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The limited spatial sampling rates of conventional Shack–Hartmann wavefront
sensors (SHWFSs) make them unable to sense higher-order wavefront distortion.
In this study, by etching a known phase on each microlens to modulate sub-
wavefront, we propose a higher-resolution wavefront reconstruction method
that employs a modified modal Zernike wavefront reconstruction algorithm, in
which the reconstruction matrix contains quadratic information that is extracted
using a neural network. We validate this method through simulations, and the
results show that once the network has been trained, for various atmospheric
conditions and spatial sampling rates, the proposed method enables fast and
accurate high-resolution wavefront reconstruction. Furthermore, it has highly
competitive advantages such as fast dataset generation, simple network
structure, and short prediction time.
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1 Introduction

A Shack–Hartmann wavefront sensor (SHWFS) is developed based on the classical
Hartmann wavefront measurement method, with the advantages of simple installation,
compact structure, reliable algorithm, and fast measurement speed [1]. It has been widely
used in astronomical observation [2], biomedical imaging [3, 4], high-energy laser beam
quality testing [5], space communication systems [6], and optical tweezers [7]. In principle,
SHWFS utilizes the microlens array (MLA) to sample the incident wavefront to produce a
spot array pattern, computes the relative offset of the spot centroid, and then reconstructs
the wavefront using the algorithm. In this process, the sub-wavefront is regarded as
a plane wave.

According to the principle of SHWFS, it detects high spatial frequency wavefronts and
demands MLA with enough spatial sampling rates. However, when the source is faint, very
high spatial sampling rates not only reduce the spot intensity but also decrease the stability
and accuracy of the reconstruction. [8, 9] used MLA with lower spatial sampling rates,
which caused the spatial resolution of the SHWFS to decrease. In recent years, a series of
improvement methods have been proposed to improve the measurement performance of
SHWFS at a low spatial sampling rate. Meimon et al. added a known astigmatism to the sub-
wavefront and proposed the linearized focal-plane technique (LIFT) phase retrieval
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method, which can sense more modes with fewer subapertures [10,
11]. Li et al. placed a detector at a defocus plane of MLA and
reconstructed the incident wavefront using the intensity distribution
information of spots. This method can sense higher-order
aberrations [12]. Zhao et al. introduced four-quadrant binary
phase modulation into each subaperture and used an
optimization algorithm to reconstruct the wavefronts with high
accuracy [13]. Zhu et al., based on LIFT, proposed the focal
technique to sense more Zernike modes in each subaperture and
optimized the relative parameters. The simulations and experiments
proved that the method can accurately reconstruct the wavefront
[14]. Feng et al. used the first and second moments to express
information of the sub-wavefront and reconstructed high-frequency
aberration of the incident wavefront [15]. Wu et al. proposed using
multiple low-sampling-rate SHWFS to achieve high-resolution
wavefront sensing and applied this technique to extended objects
[16]. All of the above studies have offered new approaches, and yet,
for timeliness, sensitivity, stability, and simplicity of detection, these
approaches do not entirely take them into account. Fortunately, we
find that machine learning can accomplish this work excellently.

Machine learning, a popular current research approach with short
computational time and excellent nonlinear fitting ability, has been
proven to be an effective alternative to the standard modal Zernike
wavefront reconstruction algorithm (hereafter referred to as the
traditional method). In the past few years, for low spatial sampling
rate studies, several methods based on machine learning have also been
proposed. Xu et al. used an extreme learningmachine to fit the nonlinear
corresponding relationship between the centroid displacement and
Zernike coefficients. Under sparse microlens, the reconstruction result
of themethod ismuchmore accurate than that of the standard traditional
method [17]. He et al. proposed using ResNet to restore Zernike
coefficients directly from sparse subaperture spot images instead of
the whole spot array pattern. The method broke the limitation of d/
r0 = 1 (where d is the length of the subaperture and r0 is the coherence
diameter) and used transfer learning to reduce the training time [18]. The
deep-phase retrieval wavefront reconstruction method was proposed by
Guo et al.; this method realized high-speed and high-spatial-resolution
wavefront measurement [19]. However, when confronted with different
spatial sampling rates, these methods become impotent.

In this paper, we treat the sub-wavefront as a quadratic surface
instead of a simple plane. On the basis of the new assumption, a
method of high-resolution wavefront reconstruction based on sub-
wavefront information extraction is proposed, which includes
two parts:

1. All full-light sub-spots are considered to have consistent
features, and their slope and quadratic information are
extracted using a neural network. This approach enables
quick dataset generation, employs a simple network, and
reduces prediction time. In addition, the trained network
can predict sub-wavefront information with different
sampling rates.

2. Modifying the traditional method by adding quadratic
information to the reconstruction matrix, the wavefront
may be reconstructed quickly and accurately.

Compared with the traditional method, the proposed method
can reconstruct the wavefront with higher spatial resolution, or the

same spatial resolution reconstruction can be accomplished with a
lower sampling rate, providing a new way for high-resolution
wavefront detection and faint source wavefront detection.

The remainder of the article is organized as follows: Section 2
establishes a new sub-wavefront assumption, introduces the method
of extracting sub-wavefront information, and modifies the
wavefront reconstruction algorithms. Section 3 presents the
simulation model, the results of the training network, and the
reconstruction wavefront result. In Section 4, the fitting error of
the sub-wavefront and the spatial resolution of the proposed
algorithm are discussed. In addition, we analyze the factors that
affect spatial resolution. Finally, Section 5 presents the conclusion
drawn from the research.

2 Methods

2.1 Sub-wavefront assumption

In the process of SHWFS detection, MLA samples the incident
wavefront, with amplitude and phase information fully presented in
the spot array pattern. In other words, SHWFS has detected all the
information of the wavefront, and the optical structure of SHWFS
does not constrain the spatial resolution reconstruction. The
limitation on the spatial resolution arises from its assumption
(Eq. 1), where each sub-wavefront is approximately regarded as a
tip-and-tilt plane.

Φsub � c1x + c2y + ε, (1)

where c1 and c2 are wavefront slope information and ε is the
fitting error.

Therefore, the wavefront reconstruction algorithms of SHWFS
are based on the plane assumption, which ignores the high-order
information of the sub-wavefront. If the assumption is changed as
expressed in Eq. 2, i.e., using a quadratic surface to fit, this can more
accurately express the sub-wavefront.

Φsub � c1x + c2y + c3x
2 + c4y

2 + c5xy + ε′. (2)

Here, the quadratic information is represented by c3, c4, and c5
and ε’ is the fitting error.

The result of using the two assumptions to fit a random sub-
wavefront is shown in Figure 1. Figure 1A shows a sub-wavefront,
and Figures 1B, C represent the fitting errors of the two assumptions,
respectively. The rootmean square (RMS) value and the peak valley (PV)
value are shown in the figure, which can intuitively illustrate the virtue of
the novel assumption. By extracting the slope and quadratic information
of the sub-wavefront (both are called sub-wavefront information), it is
expected to reach high spatial resolution measurement.

2.2 Extracting sub-wavefront information

2.2.1 Modulating sub-wavefront
Obtaining sub-wavefront information solely from the centroid

offset is challenging; to complete this work, we need to use the
intensity distribution information within the spot. However, same as
the phase retrieval (PR) algorithm [20], which is based on the spot
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intensity distribution, there is a multiple-solution problem.
Referring to the article [13] to solve the problem, in this paper,
the sub-wavefront is modulated by a four-quadrant binary phase
whose expression is given by Eq. 3.

Φm x, y( ) � π/2;x · y> 0,
0;x · y< 0,

{ (3)

where x∈[−d1/2, d1/2], y∈[−d2/2, d2/2], and d1 and d2 are the
length and width of the phase modulation area; in this paper, the
area corresponds to a subaperture range.

As shown in Figure 2, by rotating the wavefront Φ1 (x,y) 180°

and flipping it, the new wavefront Φ2 (x,y) = -Φ1 (−x,−y) can be
acquired. With four-quadrant binary phase modulation, a pair of
rotating and flipping wavefronts (Φ1 and Φ2) will not have the same
spot. Thus, the multiple-solution problem can be avoided by
performing the phase on a sub-wavefront. This only requires
etching a four-quadrant binary phase on each microlens surface,
and the main structure of SHWFS does not change. As such, it is
feasible to utilize neural networks to predict the sub-wavefront
information based on the spot.

2.2.2 Neural network extracts sub-wavefront
information

In this paper, the sub-wavefront information is extracted by a
neural network, whose structure is shown in Figure 3. Using a
modulated spot pattern as an input to the network, different sizes of
feature patterns can be obtained by handling different convolutional
layers (with 1 × 1, 2 × 2, 3 × 3, and 4 × 4 kernel sizes and 4, 8, 12, and
16 depths, respectively) in parallel and fusing these feature maps via
a depth concatenation layer. Aiming to keep the detailed
information, a convolutional layer (with a 3 × 3 kernel size and
40 depths) replaces the pooling layer. Then, a 31 × 31 × 40 feature
map is taken as an input for the next layer. Once again, a 16 × 16 ×
120 feature map is obtained. After each convolutional layer, an
activation function (ReLU function) is added to reduce the training
time and fit the nonlinear relationship between the input and output.
Finally, it passes through the fully connected layers with 256, 64, and
5 neurons, respectively. The fully connected layer outputs five
parameters, representing the information of a sub-wavefront.

The dataset generation process is shown in Figure 4. The input
wavefront is split into several sub-wavefronts by MLA,
simultaneously forming a spot array pattern. This process
satisfies the angular spectrum transport theory [21]. In the spot
array pattern, which includes information of the incident wavefront,
each spot similarly contains the corresponding sub-wavefront
information. If the effects of imaging between spots are ignored,
the formation of a spot can be considered an independent imaging
process. Moreover, the input wavefront satisfies an atmospheric
turbulence model (e.g., the Kolmogorov model), which implies that
the spot patterns have the same characteristic distribution. Thus, a
spot pattern is segmented from the spot array pattern, and together
with the corresponding sub-wavefront information, a dataset can
be generated.

Furthermore, as long as the incident wavefront has the same
atmospheric parameters (for example, d/r0 = 1), it is able to produce
datasets with the same characteristic distribution, even if the
sampling rates are different. Obviously, an incident wavefront
can produce more than one dataset, and the data volume of a
spot is much smaller than the entire spot map, which means that it is
able to generate datasets and train networks quickly. Furthermore,
the network has a short prediction time and can be used to extract
sub-wavefront information with different sampling rates.

The incident wavefront Φ can be expressed using Zernike
polynomials as follows:

FIGURE 1
(A) Sub-wavefront; (B) error of plane fitting; and (C) error of quadratic surface fitting.

FIGURE 2
Far-field spot of non-modulation and phase modulation.
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Φ � ∑p
k�1

akZk, (4)

where Zk represents the kth-order Zernike polynomial, ak is the
coefficient of Zk, and p is the number of Zernike modes.

The ith sub-wavefront Φsub can be represented by Eq. 2, and the
relationship between the sub-wavefront information and the
Zernike coefficient is

c1 i( ) � ∑p
k�1

ak

∫∫
Si

∂Zk x, y( )
∂x

dxdy

Si
� ∑p

k�1
akZxk i( ),

c2 i( ) � ∑p
k�1

ak

∫∫
Si

∂Zk x, y( )
∂y

dxdy

Si
� ∑p

k�1
akZyk i( ),

c3 i( ) � ∑p
k�1

ak

∫∫
Si

∂2Zk x, y( )
∂x2 dxdy

Si
� ∑p

k�1
akZxxk i( ),

c4 i( ) � ∑p
k�1

ak

∫∫
Si

∂2Zk x, y( )
∂y2 dxdy

Si
� ∑p

k�1
akZyyk i( ),

c5 i( ) � ∑p
k�1

ak

∫∫
Si

∂2Zk x, y( )
∂x∂y

dxdy

Si
� ∑p

k�1
akZxyk i( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Si is the normalized subaperture area.

It is worth noting that only full-light spots can be regarded as
having uniform features; therefore, only full-light sub-wavefront
information can be extracted using this method. For non-full-light
subaperture, the relationship between the sub-wavefront slope
information and Zernike coefficients is as follows:

c1 i( ) � ∑p
k�1

ak

∫∫
Si

∂Zk x, y( )
∂x

dxdy

Si
� ∑p

k�1
akZxk i( ),

c2 i( ) � ∑p
k�1

ak

∫∫
Si

∂Zk x, y( )
∂y

dxdy

Si
� ∑p

k�1
akZyk i( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

We can only obtain slope information from the center of gravity
(COG), but all of this correct information is valuable for wavefront
reconstruction.

2.3 Wavefront reconstruction algorithm

Under the new sub-wavefront assumption, it is critical to
reconstruct the incident wavefront with all the extracted
information. Referring to the traditional method, taking the
quadratic information into the reconstruction matrix is the
simplest method. In the event that the SHWFSs have n non-full-
light subapertures andm full-light subapertures, for P-order Zernike
polynomials, the set of Eqs 4, 5 can be formulated into a matrix
form as

FIGURE 3
Structure of a neural network.
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c1 1( )
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..
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c1 n + 1( )
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..

.

c5 n + 1( )
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.

c1 n +m( )
..
.

c5 n +m( )
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�

Zx1 1( ) Zx2 1( ) / ZxP 1( )
Zy1 1( ) Zy2 1( ) / ZyP 1( )

..

. ..
.

/ ..
.
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Zxy1 n + 1( ) Zxy2 n + 1( ) / ZxyP n + 1( )
..
. ..

.
/ ..

.

Zx1 n +m( ) Zx2 n +m( ) / ZxP n +m( )
..
. ..

.
/ ..

.

Zxy1 n +m( ) Zxy2 n +m( ) / ZxyP n +m( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

a1
a2
..
.

aP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(7)

The simple matrix formula is

C � ZA. (8)

In the process of wavefront detection, only A is unknown. Eq. 8
can be transformed into

A � Z+C, (9)

where Z+ is the generalized inverse of Z. The common methods to
calculate it are Gram–Schmidt orthogonalization [22] and singular
value decomposition [23].

3 Simulation

3.1 Network training

3.1.1 Simulation setup
To validate that the built neural network can predict sub-

wavefront information, the process has been numerically
simulated using MATLAB. The simulation setup is shown in
Figures 5A, B. The match relationship between MLA and the
optical pupil is shown in Figure 5B; the red region is the full-
light subaperture, and the gray region is the non-full-light
subaperture. This arrangement is used to obtain more full-light
subapertures, which can reconstruct wavefronts more accurately
with more information. In the simulation, we only considered
monochromatic light and ignored the non-uniformity of the light
intensity. Meanwhile, in the simulation, we introduced the noise of
the camera that satisfies a normal distribution.

The key parameters of the simulation are shown in Table 1. To
better balance the robustness and prediction accuracy of the
network, 71,280 datasets are generated from 3,510 random
atmospheric wavefronts, with 10% of these randomly selected as
test datasets. The atmospheric parameter is set to d/r0 = 1–3. For

FIGURE 4
Dataset generation process.
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different sampling rates of the incident wavefront, this atmospheric
parameter should also be maintained to produce datasets with
consistent features.

Furthermore, for optimizing the weights of the network, an
adaptive moment estimation (Adam) optimizer is used, the initial
learning rate is 0.001, and the epoch and batch size are set to 200 and
128, respectively. The training is performed on a desktop
workstation (11th Gen Intel (R) Core (TM) i7-11700K @
3.60GHz, RAM 16G, NVIDIA RTX3090 Ti).

3.1.2 Results of the trained network
In the training process, the loss function is the root mean square

error (RMSE) between the predicted information and true values, as
expressed in Eq. 10. The training trends are shown in Figure 6. With
the number of iterations increasing, the loss function value decreases
and then converges gradually. The entire training process takes
approximately 4 h for 43,300 iterations, and the final RMSE value is
0.06. The trained network takes less than 2 ms to predict a sample.

RMSE �

����������∑5
i�1

ci′ − ci( )2
5

,

√√
(10)

where ci’ is the predicted value and ci is the true value.

Figure 7 illustrates the RMSE value of the test datasets; the lower
the RMSE value, the closer the predicted sub-wavefront to the actual
value. When the RMSE value is less than 0.1, we consider that the
network has made an accurate prediction for the sub-wavefront.
Furthermore, the accuracy of the network, r, is expressed as the ratio
of the number of accurate predictions to the test datasets. The
trained network has an accuracy of r = 98.73%, which means that it
has the ability to predict sub-wavefront information with high
accuracy and stability.

3.2 Wavefront reconstruction

As shown in Figure 5 in Section 3.1.1, the sub-wavefront
information in full light is predicted using the trained network,
and COG is utilized to obtain the slope information in a non-full-
light subaperture. Finally, the modified algorithm completes the
wavefront reconstruction. Neglecting the time-consuming
constraint of reconstructing the wavefront when parallel

FIGURE 5
(A) Simulation setup of wavefront measurement; (B) matching relationship between pupil and subaperture.

TABLE 1 Key parameters of the simulation.

Parameter Value

Wavelength 635 nm

Focal length 20 mm

Pixel size 6.4 μm × 6.4 μm

Sampling rates 6 × 6, 8 × 8 and 10 × 10

Atmospheric parameter d/r0 = 1–3

Number of datasets 71,280

FIGURE 6
Training curves of the natural network.
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computation of sub-wavefront information is used, the
reconstruction time for a wavefront takes approximately 2 ms.

The wavefront reconstruction result for different sampling rates
is shown in Figure 8, and the leftmost figure shows the match

relationship between the optical pupil and MLA. This is followed in
turn by the incident wavefront, reconstructed wavefront, and
residual wavefront. d/r0 = 1, and the reconstructed Zernike
modes for 6 × 6, 8 × 8, and 10 × 10 MLA are 46, 84, and 132,
respectively. The corresponding PV, RMS, and relative error (RE)
values are also shown in the figure. The definition of RE is given by
Eq. 11, and RMSresidual and RMSwf represent the RMS values of the
residual and incident wavefronts, respectively.

RE � RMSresidual
RMSwf

. (11)

When the RE value is less than 10%, it means that the wavefront
reconstruction algorithm can accurately reconstruct the wavefront.
All the RE values in Figure 8 are less than 10%, providing sufficient
evidence that the proposed method can accurately reconstruct the
wavefront. Figure 8 shows large errors in the residual wavefront
edge. This is because only the slope information has been obtained
from the non-full-light subapertures, which are distributed at the
edge of the incident wavefront, leading to a decrease in accuracy at
the edge.

Furthermore, in order to be able to reflect the advantages of the
proposed algorithm, it should be compared with the traditional

FIGURE 8
Reconstruction results of different sampling rates.

FIGURE 7
RMSE value of test datasets.
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method. The proposed algorithm and the traditional method with
the same sampling rate (8 × 8) are used to reconstruct the wavefront,
with atmospheric parameter d/r0 = 1 and 132 Zernike modes. The
reconstructed and residual wavefronts are shown in Figure 9. For the
proposed method’s reconstructed results, the RMS and PV values of
the residual wavefront are 0.16 rad and 3.871 rad, respectively.
Compared with the traditional method, the RMS and PV values
of the residual wavefront are reduced by 88.4% and 85.85%,
respectively.

To further investigate the generalization of the proposed
method, in the same manner as in the previous paragraph,
1,000 wavefronts are randomly generated. The reconstructed
statistical results using the two methods are shown in Figure 10.
Almost all RE values of the proposed method are less than 10%.
Obviously, compared with the traditional method, with the same
sampling rate, the proposed method is able to reconstruct the
wavefront with higher accuracy.

Similarly, the 1,000 random wavefronts satisfy the
atmospheric parameter D/r0 = 10 (where D is the diameter of
the pupil); these are represented by 80-order Zernike modes. We
reconstruct the wavefront using the traditional method (the
sampling rate is 10 × 10) and the proposed algorithm (the
sampling rate is 6 × 6), respectively. Figure 11 shows that
almost all RE values are less than 0.1, the average RE value of
the proposed method is 4.72%, and the average RE value of the
traditional method is 2.12%. As observed from the result, using
the proposed algorithm with a 6 × 6 sampling rate yields
comparable results to the traditional method with a 10 ×
10 sampling rate, although there will be a slight degradation
in accuracy.

4 Discussion

4.1 Sub-wavefront fitting error

It is worth exploring the ability of the new sub-wavefront
assumption to fit sub-wavefronts. So, for plane fitting and
quadratic surface fitting, 1,000 sub-wavefronts are generated
for each case, which is similar to the generation of the
datasets. Table 2 shows the statistical results, including the
average, standard deviation, and average RE values. As can be
seen from the results, under the same atmospheric conditions,
using quadratic surface fitting can fit the sub-wavefront more
accurately. However, as d/r0 increases, the fitting error also
increases. Referring to the conventional Shack–Hartmann, in
the case of d/r0 = 1, fitting a sub-wavefront with a plane has
been widely used in engineering; the average and standard
deviation of the RMS values of the residual wavefront are
0.154 rad and 0.121 rad, respectively, which indicates that the
error of plane fitting is acceptable.

Taking the plane fitting error as a reference value at d/r0 = 1, the
residual wavefront RMS of quadratic surface fitting at d/r0 = 1 and d/
r0 = 2 is well within the permissible error range. Therefore, the
proposed method can be used to reconstruct the wavefront in these

FIGURE 9
(A) Reconstructed wavefront of the proposed method; (B)
residual wavefront of the proposed method; (C) reconstructed
wavefront of the traditional method; and (D) residual wavefront of the
traditional method.

FIGURE 10
Results of reconstructing 1000 random wavefronts using
proposed method (8×8) and traditional method (8×8).

FIGURE 11
Results of reconstructing 1000 random wavefronts using
proposed method (6×6) and traditional method (10×10).
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cases. Similarly, at d/r0 = 3, the average value is 0.186 rad and the
standard deviation is 0.158 rad. The error exceeds the reference
value, but it is still negligible and perhaps can be used to reconstruct
the wavefront. In addition, for sub-wavefront with different
atmospheric parameters, the RE values of the two fitting
approaches are almost constant; therefore, as the d/r0 value
increases, the fitting error also increases, and it is hard to
reconstruct the wavefront.

4.2 Spatial resolution of reconstruction
wavefronts

The proposed algorithm can accurately reconstruct wavefronts;
however, it is still necessary to investigate how the spatial resolution
can be improved. Therefore, for different d/r0 values and different
sampling rates, 1,000 random aberrations are generated to analyze
the resolution. As shown in Figure 12, in the case where d/r0 = 1 and
the sampling rates are 6 × 6, 8 × 8, and 10 × 10 for the proposed
method, the spatial resolutions are 84, 124, and 164 Zernike modes,
respectively. For the traditional method, the spatial resolutions are
48, 60, and 80 Zernike modes, respectively. Obviously, at the same
sampling rate, the proposed algorithm can reconstruct wavefronts
with higher spatial resolution; at the same spatial resolution, the
proposed algorithm can reconstruct wavefronts with lower
sampling rates.

In addition, in the cases where d/r0 = 2 and d/r0 = 3, the
traditional method faces challenges in determining wavefront
measurements. However, for the proposed algorithm, the spatial
resolutions are 52, 82, and 92 Zernike modes, respectively. When d/
r0 = 3, the wavefront can still be reconstructed accurately, even if the
spatial resolution is degraded.

Therefore, the proposed algorithm can be applied to measure
wavefront in a faint source or strong turbulence (d/r0<3)
environment, or in the case of limited sampling rates, can be
used to reconstruct wavefront with high spatial resolution.

4.3 Analyzing factors affecting spatial
resolution

As can be seen from Figure 12, with the increase in the
atmospheric parameter d/r0, the spatial resolution of the
measurement degrades. There are two main reasons for this:

on the one hand, as shown in Table 2, as d/r0 grows larger, the
average value and standard deviation value of residual sub-
wavefront RMS also increase, which implies that measurement
accuracy will decrease with the same spatial sampling rates. On
the other hand, as shown in Figure 13, as the turbulence intensity
increases, although the average slope does not surpass the dynamic
range of the subaperture, the spot has already exceeded the region of
the subaperture, so the wrong wavefront information will be
obtained. At the same time, the adjacent sub-wavefront
information extraction will also be affected.

However, our proposed algorithm uses this imperfect
information to reconstruct the wavefront at the cost of reduced
spatial resolution. Using more parameters to more accurately
express the sub-wavefront and effectively filtering out error
information can help maintain its spatial resolution, which is on
our agenda for future work.

TABLE 2 Statistical comparison of different fitting methods.

Atmospheric parameter Plane fitting Quadratic surface fitting

RMS residual error (rad) Average RE RMS residual error (rad) Average RE

Average stda Average stda

d/r0 = 1 0.155 0.113 0.373 0.078 0.062 0.191

d/r0 = 2 0.263 0.212 0.380 0.129 0.109 0.189

d/r0 = 3 0.383 0.311 0.379 0.186 0.158 0.195

d/r0 = 4 0.504 0.48 0.358 0.247 0.201 0.189

astd, standard deviation.

FIGURE 12
Spatial resolution of measurement with different MLA sampling
rates for different atmospheric parameters. (A) Traditional method. (B)
Proposed method.
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5 Conclusion

In this paper, we establish a new assumption that treats the sub-
wavefront as a quadratic surface and propose a method to extract the
sub-wavefront information based on a neural network. So long as
the spots have consistent features, even with different sampling
rates, the trained network can also be used to predict the sub-
wavefront information. This approach generates large datasets
quickly, the network model is simple, and the reconstruction of a
wavefront takes approximately 2 ms.

At the same time, the wavefront reconstruction algorithm is
modified, introducing quadratic information into the reconstruction
matrix so that the wavefront can be reconstructed with high speed,
high precision, and high spatial resolution. In addition, the
algorithm can be used in the case where d/r0 = 1–3, which
breaks the limitation of d/r0 = 1. In conclusion, the proposed
method allows us to sense the higher frequency aberrations and
reconstruct the wavefront under faint-source or high-strength-
turbulence conditions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material; further inquiries can be directed
to the corresponding authors.

Author contributions

HoG: conceptualization, formal analysis, investigation,
methodology, software, validation, writing–original draft,
writing–review and editing, and data curation. WZ:
conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, writing–original draft, and
writing–review and editing. SW: conceptualization, data curation,
funding acquisition, investigation, methodology, resources,
validation, and writing–original draft. KY: formal analysis,
software, and writing–review and editing. MZ: formal analysis,
software, and writing–review and editing. SL: software and
writing–review and editing. HaG: writing–review and editing. PY:
investigation, validation, and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the National Natural Science Foundation of China
(11704382, 61805251, 61875203, and 62105336), Youth Innovation
Promotion Association of the Chinese Academy of Science
(Y2021103), and Foundation Incubation Fund of the Chinese
Academy of Science (JCPYJJ-22005).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Platt BC, Shack R. History and principles of Shack-Hartmann wavefront sensing.
J refractive Surg (2001) 17:S573–7. doi:10.3928/1081-597X-20010901-13

2. Yang J-T, Yang C-J, Wang K-H, Chang J-C, Wu C-Y, Chang C-Y. Remote focusing
with dynamic aberration elimination by model-based adaptive optics. Opt Laser Tech
(2024) 169:110126. doi:10.1016/j.optlastec.2023.110126

3. Christaras D, Tsoukalas S, Papadogiannis P, Börjeson C, Volny M, Lundström L,
et al. Central and peripheral refraction measured by a novel double-pass instrument.
Biomed Opt Express (2023) 14:2608–17. doi:10.1364/BOE.489881

4. Romashchenko D, Lundström L. Dual-angle open field wavefront sensor for
simultaneous measurements of the central and peripheral human eye. Biomed Opt
express (2020) 11:3125–38. doi:10.1364/BOE.391548

5. Galaktionov I, Sheldakova J, Nikitin A, Toporovsky V, Kudryashov A. A hybrid
model for analysis of laser beam distortions using Monte Carlo and shack–hartmann
techniques: numerical study and experimental results. Algorithms (2023) 16. doi:10.
3390/a16070337

6. Miglani R, Malhotra JS. Performance enhancement of high-capacity coherent
DWDM free-space optical communication link using digital signal processing. Photonic
Netw Commun (2019) 38:326–42. doi:10.1007/s11107-019-00866-8

7. Bowman RW, Padgett MJ. An SLM-based Shack–Hartmann wavefront sensor for
aberration correction in optical tweezers. J Opt (2010) 12:124004. doi:10.1088/2040-
8978/12/12/124004

8. Wu X, Huang L, Gu N, Tian H, Wei W. Study of a Shack-Hartmann wavefront
sensor with adjustable spatial sampling based on spherical reference wave. Opt Lasers
Eng (2023) 160:107289. doi:10.1016/j.optlaseng.2022.107289

9. Rousset G, Lacombe F, Puget P, Gendron E, Arsenault R, Kern PY, et al. Status of
the VLTNasmyth adaptive optics system (NAOS). Proc SPIE (2000) 4007:72–81. doi:10.
1117/12.390304

10. Meimon S, Fusco T, Michau V, Plantet C. Sensing more modes with fewer sub-
apertures: the LIFTed Shack–Hartmann wavefront sensor. Opt Lett (2014) 39:2835–7.
doi:10.1364/OL.39.002835

FIGURE 13
Spot array pattern and a spot pattern of high strength turbulence.

Frontiers in Physics frontiersin.org10

Guan et al. 10.3389/fphy.2023.1336651

https://doi.org/10.3928/1081-597X-20010901-13
https://doi.org/10.1016/j.optlastec.2023.110126
https://doi.org/10.1364/BOE.489881
https://doi.org/10.1364/BOE.391548
https://doi.org/10.3390/a16070337
https://doi.org/10.3390/a16070337
https://doi.org/10.1007/s11107-019-00866-8
https://doi.org/10.1088/2040-8978/12/12/124004
https://doi.org/10.1088/2040-8978/12/12/124004
https://doi.org/10.1016/j.optlaseng.2022.107289
https://doi.org/10.1117/12.390304
https://doi.org/10.1117/12.390304
https://doi.org/10.1364/OL.39.002835
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1336651


11. Meimon S, Fusco T, Mugnier LM. LIFT: a focal-plane wavefront sensor for real-
time low-order sensing on faint sources. Opt Lett (2010) 35:3036–8. doi:10.1364/OL.35.
003036

12. Li C, Li B, Zhang S. Phase retrieval using a modified Shack–Hartmann
wavefront sensor with defocus. Appl Opt (2014) 53:618–24. doi:10.1364/AO.53.
000618

13. Zhao M, Zhao W, Yang K, Wang S, Yang P, Zeng F, et al. Shack–Hartmann
wavefront sensing based on four-quadrant binary phase modulation. Photonics (2022)
9:575. doi:10.3390/photonics9080575

14. Zhu Z, Mu Q, Li D, Yang C, Cao Z, Hu L, et al. More Zernike modes’ open-loop
measurement in the sub-aperture of the Shack–Hartmann wavefront sensor. Opt
Express (2016) 24:24611–23. doi:10.1364/OE.24.024611

15. Feng F, Li C, Zhang S. Moment-based wavefront reconstruction via a
defocused Shack–Hartmann sensor. Opt Eng (2018) 57:074106–6. doi:10.1117/1.
OE.57.7.074106

16. Wu X, Huang L, Gu N. Enhanced-resolution Shack-Hartmann wavefront sensing
for extended objects. Opt Lett (2023) 48:5691–4. doi:10.1364/OL.504057

17. Xu Z, Wang S, Zhao M, ZhaoW, Dong L, He X, et al. Wavefront reconstruction of
a Shack–Hartmann sensor with insufficient lenslets based on an extreme learning
machine. Appl Opt (2020) 59:4768–74. doi:10.1364/AO.388463

18. He Y, Liu Z, Ning Y, Li J, Xu X, Jiang Z. Deep learning wavefront sensing method
for Shack-Hartmann sensors with sparse sub-apertures. Opt Express (2021) 29:
17669–82. doi:10.1364/OE.427261

19. Guo Y, Wu Y, Li Y, Rao X, Rao C. Deep phase retrieval for astronomical
Shack–Hartmann wavefront sensors. Monthly Notices R Astronomical Soc (2022) 510:
4347–54. doi:10.1093/mnras/stab3690

20. JaganathanK, Eldar YC,Hassibi B. Phase retrieval: an overview of recent developments.
Opt Compressive Imaging (2016) 279–312. doi:10.1109/MSP.2016.2565061

21. Goodman JW. Introduction to fourier optics (2005).

22. Leon SJ, Björck Å, Gander W. Gram-Schmidt orthogonalization: 100 years and
more. Numer Linear Algebra Appl (2013) 20:492–532. doi:10.1002/nla.1839

23. Stewart GW. On the early history of the singular value decomposition. SIAM Rev
(1993) 35:551–66. doi:10.1137/1035134

Frontiers in Physics frontiersin.org11

Guan et al. 10.3389/fphy.2023.1336651

https://doi.org/10.1364/OL.35.003036
https://doi.org/10.1364/OL.35.003036
https://doi.org/10.1364/AO.53.000618
https://doi.org/10.1364/AO.53.000618
https://doi.org/10.3390/photonics9080575
https://doi.org/10.1364/OE.24.024611
https://doi.org/10.1117/1.OE.57.7.074106
https://doi.org/10.1117/1.OE.57.7.074106
https://doi.org/10.1364/OL.504057
https://doi.org/10.1364/AO.388463
https://doi.org/10.1364/OE.427261
https://doi.org/10.1093/mnras/stab3690
https://doi.org/10.1109/MSP.2016.2565061
https://doi.org/10.1002/nla.1839
https://doi.org/10.1137/1035134
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1336651

	Higher-resolution wavefront sensing based on sub-wavefront information extraction
	1 Introduction
	2 Methods
	2.1 Sub-wavefront assumption
	2.2 Extracting sub-wavefront information
	2.2.1 Modulating sub-wavefront
	2.2.2 Neural network extracts sub-wavefront information

	2.3 Wavefront reconstruction algorithm

	3 Simulation
	3.1 Network training
	3.1.1 Simulation setup
	3.1.2 Results of the trained network

	3.2 Wavefront reconstruction

	4 Discussion
	4.1 Sub-wavefront fitting error
	4.2 Spatial resolution of reconstruction wavefronts
	4.3 Analyzing factors affecting spatial resolution

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


