Frontiers in Physics 09

solution of linear systems without preconditioning. The discretized
thin-shell model consists of 25,392 elements. The wideband FMM
approach keeps the high accuracy of BEM, as the numerical and
analytical answers present the good agreement which can seen in the
figure.

Figures 3B, C shows, respectively, how sensitive the
structure’s surface is to sound pressure in relation to the
radius and thickness of the sphere. Basically, these graphs
demonstrate a good agreement between the analytical and
numerical results. Figure 3 shows that the sound pressure
sensitivity grows significantly at resonance peaks, and the
lower frequency range is crucial for this spherical shell
model because the sound pressure there is substantially
higher and more responsive to thickness and radius.
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The results are shown in Figures 4, 5, respectively, for the
positions (20, 0, 0) and (40, 0, 0). The curves for the same
physical quantity at various locations, as shown in Figures 3, 4,
5—Figures 3A, 4A, 5A for sound pressure, Figures 3B, 4B, 5B for
sensitivity to radius, and Figures 3C, 4C, 5C for sensitivity to
thickness—all show a similar pattern of fluctuation.

4.2 Submarine model under an incoming
sound wave

This section focuses on the underwater submarine model’s
scattering sound field when influenced by an incoming plane
wave [78]. The plane wave propagates predominantly along the
x-axis and has an incidence wave amplitude of 1.0 Pa. The thickness
of the submarine model is 0.01 m, and the sub has a length of 9.2 m.
The origin of the coordinate is in the middle of the axial length of the
submarine, and the x-axis is along the axial length of the submarine.
The submarine model constructed using Loop subdivision scheme is
shown in Figure 6, which has a total of 19,016 elements.

Several calculation points are selected. Figure 7A gives the sound
pressure changing with frequency at point (50, 0, 0) and Figure 7B
illustrates the changing of its sensitivity to thickness. These two data
demonstrate that the lower frequency range, given the existing
material and geometrical parameters, is a vital region for this
submarine model, as the sound pressure is noticeably greater and
more sensitive to thickness there.

The computation of sound pressure at location (100, 0, 0) and
(150, 0, 0) is shown in Figures 8A, 9A, respectively. Figures 8B, 9B
depicts the sensitivity of sound pressure at point (100, 0, 0) and (150,
0, 0) to shell thickness, respectively. Figures 7A, 8A, 9A show
comparable patterns in the sound pressure curves at the places
(50, 0, 0), (100, 0, 0), and (150, 0, 0). As seen in Figures 7B, 8B, 9B,
the sensitivity of sound pressure at (50, 0, 0), (100, 0, 0), and (150, 0,
0) also demonstrates a similar pattern. Additionally, and in line with
predictions, the sound pressure and its sensitivity to thickness both
decline with increasing distance from the structure.

5 Conclusion

The simulation of acoustic-structure interaction and sensitivity
analysis are conducted using a coupling approach that combines the
Finite Element Method (FEM) and Boundary Element Method
(BEM). FEM is applied to model structural elements of the issue.
To eliminate the need for meshing the acoustic domain, the
boundary of the structure being analyzed is discretized using the
BEM. FMM is applied to expedite the matrix-vector output.
IGABEM enables
sensitivity analysis from CAD models without the requirement

direct structural-acoustic interaction and
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