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Introduction: Magnetic skyrmions hold great promise for realizing compact and
stable memory devices that can be manipulated at very low energy costs via
electronic current densities.

Methods: In this work, we extend a recently introduced method to describe
classical skyrmion textures coupled to dynamical itinerant electrons. In this
scheme, the electron dynamics is described via nonequilibrium Green’s function
(NEGF) within the generalized Kadanoff–Baym ansatz, and the classical spins are
treated via the Landau–Lifshitz–Gilbert equation. Here, the framework is extended
to open systems by the introduction of a non-interacting approximation to the
collision integral of NEGFs. This, in turn, allows us to perform computations of the
real-time response of skyrmions to electronic currents in large quantum systems
coupled to electronic reservoirs, which exhibit linear scaling in the number of time
steps. We use this approach to investigate how electronic spin currents and dilute
spin disorder affect skyrmion transport and the skyrmion Hall drift.

Results:Our results show that the skyrmion dynamics is sensitive to a specific form
of the spin disorder, such that different disorder configurations lead to qualitatively
different skyrmion trajectories for the same applied bias.

Discussion: This sensitivity arises from the local spin dynamics around themagnetic
impurities, a feature that is expected not to be well-captured by phenomenological
or spin-only descriptions. At the same time, our findings illustrate the potential of
engineering microscopic impurity patterns to steer skyrmion trajectories.
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1 Introduction

Technological progress often stems from the discovery and exploitation of new materials
and forms of energy. While self-evident, this paradigm has recently undergone criticism and
revision due to mounting awareness of the negative impact that indiscriminate technological
development has on the environment and climate. This is also true for electronics: it has
become clear that the production, use, and casual disposal of electronic devices can lead to a
sharp increase in energy consumption, waste, and greenhouse effects [1]. Thus, together with
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a steady increase in the use of high-performance technology, there is
a need for novel electronics with reduced dimensionality, large
integration, and low energy consumption [2].

Pursuing these two directives on equal footing is the core aim of
spintronics [3]: magnetic excitations allow for less energy-intensive
ways of storing and processing digital information, and thus devices
based on magnetic materials and phenomena offer an attractive
alternative to conventional electronics. For a long time, fundamental
and applied research in magnetism was largely concerned with
macroscopic samples, and primarily with simple magnetic orders,
such as ferro- and antiferromagnets. However, more recently, it has
been possible to experimentally realize magnetic systems with
nontrivial magnetic textures, creating unprecedented possibilities
for spintronic applications [4, 5].

A notable example in this respect is provided by magnetic
skyrmions [6]. These are topologically nontrivial spin textures
stabilized by a competition of exchange, Dzyaloshinskii–Moriya
interactions (DMIs), and magnetic anisotropies [7]. With their
compact size, topological protection, and non-intensive energy
requirements for manipulation, skyrmions are of great potential
interest to realize racetrack memories [8–10] and quantum
computation devices [11–14]. However, this requires efficient ways
of writing, deleting, and manipulating skyrmions on short time scales
and with high spatial precision, via electronic spin currents.

Here, we describe a scheme to perform large-scale simulations of
the intertwined dynamics of interacting and open spin–electron
systems (Figure 1). Our method is an extension of the approach
introduced in [15, 16] and amounts to propagating the equation of
motion for the electronic spin-dependent single-particle density
matrix, together with the Landau–Lifshitz–Gilbert (LLG)
equation for the classical spins. The former equation can be
derived from the general theory of nonequilibrium Green’s
functions using the so-called generalized Kadanoff–Baym ansatz
(GKBA) [17–30], and therefore allows to systematically introduce
the effects of electron–electron interactions via diagrammatic many-
body perturbation theory. In what follows, we apply this scheme to
study current-induced skyrmion motion, fully accounting for the
dynamics of the itinerant electrons resulting from an applied bias. In
agreement with phenomenological theories [31], we find that for a
clean sample, skyrmions are pinned below a critical spin current
density I0, after which the velocity is found to be a linear function of
the current I − I0. The situation is found to be qualitatively different

in the presence of (dilute) spin disorder, where the skyrmion motion
is strongly dependent on the location, size, and form of the disorder
configuration (for previous work on the role of disorder, see, e.g.,
[32]). This provides a clear indication that treatments based on the
standard Thiele or LLG equation are not always adequate and that
the dynamics of the electrons must be explicitly taken into account.

This paper is structured as follows: Section 2 briefly reviews
previous approaches to coupled spin–electron dynamics, and
Section 3 introduces the system and Hamiltonian to be considered
and discusses the coupling between the itinerant electrons and
external reservoirs. The spin and electron equations of motion are
presented in Section 4 and Section 5, and Section 6 introduces an
approximate wide-band limit (AWBL) as a numerically efficient way
to propagate the equations of motion in the presence of large central
regions connected to external reservoirs. Section 7 presents some
observables used to interrogate the skyrmion content of the spin
configuration. In Section 8, we use the AWBL to investigate the
skyrmion motion induced by current densities in the itinerant
electron system, and in Section 9, we consider skyrmion motion in
the presence of magnetic disorder. Finally, in Section 10, we conclude
with a discussion of experimental signatures and possible material
platforms for which our results are of relevance.

2 Review of previous approaches

Magnetic skyrmions are made up of localized magnetic moments,
typically arising from a largeHund’s coupling J favoring a high-spin state
of the d- or f-orbitals of the magnetic ion. Therefore, from amicroscopic
perspective, it is natural to expect that a quantum description of the
magnetic structure should be necessary1. However, since magnetic
moments in typical skyrmion materials (consisting of transition metal
ions such as Fe, Co, and Mn) are of large magnitude, spin fluctuations
are suppressed and a classical approximation usually works well.

In most cases, skyrmion textures are large compared to the
underlying lattice constant. More precisely, the ratio of the
electronic hopping t to the strength α of the spin–orbit interaction
is typically of the order α/t ~ 0.01–0.1, resulting in a spin spiral

FIGURE 1
Sketch of the composite spin–electron system. A central region consisting of itinerant electrons interacting with localized spins is in contact with
two-dimensional leads. By applying a spin-dependent bias in the leads, an electronic current is generated in the central system, giving rise to
skyrmion motion.

1 For current work in this direction, see, e.g., [33].
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wavelength λ ~ 10–100 nm [9, 34]. However, in certain cases, such as
at an interface between metallic thin films and a material with large
spin–orbit coupling, the effective Dzyaloshinskii–Moriya interaction
can be significantly enhanced and lead to skyrmions with radii on the
order of a few nanometers [35]. For skyrmions of large sizes, it is
common to take a continuum limit of the microscopic spin
Hamiltonian, resulting in a magnetic energy functional that can be
minimized with micromagnetic methods. As a result, calculations for
lattice skyrmions of realistic size (up to approximately 10 nm in radius
in two-dimensional systems) are usually based on an atomistic
description of classical spins, with external fields such as
electromagnetic radiation or electronic current densities included
as non-dynamical variables. For example, the motion of skyrmions
in response to an external current density can be described via an
effective equation for the skyrmion’s center of mass, the so-called
Thiele equation [36], assuming that the form of the skyrmion is rigid.
Based on the Thiele equation, electrons enter only via the external
current density, taken from a static solution of the macroscopic
Maxwell equations. A more detailed description often considered
in the literature is to obtain the individual spin dynamics from the
LLG equation [31] and to include the effects of electrons and external
fields via a generalized force [37, 38]. The LLG equation, with itinerant
electrons included implicitly, has provided important insights into
skyrmion behavior in a large range of materials, and its use is
widespread. Furthermore, other approaches have been introduced,
besides the LLG equation, which go beyond the semiclassical Thiele’s
description to study the dynamics of skyrmions [39–42].

Indeed, there are many cases where neglecting the explicit
dynamics of the electrons severely hinders a more detailed
understanding, and possibly even the development of novel
physical ideas and technological opportunities in skyrmionics.

The importance of explicitly accounting for itinerant electrons in
the description of skyrmion dynamics was originally pointed out in
[15], where a small two-dimensional spin texture containing a single
skyrmion was made to interact with a nanowire carrying a time-
dependent current. Since then, the significance of including electronic
degrees of freedom in the description of skyrmion dynamics (as well
as more general spin textures) has been addressed in several contexts
[16, 37, 38, 43–45]. For example, it was recently demonstrated [16]
that explicitly accounting for the dynamics of itinerant electrons can
be of crucial importance in capturing the interaction between
skyrmions and laser light. In particular, such a treatment shows
that photo-generation of skyrmions resulting from laser excitation
can occur on much shorter time scales than previously thought.

Similarly, electrons and currents are expected to play a key role
in skyrmion transport phenomena, both for clean samples and in the
presence of spin disorder. However, investigating such dynamics
requires overcoming an additional hurdle on the methodological
side, i.e., it is necessary to simultaneously treat large system sizes and
extended time scales within an open quantum system framework. In
the remainder of this paper, we show how such a framework can be
constructed.

3 System and Hamiltonian

We consider a system at zero temperature and of finite size,
referred to as the central region C, in contact with two macroscopic

reservoirs (see Figure 2). The central region consists of a finite square
lattice with N = Nx × Ny sites, and at each lattice site, there is one
electronic orbital and one localized spin. The electronic orbitals are
populated by spinful itinerant electrons that can tunnel in and out of
the reservoirs, also referred to as leads. The leads are coupled only to
the electronic degrees of freedom, i.e., there are no localized spins in
the reservoirs. Inside the leads, the electrons are assumed to be non-
interacting and spin-polarized, with the density set by the chemical
potential. Furthermore, in the central region, the electrons are
assumed to be non-interacting, although electron–electron
interactions are straightforward (but numerically demanding) to
include [15]. However, the itinerant electrons of the central region
interact with the localized magnetic moments via a local exchange
coupling, and the magnetic moments in turn interact among
themselves via various magnetic interactions. The Hamiltonian of
the composite system is

H t( ) � HC t( ) +HR t( ) +HCR, (1)
where a possible time dependence is explicitly indicated both for the
central region and for the reservoirs. This is necessary to initiate the
dynamics of the system. We now discuss each contribution to H
separately.

3.1 The central region

The Hamiltonian of the central region is HC(t) =He +Hs +Hs−e,
where He describes the itinerant electrons, Hs is the localized spins,
and Hs−e is the spin–electron coupling. These terms are respectively
given by

He � ∑
〈ij〉σσ′

c†iσ −tij1 + αij · τ( )
σσ′cjσ′ − B∑

i

ŝzi , (2)

Hs � −1
2
∑
〈ij〉

JijŜi · Ŝj − 1
2
∑
〈ij〉

Dij · Ŝi × Ŝj( ) − B∑
i

Ŝ
z

i −
K

2
∑
i

Ŝ
z

i( )2,
(3)

Hs−e � −g∑
i

Ŝi · ŝi. (4)

Here, c†iσ creates an itinerant electron at site i with spin projection σ,
the hopping amplitude between nearest-neighbor sites i and j
(denoted by 〈ij〉) is given by tij, αij accounts for spin–orbit
interactions, and B � Bẑ is an external magnetic field along the
z-axis. The electronic spin operator at site i is defined by
ŝi � ∑σσ′c

†
iστσσ′ciσ′, where τ denotes the vector of Pauli matrices.

The parameters Jij = Jji and Dij = −Dji provide the exchange
interaction and DMI [46, 47] between spins Ŝi and Ŝj, and K
quantifies an easy-axis single-ion anisotropy. The itinerant
electrons interact with localized spins via a local exchange
coupling of strength g. We note that in magnetic thin films,
skyrmions are often stabilized by the easy-axis anisotropy [35],
and an external magnetic field is not strictly necessary. However,
including a Zeeman term in the Hamiltonian provides an additional
physical mean to control the equilibrium magnetic state, and in
particular to tune the system between a ferromagnetic state and the
skyrmion crystal phase.

Depending on the symmetries of the system, the DMI vector Dij

can be of different forms. Assuming that the overall magnitude of
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the interaction is fixed at |Dij| = D, the spatial dependence typically
takes one of the following two forms:

Dij � D dij Bloch( )
Dij � D dij × ẑ . Néel( ). (5)

Here, dij is the vector between lattice sites i and j, and ẑ is a
normal vector to the two-dimensional lattice plane. The Néel-
type DMI gives rise to Néel-type (hedgehog) skyrmions and is
typically generated by the inversion symmetry breaking induced
at a surface. Therefore, the Néel-type DMI is most common in
single-layer or few-layer substrates since thicker materials tend to
restore the bulk inversion symmetry. On the other hand, the
Bloch-type DMI that commonly arises in systems with non-
centrosymmetric crystal structures gives rise to Bloch-type
(spiral) skyrmions. Even so, many bulk materials that support
Bloch-type skyrmions can be fabricated as thin-film samples,
while still hosting skyrmions [34].

In this work, we limit ourselves to a Bloch-type DMI, while
considering for computational simplicity a monolayer geometry for
the localized spins. Similarly, we focus on a Rashba-type spin–orbit
coupling of the form

αij � iαR dij × ẑ, (6)
where the parameter αR sets the overall magnitude of the
interaction. This reflects the fact that the forms of the
spin–orbit coupling and Dzyaloshinskii–Moriya interaction are
intimately related, such that to the lowest order in a strong
coupling expansion Dij ∝ αij [47]. We note that the
Hamiltonian HC can be generalized further by including both
a local on-site potential vi(t) for the itinerant electrons as well as a
complex hopping tije

iϕij , the phase of which encodes the
interaction with an external electromagnetic field [16]. It is
similarly straightforward to include a direct coupling between
the localized spins and external electromagnetic fields, e.g., via
the inverse Faraday effect. For the present work, such terms are
not of relevance and are therefore omitted.

3.2 The reservoirs and their coupling to the
central region

The leads are taken to be two-dimensional and semi-infinite (see
Figure 1) and are described by the Hamiltonian

HR t( ) �∑
ασ

HR
α,σ t( ), (7)

HR
ασ t( ) � tRα ∑

〈ij〉σ
a†iσ,αajσ,α +∑

iσ

vασ t( )a†iσ,αaiσ,α. (8)

Here, α ∈ {L, R} denotes the left (L) and right (R) lead, σ labels the
spin projection, and the parameter tRα is the hopping amplitude
within lead α. The hopping amplitude is related to the nominal
bandwidth by Wα = 4tRα, and vασ(t) is a time-dependent bias
measured from the chemical potential μ. The leads interact with
the central region via the Hamiltonian HCR � ∑ασH

CR
α,σ , where

HCR
Lσ � tL ∑Ny

iy�1
a†

1,iy( )σ,Lc 1,iy( )σ +H.c.[ ], (9)

HCR
Rσ � tR ∑Ny

iy�1
a†

1,iy( )σ,Lc Nx,iy( )σ +H.c.[ ]. (10)

Here, iy denotes the y-component of the site index i and runs over
the transverse dimension Ny of the system. For the left (right) lead,
the values of the x-component ix run backward (forward) along the
x-axis. The geometry of the system–reservoir setup is pictorially
illustrated in Figure 1, with semi-infinite and spin-polarized leads
coupled to the left and right edges of the central system, supporting a
spin-polarized current that interacts with the magnetic texture.
Furthermore, a schematic of the parameters relevant to the
transport setup and to support charge and spin currents is
shown in Figure 2.

4 Spin equations of motion

We now consider the system’s nonequilibrium dynamics, which
is initiated by applying a voltage bias to the reservoirs. Since the
radius of a typical skyrmion is ~ 100 nm [48], a full quantum
mechanical description of the spin texture is extremely challenging.
A commonly adopted strategy is then to resort to a classical
description of the spins, where Ŝi → 〈Ŝi〉 ≡ Si � Sni and |ni| = 1.
This limit is exact for S→∞ [49, 50] and considered to be a suitable
approximation already when S > 1 [35]. Taking the classical limit
leads to a semi-classical approximation for the coupled spin and
electron subsystems [15, 16], where the quantum electronic
Hamiltonian depends parametrically on the classical variables ni.
In this approximation, the system’s time evolution is, therefore,

FIGURE 2
Schematic illustration of the transport setup and the relevant parameters of the system–reservoir Hamiltonian. The leads have a common bandwidth
W and chemical potential μ and are connected to a central region of 20 × 40 sites comprising both electrons and localized spins via a nearest-neighbor
tunneling amplitude tL/R at the left/right edge. To initiate the skyrmion dynamics, a spin-dependent bias (VL↑ = −VR↑ and VL↓ = VL↓ = 0) is applied to
the leads.
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governed by two coupled differential equations, one for the classical
spins and one for the quantum mechanical electrons.

To obtain a dynamical equation for the localized spins, we start
from the Heisenberg equations of motion for the spin operators and
then take the classical limit. The result is a Landau–Lifshitz equation
of the form

dni

dt
� −ni × ∑

〈j〉
S Jijnj + Dij × nj( ) + B + SKniz( )ẑ + g〈ŝi〉⎡⎢⎢⎣ ⎤⎥⎥⎦, (11)

where the last term provides the coupling between the classical
spins and the instantaneous quantum average of the itinerant
electron spins. In the following, we absorb the factors of S into the
couplings, i.e., we define SJij → Jij and similarly for Dij and K, and
for simplicity, we assume Jij = J. As commonly done in
spintronics simulations, we add a small Gilbert damping to
the equations of motion to stabilize the dynamics, which
amounts to adding an extra term αni × (∂ni/∂t) to Eq. 11. The
equations of motion for the itinerant electrons are discussed in
detail in the next section.

5 Nonequilibrium Green’s functions

To describe the dynamics of the electrons, we use a
nonequilibrium Green’s functions (NEGFs) description
within the GKBA. NEGFs are a general and powerful
approach to nonequilibrium phenomena [51–55], to describe
the real-time dynamics of a system by exactly including external
perturbations with an arbitrary temporal dependence. Within
this theory, the time-dependent expectation values of any
single-particle observable, such as currents, densities and
magnetization, can be obtained from the one-particle, two-
time Green’s function

Gσσ′
ij z, z′( ) � −i〈T γ cHiσ z( ) cHjσ′ z′( )[ ]†{ }〉0. (12)

Here, the brackets 〈 · 〉0 denote an ensemble average with respect to
the thermal density operator ρ = e−βH/Z, where β = 1/kBT is the
inverse temperature, H is the equilibrium Hamiltonian, and Z = tr
e−βH is the canonical partition function. In the low-temperature limit
β→∞, the ensemble average reduces to a ground-state expectation
value. The operator cHiσ(z) is the annihilation operator of an itinerant
electron written in the Heisenberg picture with respect to the full
time-dependent Hamiltonian H(z), where z is a complex time
argument living on the Keldysh contour [52], and all operators
inside the brackets are time-ordered on the contour by the operator
T γ. As mentioned before, the indices i and j run over all lattice sites,
while σ and σ′ denote spin projections.

We note that within the semi-classical scheme discussed above,
the one-particle Green’s function depends parametrically on the
classical spin variables via the spin–electron coupling Hs−e.
Therefore, we should write Gσσ′

ij (z, z′) � Gσσ′
ij (z, z′; {Si}), but for

notational simplicity, we keep the dependence on Si implicit in the
following. In addition, we suppress the site and spin indexes of
Green’s function, with the implicit understanding that all quantities
are matrices in the site and spin space and only explicitly indicate the
time variables of G(z, z′). The equations of motion for the one-

particle Green’s function, the so-called Kadanoff–Baym equations,
can be written as [51]

i
d
dz

− h z( )[ ]G z, z′( ) � δ z, z′( ) + ∫
γ
ⅆ�zΣ z, �z( )G �z, z′( ). (13)

Here, h(z) is the time-dependent mean-field Hamiltonian and the
self-energy Σ(z, z′) contains all correlation effects beyond the
Hartree approximation. A strength of the NEGF formalism is
that non-interacting leads can be exactly incorporated in the
equation of motion for Green’s function of the central system
through the introduction of a so-called embedding self-energy
[56]. Denoting the correlation and embedding self-energies by Σc
and Σemb, respectively, the total self-energy can be written as Σ = Σc +
Σemb. We note that in the present case, the electronic Hamiltonian
contains no interaction terms, and therefore Σc = 0.

In the following, we consider a wide-band limit (WBL)
approximation to the embedding self-energy, obtained when the
hopping amplitude inside the leads tends to infinity, while the ratio
t2Rα/tα remains fixed. In the formal treatment, this approximation is
only performed in the extended direction of the leads (the one
perpendicular to the system edge). In physical terms, it amounts to
the assumption that the density of states of the leads is constant over
the bandwidth of the central system. Performing the WBL
approximation results in the following expression for the
embedding self-energy [20, 30, 57, 58]:

Σ<
emb t, t′( ) � i∑

α

Γαs t( )s t′( )e−i∫t′

t
Vα �t( )d�t ∫ dϵ

2π
f ϵ − μ( )e−iϵ t−t′( )

ΣR
emb t, t′( ) � − i

2
δ t − t′( )s t( )s t′( )∑

α

Γα,

where the superscripts denote the so-called lesser (< ) and retarded
(R) components of the self-energy [54]. Here, s(t) is a smooth
function used to equilibrate the central system in the presence of
the leads, Vα(t) is the time-dependent bias in lead α, and f(ϵ) is the
Fermi–Dirac distribution.

5.1 Generalized Kadanoff–Baym ansatz

Provided that we have full knowledge of the self-energy Σ, the
Kadanoff–Baym equations are an exact reformulation of the many-
body problem. However, in practice, Σ needs to be approximated,
which is commonly done using the diagrammatic many-body
perturbation theory. A computational difficulty met with the full
Kadanoff–Baym formalism is that the numerical solution of Eq. 13
scales cubically with the number of time steps, which is a
consequence of the memory integral (the right-hand side of Eq.
13) accounting for the full history of the dynamic evolution.
Calculations with double-time Green’s functions, as in Eq. 12, are
highly expensive and scale unfavorably with basis size and
simulation time. Since skyrmions typically occur on large lattice
distances of 100 nm [9] and move on typical time scales of 1 ps, the
simulation of interacting spin–electron systems through a
straightforward use of the Kadanoff–Baym equations is
prohibitive. A significant improvement in the time-step scaling
can be achieved by employing the so-called GKBA [17], where
only the time diagonal of Green’s function needs to be time-evolved.
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This approximation was originally derived for equilibrium systems
and in the weak scattering limit but has been found to work well also
out of equilibrium [17–30]. Within the NEGF–GKBA and its recent
reformulation as a time-linear scheme [25, 26], it is currently
possible to simulate the long-time dynamics of electronic systems
with a basis size on the order of 100 orbitals [28].

The GKBA for electronic degrees of freedom is achieved by the
following factorization [17]:

G< t, t′( ) � iGR t, t′( )G< t′, t′( ) − iG< t, t( )GA t, t′( ), (14)
where the superscript A denotes the advanced component of Green’s
function. Using transformation rules introduced by Langreth [59],
we can project Eq. 13 from the Keldysh contour to the physical time
axis and obtain a dynamical equation for G<(t, t′). When taking t′→
t and using the GKBA, the equation for G<(t, t′) reduces to an
equation of motion for the one-particle density matrix ρ(t) = iG<(t, t)
of the form

∂ρ t( )
∂t

+ i h t( )ρ t( )[ ]
� − ∫t

t0

d�tΣ< t,�t( )GA �t, t( ) + ∫t

t0

d�tΣR t,�t( )ρ �t( )GA �t, t( )[ ] +H.c.

(15)
To close the equation for ρ, we further assume that
GR(t, t′) � −iθ(t − t′)T e

−i∫t

t′
d�t [h(�t)+iΓ/2]

, with the interaction
between the leads and the central region adiabatically turned on
before the bias is applied. Here, Γ = ∑αΓα accounts for the presence
of the leads [20].

6 Approximate wide-band limit

Introducing the GKBA improves the time scaling of the
Kadanoff–Baym equations, but solving the equation of
motion for ρ still scales quadratically with the number of
time steps. Since we are interested in large systems with both
fast and slow degrees of freedom, it is useful to make further
approximations to reduce the time scaling. To this end, and
inspired by other work on open systems [29, 30, 57, 58], we
introduce an AWBL based on an approximation to the collision
integral (the right-hand side of Eq. 15). As demonstrated below,
this prescription offers a good trade-off between computation
time and accuracy and allows us to simulate large systems as
required to describe skyrmion textures. The proposed AWBL
amounts to neglecting the spin–electron coupling in the
advanced Green’s function GA, such that

GA t, t′( ) � iθ t′ − t( ) �T e
−i∫t

t′
d�t He+Hs−e �t( )+iΓ/2[ ] ≈ iθ t′ − t( )e−i t−t′( ) He+iΓ/2( ).

(16)

With this approximation, the advanced Green’s function
becomes a function of the time difference, GA(t, t′) =
GA(t − t′). As a consequence, the entire collision integral
becomes a function of t − t′, only a single evaluation needs to
be performed at each time step, and the time-step scaling
becomes linear (further technical details can be found in
Supplementary Material S1). In general, the AWBL is a quite

drastic approximation, but, as demonstrated below, it works
rather well for the present system. One reason for this is that
the spin–electron coupling only constitutes a higher-order
correction to the embedding self-energy since the spins do not
couple directly to the leads. A second reason is that for most of
the time evolution, and in the dominant region of the central
system, the spin texture is constant both in time and space.

7 Skyrmion indicators

Before discussing the response of magnetic skyrmions to
electronic currents, we define the observables used to determine
the presence of a magnetic skyrmion in a classical spin texture. Since
the spins live on the unit sphere S2 and the central region can be
approximately compactified to the torus T2 (assuming a
ferromagnetic ordering along the edges), a topological charge
measuring the winding number of the map S: T2↦S2 can be
defined. On a lattice, it can be shown that a suitable definition of
this topological charge is given by [60]

Q � 1
4π

∑
jkl{ }∈Δ

Ωjkl, (17)

where the sum is over the triangulated lattice and Δ is the set that
contains the indexes for the lattice sites for every triangle in the
lattice. The solid angle Ωjkl is defined by

exp iΩjkl/2( ) � ρ−1jkl 1 + Sj · Sk + Sk · Sl + Sl · Sj + iηjklSj · Sk × Sl( )( ),
ρjkl �

�����������������������������
2 1 + Sj · Sk( ) 1 + Sk · Sl( ) 1 + Sl · Sj( )√

,

(18)
and the function ηjkl � sgn[(Sj · (Sk × Sl)] ensures that the last
term is positive. Geometrically, the topological charge sums up the
solid angles spanned by all spin triplets {jkl}, which, when divided
by the surface 4π of the unit sphere, gives the integer winding
number (for appropriate boundary conditions). The solid angle
Ωjkl serves as an indicator of the extent to which the spins twist.
Specifically, within the core of a skyrmion, Ωjkl has a large
magnitude, gradually diminishing radially from the core. The
extent of twisting at a specific location can be conceptualized as
the skyrmion density at that particular site, with this density being
invariably distributed across multiple sites. Furthermore, in the
presence of a skyrmion within the system, we define the center of
mass as

Rcm � 1
M
∑Nx−1

ix�2
∑Ny−1

iy�2
ρix,iy

ix
iy
( ). (19)

The expressions for M and ρix,iy are respectively given by

M � ∑Nx−1

ix�2
∑Ny−1

iy�2
ρix ,iy, (20)

ρix ,iy � |Ω ix ,iy( ), ix+1,iy( ), ix+1,iy+1( ) +Ω ix,iy( ), ix,iy+1( ), ix+1,iy+1( )|. (21)

In Eqs 19, 20, the index ix (iy) ranges between 2 and Nx − 1 (2 and
Ny − 1) rather than, as intuitively expected, between 1 and Nx

(1 and Ny). Observations of spin oscillations at the periphery of the
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central region motivate the exclusion of these edges in the
determination of the skyrmion’s center of mass. The rationale
behind these oscillations and the specific way we perform the site
exclusion are further detailed in Section 8.1.

8 Current-driven skyrmion motion

We now consider the motion of skyrmions generated by a
current density in the itinerant electron system, in turn driven by
an external bias. However, first, we need to prepare the system in
a state featuring a skyrmion, a state that may not necessarily
correspond to the ground state of the semi-classical system. This
entails the selection of a suitable initial spin configuration,
subsequently coupled in a self-consistent manner to the
electron system. The interaction with the leads is slowly
turned on in the time interval t < τ using the contact function
s(t) = sin2(πt/2τ). After time t = τ, a bias is applied, here
considered to be of the form

vα t( ) � θ t − τ( )
V if α � L and σ � ↑
−V if α � R and σ � ↑
0 otherwise

⎧⎪⎨⎪⎩ . (22)

This bias generates a spin current through the central system. In the
simulations below, we fix the energy unit by setting the hopping tij =
ts = −1 and take Z = 1.

8.1 Benchmarks for the approximate wide-
band limit and the role of damping

As a primer for our discussion of disorder effects on skyrmion
dynamics, we briefly investigate the performance of the AWBL in
the absence of disorder. For this purpose, we compare the dynamics
obtained within the WBL and AWBL of a small central region
denoted by C16, consisting of a 4 × 4 cluster, as illustrated
in Figure 3A.

We start from the ground state of the isolated region C16

and gradually connect the system to the leads in the time
interval t ∈ [0, 800] measured in units of Z/ts. This prepares
the stationary initial state of the fully connected system. At
time t = 800, a symmetric and spin-polarized bias of the form
shown in Eq. 22 is then applied. The subsequent part of the
simulation, i.e., for times t > 800, is the one relevant for the
skyrmion dynamics to be discussed later. To compare the
performance of the WBL and AWBL, we choose as
indicators the spin current and the spin-up density at a
given site. The representative results are shown in Figures
3B–D and indicate that the agreement between the WBL and
AWBL varies noticeably with the strength of the spin–electron
coupling g and the lead–device connection γ.

It is useful at this point to make a couple of remarks about the
damping term in the spin dynamics. The results given in Figures
3B–D are obtained with a large Gilbert damping of α = 3.0, which

FIGURE 3
Benchmarks for the approximate wide-band limit. (A) Initial relaxed configuration of a 4 × 4 spin texture interacting with a corresponding layer of
electrons. (B–D) Spin current IR,↑ and electronic spin density ρ11↑ of the lattice site encircled in green in (A), for different values of γ and g, as obtained
within the wide-band limit (WBL) and approximate wide-band limit (AWBL). Due to a large value of the spin damping α, the spin texture is approximately
the same for all cases and throughout the time evolution. The parameters used are B= 0.05, K =0.6, α= 3, αR=0, J= 0.5,D= 0.4, τ= 800, μ= 0, and
V = 3. The color on the spins indicates their z-component, while the arrows show their direction in the xy-plane. The values of g and γ are given in
each panel.
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results in a spin texture that remains essentially stationary during the
time evolution. Therefore, these comparisons mainly concern the
regime of electron dynamics in the presence of a static magnetic
background. Using the initial spin of Figure 3A in GA instead of
neglecting Hs−e would provide a very good agreement between the
AWBL and the WBL. Strictly speaking, one can modify the AWBL
to include a fixed spin texture in GA instead of neglecting it
completely and still retain time-linear scaling. However, for the
time-dependent disorder simulations discussed later, the spin
texture changes significantly in time due to the skyrmion motion.
We have verified numerically that, replacing in GA the exact
contribution from the time-evolving texture with a static one
(chosen at any time during the time evolution) is no better than
using a GA with zero spin–electron coupling. This is why no spin
configuration is included in GA in Eq. 16 or later on in the dynamics
in the presence of spin disorder.

The purpose of using a large α in Figure 3 is to attain a
stationary initial state before the bias is applied. In Figure 3, such
large damping is maintained throughout the whole time

evolution (i.e., during the lead attachment and afterward,
when the bias is applied) for consistency and to focus on the
electronic behavior. However, for the results obtained later
(Section 8.2 and afterward, where we consider skyrmion
dynamics in central regions of 20 × 40 sites), the damping is
set small (α = 0.1) in order not to influence the system’s intrinsic
dynamics but still facilitate the adiabatic preparation of the initial
state. In this respect, we have found that, even when evolving the
system with no bias, and using very small or no damping after
fully connecting the leads, there is a very slow build-up of
oscillations in the current and the spin densities. Such
oscillations primarily occur in the sites at the edges of the
central region (and especially at the sites in contact with the
leads). This holds both for the small cluster shown in Figure 3A
and for the larger systems studied later and indicates that, when
the bias is applied, the system has not yet reached in full the
ground state in the presence of the leads due to the very complex
energy and fluctuating landscape provided by the interaction of
the electrons with the classical spins. However, in the spirit of

FIGURE 4
Skyrmion motion in response to electronic spin currents. (A) Center of mass motion of the skyrmion and (B) initial spin configuration at t = 200. The
highlighted region corresponds to the area shown in Figures 5–7. The parameters used are g = 1, B = 0.05, K = 0.6, α = 0.1, αR = 0, J = 0.5, D = 0.4
(corresponding to the Bloch-type DMI), γ = 0.2, τ = 1,500, μ = 0, and V = 2. The color of the spins indicates their z-component, while the arrows display
their direction in the xy-plane.

FIGURE 5
Skyrmionmotion in the presence of a small impurity on the skyrmion path. (A)Center of massmovement of the skyrmion and (B) some snapshots of
the z-component of the spins in the highlighted area in Figure 4. The parameters used are g = 1, B = 0.05, K = 0.6, α = 0.1, αR = 0, J = 0.5, D = 0.4
(corresponding to the Bloch-type DMI), γ = 0.2, τ = 1,500, μ = 0, and V = 2. The color of the spins indicates their z-component.
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having a microscopic current inducing the skyrmion motion, it is
still meaningful to apply a bias to this configuration and interpret
the oscillations as physical in character. At the same time, these
oscillations affect in a rather artificial way the estimate of the
skyrmion’s center of mass Rcm. Accordingly, in the results
presented in the next sections, Rcm is calculated using Eq. 19,
i.e., without including the contribution of the peripheral sites of
the 20 × 40 region.

Coming back to the results shown in Figures 3B–D, an
interesting feature is that the agreement between the AWBL and
WBL spin currents, for small γ, is generally better than the
agreement between the spin densities. While we do not have a
clear explanation for this, we note that this trend is confirmed in
additional simulations (not shown), where γ is varied at constant g
and vice versa. To summarize, our results suggest that the AWBL
produces fairly accurate electronic and spin currents, overall in good
agreement with the full WBL. Therefore, it constitutes a microscopic
and semi-quantitative method to investigate skyrmion dynamics at

low computational cost, appropriate for both transient and steady-
state regimes.

8.2 Current-induced motion

Having shown that the AWBL is in good quantitative
agreement with the WBL for small systems, we now employ it
to describe skyrmion motion in systems beyond the scope of the
WBL. These results provide a useful benchmark for the
discussion in later sections, where the effect of magnetic
impurities on skyrmion motion is analyzed. To obtain the
reference results, we consider a central region with 40 × 20
sites and investigate the dynamics in response to an applied
bias. These results are henceforth referred to as “base case.” In the
base case, as well as in the impurity studies below, a potential of
strength V = 2 is applied in the leads, and the coupling between
the system and leads is of strength γ = 0.2.

FIGURE 6
Skyrmion motion in the presence of a small impurity near the skyrmion path. (A) Center of mass movement of the skyrmion and (B) some snapshots
of the z-component of the spins in the highlighted area of Figure 4. The parameters used are g = 1, B = 0.05, K = 0.6, α = 0.1, αR = 0, J = 0.5, D = 0.4
(corresponding to the Bloch-type DMI), γ = 0.2, τ = 1,500, μ = 0, and V = 2. The color of the spins indicates their z-component.

FIGURE 7
Skyrmion motion in the presence of an extended impurity. (A) Center of mass movement of the skyrmion and (B) some snapshots of the z-
component of the spins in the highlighted area in Figure 4. The parameters used are g= 1, B= 0.05, K = 0.6, α= 0.1, αR= 0, J= 0.5,D= 0.4 (corresponding
to the Bloch-type DMI), γ = 0.2, τ = 1,500, μ = 0, and V = 2. The color of the spins indicates their z-component.
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The system starts off with a relaxed skyrmion texture in the
center (see Figure 4B) and in response to the bias starts to drift
toward the right with a slight additional downward movement (see
Figure 4A). As seen from the figure, the velocity in the x-direction is
not constant but rather ramps up, then slows down, and finally starts
to ramp up again. While the dominant rightward motion is due to
the spin current, the downward force is due to the so-called
skyrmion Hall effect [9]. Additionally, there are some small-scale
oscillations, which are especially visible in the y-direction. These
oscillations could be due to the discrete nature of the underlying
lattice since the skyrmion has a preferred equilibrium. When it
moves between lattice sites, the skyrmion form gets distorted but
returns to its original configuration when it arrives at a new site. We
finally note that it takes some time for the skyrmion to pick up speed
as the current goes through the system, which is a general trend in
our simulations. This is indicative of the presence of a finite
skyrmion mass, which has been discussed in previous studies [61,
62]. In particular, it was recently proposed that the magnitude of the
skyrmion mass is affected by the interactions between localized
moments and free electrons [37, 38], consistent with the
present findings.

9 Disorder effects

Knowing the trajectory of the skyrmion in the base case, we can
now investigate the effects of placing impurities in its path. In the
panels of Figures 5–7 showing the spin configuration, the positions
of the impurities are marked in green. Here, we restrict ourselves to a
simple form of impurity, corresponding to a reduction in the
symmetric exchange interaction by J → J/2 between the impurity
site and its nearest neighbors. Therefore, it is expected that the
skyrmion will be hindered by a smaller interaction. This change is
effected at t = 1,400 in order not to disturb the system before the bias
is applied at t = 1,500.

9.1 Case 1: A small impurity on the
skyrmion path

As a typical example of a small magnetic impurity, we consider
an impurity cluster consisting of a square of four lattice sites (see
Figure 5). One possible realization of this form of disorder is the
presence of adsorbate atoms in the center of these four lattice sites.
The impurity is placed right in the path of the skyrmion, slightly to
the right and below the skyrmion’s initial position.

The center of mass movement of the skyrmion in response to a
spin current is shown in Figure 5. In the x-direction, it seems like the
skyrmion does not feel the effect of the impurity until it is on top of it
since the movement of the center of mass is quite similar to the base
case before t ~ 1,700. However, a careful comparison reveals that it
moves slightly slower. In contrast, the skyrmion starts to pick up
speed in the y-direction as it approaches the impurity, indicating
that the velocity in the x-direction is transferred to a downward
motion. After the skyrmion has entered the impurity, it gets pinned
and struggles to escape. More specifically, between t = 1,700 and t =
2,000, the skyrmion is stuck to the impurity and can only move
around as long as some part of it is still on the impurity. For a few

times during the center of mass movement (see Figure 5), there were
bumps, which indicate that the skyrmion gathered velocity to try to
escape but was pulled back again by the impurity. Finally, at t ~
2,000, the skyrmion managed to escape and move past the impurity.
The dynamics shown in Figure 5 clearly illustrates the advantage of a
microscopic description, where the motion of the skyrmion can be
tracked atom by atom. During the dynamics, the shape of the
skyrmion changes, and the direction of motion changes several
times, effects that are not possible to capture with a Thiele-type
description. Furthermore, it is quite reasonable to expect that the
observed dynamics is a direct result of the motion of the itinerant
electrons, especially at the skyrmion boundary, where the local spin
changes must take into account the redistribution of the electronic
spin density during the time evolution.

9.2 Case 2: A small impurity near the
skyrmion path

Next, we shift the impurity position two lattice sites upward
compared to the previous section (Figure 6), such that the impurity
is now slightly above the skyrmion’s path. At the beginning of the
dynamics, the center of mass movement seems very similar to the
previous case, with the velocity along the x-direction slightly
reduced compared to the base case and a significant downward
movement. However, in the present case, the movement does not
force the skyrmion on top of the impurity, and the impurity pinning
is avoided. In the center of the mass movement shown in Figure 6, as
well as in the snapshots at t = 1,700 and t = 1,800 shown in Figure 6,
the skyrmion is seen to move beneath the impurity. It is likely that, if
the system was extended further in the y-direction, the skyrmion
would continue its motion downward. However, in the present case,
the edge of the system prevents this since our simulations suggest
that the repulsive force induced by the edges makes the skyrmion
recoil upward in the y-direction. This illustrates, on a microscopic
level, the importance of considering the track width when designing
efficient racetrack memories. If the width of the track is too small,
the skyrmion might not be able to get around impurities, while if the
width is too large, skyrmions can be deflected by impurities and
substantially deviate from their path.

Although the skyrmion’s core, shown in blue in Figure 4,
comprises only 4 × 4 spins, a rotation of the xy-components of
the spins away from the ferromagnetic background can be observed
in an area extending up to 12 × 12 sites. This indicates that the
effective skyrmion size is much larger than the central 4 × 4 region,
which in turn implies that the skyrmion feels the presence of the
edge much earlier that would be expected from only
considering its core.

9.3 Case 3: A larger impurity configuration

As an example of dynamics in the presence of a more extended
magnetic impurity, Figure 7 shows the center of mass motion of the
skyrmion in a system containing a columnar impurity that covers
almost the entire lattice in the y-direction. Again, the impurity is
only two lattice site thick, but this time with only four sites at the top
and the bottom left unperturbed. The characteristic downward
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bump in the center of mass motion along the y-direction is also
observed here, but it is twice as big as in the previous cases. As shown
in Figure 7, the velocity in the y-direction is large before the
skyrmion is suddenly halted. This detail, together with the
observation that at t = 1,900 the skyrmion is slightly smaller,
suggests that a small skyrmion could be annihilated even by a
small impurity. After t = 1,900, the skyrmion recoils upward, but
the collision with the top does not seem as severe as in the case
shown in Figure 5. This is likely because the velocity is lower and the
skyrmion is already stuck.

The observed motion along the vertical direction is most likely
aided by the lower wall. However, the impurity likely also plays an
important role since we have observed that it is hard for the
skyrmion to escape once it moves on top of the impurity. In
addition to the vertical motion, Figure 7 also shows that the
skyrmion keeps wiggling along the x-direction while moving. In
particular, the snapshot at t = 1,900 strongly indicates that this
movement is due to the skyrmion expanding to the right.
Subsequently, for times after t ~ 2,100, the skyrmion shrinks and
expands in a quasi-steady state.

9.4 Summary of the results

In summary, the results of Figures 5–7 show that by placing
impurities in selected places along a skyrmion’s path, it is
possible to engineer the skyrmion’s trajectory and to steer
skyrmions in the desired direction in logic devices [12]. At the
same time, it is also clear that, in order to accurately engineer the
dynamics of the desired skyrmion in the presence of impurities
and provide some conceptual guidance for the experimental
realization of skyrmion architectures, a microscopic and
explicit equal-footing account of the behavior of itinerant
electrons and localized spins is of high relevance.

10 Discussion and outlook

In this work, we have presented a recently introduced method
to deal with magnetic skyrmions, where a skyrmion magnetic
texture made of classical spins is embedded in a background of
quantum electrons. We considered the skyrmion dynamics in
quantum transport geometry, where a central region of coupled
electrons and spins is connected to electron reservoirs. Our
treatment is based on a two-component description where the
electrons are treated via NEGFs, coupled to classical spins
governed by an LLG equation.

To describe the skyrmion motion in large systems, we
introduced an approximate approach to include the effect of the
electronic reservoir coupled to the central system. This so-called
AWBL shows a satisfactory level of agreement with the full WBL
approach. Similar to other schemes in the literature, it is a time-
linear scaling method and, in addition, has a very advantageous
scaling prefactor of great convenience to deal with systems
of large size.

This approach was used to investigate the effects of magnetic
impurities on the current-induced motion of magnetic skyrmions.
Our results show that it is possible to characterize at the atomic level

processes such as skyrmion scattering, recoil, drift, and trapping in
disordered samples. This is a subject of high relevance since
understanding how to tailor the disorder level of a given sample
is crucial in order to control skyrmion dynamics.

A natural extension of this work is to take into account the
additional correlation effects arising from electron–electron
interaction. This would bring the simulation closer to realistic
systems, where correlations between the electrons could, e.g., lead
to destabilization of a skyrmion or introduce effects competing with
the disorder. In a different direction, the results obtained here can be
used to benchmark other methods that deal with electron and
localized spins. For example, one can imagine validating methods
that, still in a spin-only framework, go beyond the standard LLG
equation [37, 38].

Finally, we note that the methods presented here open the
door for simulations of the intertwined spin–electron dynamics
of small but realistic nanoscale systems. This provides a new
approach to investigate the ultrafast dynamics of magnetic
systems with general noncollinear orders, as initiated by
ultrashort laser or current pulses [16, 63]. Apart from its
importance for skyrmionic systems, the presented method will,
therefore, be of large relevance to describe the coupled dynamics
of spins, electrons, and lattice vibrations in spintronic devices
and for material engineering, thereby helping facilitate a
microscopic understanding of driven magnetic materials.
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