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Introduction: Synchrotron radiation micro-computed tomography (SRμCT) has
been used as a non-invasive technique to examine the microstructure and tissue
integration of biodegradable bone implants. To be able to characterize
parameters regarding the disintegration and osseointegration of such
materials quantitatively, the three-dimensional (3D) image data provided by
SRμCT needs to be processed by means of semantic segmentation. However,
accurate image segmentation is challenging using traditional automated
techniques. This study investigates the effectiveness of deep learning
approaches for semantic segmentation of SRμCT volumes of Mg-based
implants in sheep bone ex vivo.

Methodology: For this purpose different convolutional neural networks (CNNs),
including U-Net, HR-Net, U²-Net, from the TomoSeg framework, the Scaled U-
Net framework, and 2D/3DU-Net from the nnU-Net frameworkwere trained and
validated. The image data used in this work was part of a previous study where
biodegradable screws were surgically implanted in sheep tibiae and imaged using
SRμCT after different healing periods. The comparative analysis of CNN models
considers their performance in semantic segmentation and subsequent
calculation of degradation and osseointegration parameters. The models’
performance is evaluated using the intersection over union (IoU) metric, and
their generalization ability is tested on unseen datasets.

Results and discussion: This work shows that the 2D nnU-Net achieves better
generalization performance, with the degradation layer being the most
challenging label to segment for all models.
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1 Introduction

Synchrotron radiationmicro-computed tomography (SRµCT) is
a powerful technique to characterize a plethora of different materials
non-invasively in 3D [1–3] Magnesium (Mg)-based alloys are one
such material class that is increasingly researched using SRµCT [4].
Mg-based alloys are researched in particular as novel materials as
bone implants and as stents, because of their biocompatibility and
biodegradability [5–7]. The 3D and high-resolution nature of
SRµCT in this context enables studying both the material
microstructure, as well as their integration into the surrounding
tissue and morphology. Quantities of interest include degradation
rates (DR), bone-to-implant contact (BIC), and relative bone
volume (BV/TV) [8–12]. In order to extract such quantitative
information from the 3D images, a prior image segmentation,
i.e., a pixel-/voxel-wise classification, is required [13, 14].
However, in some cases, this step represents a major bottleneck,
as mapping the structures into labels through the image greyscales is
difficult with standard automated techniques [15]. In such cases,
machine and deep learning algorithms, specifically convolutional
neural networks (CNN) can be employed [10, 16–22].

Over time, several CNN architectures have been developed and
refined, leading to significant advancements in deep learning
[23–25]. The ‘U-Net’, introduced by Ronneberger et al. [26], was
specifically designed for biomedical image analysis and adopts the
Fully Convolutional Network concept proposed by Long et al. [27].
The U-Net architecture has demonstrated promising results across a
wide range of semantic segmentation tasks [28–31]. This success has
sparked further developments, including the framework ‘Scaled
U-Net’ by Baltruschat and Ćwieka et al. [32], which includes a
nine-axis prediction fusing feature for the specific use of segmenting
biodegradableMg-based bone implants. The ‘nnU-Net’ [33] is a self-
configuring U-Net-based framework with automized preprocessing,
network architecture, training, and post-processing for any two-
dimensional (2D) or 3D segmentation task. The nnU-Net has
achieved top rankings in challenges such as the Medical
Segmentation Decathlon [34] and the International Symposium
on Biomedical Imaging (ISBI) Challenge. The ‘U2-Net’, developed
by Qin et al. [35], has a nested U-Net architecture with partial
encoders for the detection of salient objects in image data. It is
designed to address the limitations of existing deep learning
architectures for semantic segmentation and was also used as a
method for the segmentation of biomedical data [36]. This
architecture has been evaluated on various benchmark datasets
and compared with other state-of-the-art methods, including the
original U-Net architecture. Previous studies have shown that the
U2-Net outperforms the U-Net in terms of segmentation accuracy,
particularly for images with complex structures and fine details [35,
37]. Another common architecture is the ‘HR-Net’ which was
initially designed to address the problem of human pose
estimation [38]. In this sense, the model proposes the processing
of high-resolution images by blocks that connect high-to-low
resolutions in parallel. The HR-Net has achieved good results for
semantic segmentation in various applications and domains,
including state-of-the-art performance on the LIP [39] and
Cityscape [40] datasets.

This study focuses on exploring and comparing the application
of deep learning techniques for the semantic segmentation of ex vivo

SRμCT volumes of Mg-based implants in sheep bone. Specifically,
screws made of ZX00, a Mg alloy containing < 0.5 wt% Zn and <
0.5 wt% Ca, were implanted in the diaphysis, epiphysis, and
metaphysis of sheep tibiae [11]. SRµCT imaging was conducted
following sacrifice of the animals after healing periods between 4 and
24 weeks. To extract the required quantitative information, the data
sets should be classified into residual (metallic) material, implant
degradation layer, mineralized bone tissue, and background. The
U-Net, HR-Net, U2-Net, Scaled U-Net, and the 2D and 3D nnU-Net
models are trained and validated against ground truth data. The
training and validation process of the U-Net, HR-Net, U2-Net are
carried out using the TomoSeg framework [41]. The intersection
over union (IoU) metric, a commonly used benchmark in such cases
[42], is employed to evaluate the performance of the models.
Subsequently, the trained models are tested on unseen datasets.
Furthermore, the predicted results are used to calculate degradation
and osseointegration parameters, allowing for the determination of
the relative error between the ground truth and predicted
segmentations.

2 Materials and methods

2.1 Animal experiments

The experimental methods are described in more detail in
Marek and Ćwieka et al. [11].

2.1.1 Material production
The ZX00 alloy was made under a shielding gas atmosphere

using ultra-high-purity Mg, Zn, and, with a nominal composition
of < 0.5 wt% Zn and < 0.5wt.% Ca at 750°C, as described in
Holweg et al. [43]. Rods with a diameter of 6 mm were indirectly
extruded at 345°C. The material was produced by ETH Zürich and
Cavis AG (Dübendorf, Switzerland). ZX00 screws measuring
16 mm in length and 3.5 mm in diameter were manufactured
by Wittner (Ernst Wittner GmbH, Vienna, Austria). The
process was performed without lubrication and with
polycrystalline diamond tools to avoid cross-contamination and

TABLE 1 Overview of samples on which SRµCT image acquisition was
performed at P05 and P07.

Implantation
site

Healing time/
weeks

# of
samples

Beamline

Epiphysis

4 1

P07

6 2

12 2

Metaphysis

4 1

6 1

12 1

Diaphysis

6 3

P0512 3

24 3
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corrosive attacks. Subsequently, the screws were cleaned in an
ultrasonic bath with acetone and dried at room temperature in a
clean-room atmosphere. The screws were sterilized using gamma
radiation at a dose of 29.2 kGy [43].

2.1.2 Animal experiments
The animal trials (Permit Numbers: BMWFW-66.010/0073-

WF/V/3b/2015 and BMBWF-66.010/0107-V/3b/2019) that served
as the basis for this work were conducted with the approval of the
Austrian Federal Ministry for Science and Research. The work
adhered to the guidelines outlined by the European Convention
for the Protection of Vertebrate Animals Used for Experimental and
Other Scientific Purposes. In this trial, ZX00 screws were implanted
into the tibiae of sheep. Surgical procedures involved creating
incisions of approximately 2–3 cm in the animal’s skin at the

diaphysis, distal medial epiphysis, and metaphysis regions. After
healing time intervals of 4, 6, 12, and 24 weeks, the animals were
euthanized, and their respective tibiae containing the screws were
dissected from the proximal, shaft, and distal parts [11].

2.1.3 Ex vivo SRµCT data acquisition
The SRµCT images were acquired at the µCT endstations of the

P05 imaging beamline (IBL) [44] and the P07 high energy material
science (HEMS) beamline [45]. The beamlines are operated by Hereon
at the PETRA III storage ring at the Deutsches Elektronen-Synchrotron
(DESY) in Hamburg, Germany. An overview of the imaged samples at
the aforementioned beamlines is shown in Table 1. Moreover, Table 2
summarizes key scanning parameters from the experiments at both
beamlines. Imaging was performed by rotating off-center ~ 360°. At
both endstations, a scintillator made of cadmium tungstate (CdWO4)
was used to convert the incoming X-rays to optical light, which was
further magnified by an objective lens (×5 for the samples imaged at
P05 and 10x for the samples imaged at P07). The visible spectrum was
then detected by cameras with a CMOS (complementary
metal–oxide–semiconductor) sensor. The tomographic reconstruction
was performed in a MATLAB (The MathWorks Inc., USA) framework
[46, 47]. For tomographic reconstruction, the filtered back-projection
(FBP) algorithm was employed using the ASTRA toolbox for back-
projection [48, 49].

2.1.4 Preparation of the SRµCT data
The SRµCT volumes were divided into three groups: training/

validation, testing, and prediction. Information about each of these
groups can be seen in Table 3. The samples from the epiphysis and
metaphysis explants were used for training and validation, and
testing, while the diaphysis explants were used for prediction. In
this sense, the training and validation dataset contained a total of six
samples from different healing times so that the CNNs could be
trained considering the different degradation stages of the Mg
implants. The testing dataset was composed of two samples that
were not used for training and validation to prevent a biased

TABLE 2 Overview of the SRµCT scanning parameters for both beamlines.

Parameters Beamline

P05 P07

Energy/keV 50 60

Exposure time/ms 120 200

Sample-detector distance/mm 40 400

Camera/pixels x pixels CCD (7,920 × 6,004) CCD (6,144 × 6,144)

Number of projections 10,001 10,400

Dimension of acquired projections/pixels 7,920 × 3,801 6,144 × 2,701

Effective pixel size/µm 0.92 1.27

Pixel size after 3x binning/µm 2.76 3.79

Field of view/mm H: 7.3 H: 7.8

V: 3.5 V: 3.4

Dimensions after reconstruction/pixels 2000 × 2000; 2,500 × 2,500; 2,640 × 2,640 3,000 × 3,000

TABLE 3 Overview of the datasets used in this work. The SRµCT scans were
divided into different sets, which served as input to the CNN architectures
for training/validation, testing, and prediction.

Dataset
type

Implantation
site

Healing
time

# of
samples

Training/
validation

Epiphysis 4 1

6 1

12 2

Metaphysis 4 1

6 1

Testing Epiphysis 6 1

Metaphysis 12 1

Prediction Diaphysis 6 3

12 3

24 3
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prediction in the testing phase. Prior to training/testing/validation,
all the datasets were denoised with an iterative non-local means filter
[50] and the grayscale values were linearly normalized to a [0, 1]
range. An example of the normalized values for each label can be
seen in Supplementary Appendix Figure SA1, for data from each
beamline. Moreover, image quality metrics such as signal-to-noise
ratio (SNR) and contrast-to-noise ratio (CNR) were calculated to
compare the training/validation and test datasets with the datasets
used for prediction, since the images originated from different
sources, i.e., with different experiment setups. These results can
be seen in Supplementary Appendix Tables SA1, SA2.

2.1.5 Segmentation of the ground truth data
The ground truth data of the datasets for training/testing and

validation was obtained using the software Avizo 2021.1 (FEI SAS,
Thermo Scientific, France). The ZX00 volumes were segmented into
four labels, namely, residual material (non-corroded alloy), degradation
layer (corrosion products around residual material), bone tissue
(mineralized tissue), and background (all remaining features). An
illustrative example of the segmentation can be visualized in
Figure 1. This process was done semi-automatically using the
watershed algorithm to obtain the residual material and degradation
layer labels, which were then locked to obtain the bone tissue label
through an automatic threshold. All the segmentations went through
manual corrections to obtain reliable information for the quantifications
which will be further calculated. It is important to point out that these
segmentations can only approximate the ground truth. Therefore, we
expect scores below 100% (as long as overfitting is avoided), in particular
for the degradation layer which has the greatest uncertainties.

2.2 Training/validation of the CNN models

Six different CNN architectures from three frameworks were
trained to compare the performance of these models for the
semantic segmentation of the SRµCT volumes. All models were
trained and validated using a 4-fold cross-validation [51]. The
training/validation of the 2D implementations of the U-Net, the
HR-Net, and the U2-Net were performed using the framework

TomoSeg [41, 52]. Initially, different image input sizes (512 ×
512, 768 × 768, and 1,024 × 1,024) were tested within this
framework to analyze the influence on the segmentation
performance, resulting in the evaluation of nine models (three
models for each architecture). Based on the training/validation
mIoU of the TomoSeg, an image size of 1024 × 1024 was
selected for further comparison with the other classification
models. Further modifications to the base structure of the
implementations (e.g., of the hyperparameters) were not
performed. For this framework, each training/validation lasted
approximately 26 h, using two NVIDIA V100 GPUs.

The U-Net implementation of Scaling the U-net framework [32]
was trained with an image input size of 512 × 512 . This image size was
selected since Baltruschat et al. [32] had shown that these dimensions
achieved better segmentation performance in their study. Furthermore,
this implementation uses nine-axis fusing which limits the training/
validation dimension of the 3D volume to the lowest dimension of the
datasets used in this study, i.e., 625 pixels. Further modifications to the
base structure of the implementation (e.g., of the hyperparameters) were
not performed. The training was completed after 22 h, using two
NVIDIA V100 GPUs.

Finally, the nnU-Net [33] framework was used to train/validate
both the 2D and 3D U-Net implementations. For training of the
considered models, the parameters input size, loss function, and
optimizer are automatically selected by the framework, given the
datasets used and the labels to be classified. The training process for
the 2D U-Net took approximately 21 h, using two NVIDIA
V100 GPUs. By contrast, the training of the 3D U-Net took
approximately 45 h, using 10 NVIDIA RTX8000 GPUs.

2.3 Testing of the CNN models

2.3.1 mIoU evaluation
Two datasets already segmented were used as references to test

the model’s predicted segmentation and evaluate them through their
mIoU scores. In this context, after predicting the segmentation from
the previously trained CNNs, the intersection over union (IoU) of all
labels was calculated with Eq. 1 [53]:

FIGURE 1
Selected cross-section of SRμCT volume and corresponding segmentation. The datasets used for training/validation and testing were segmented
into four labels: residual material, degradation layer, bone tissue, and background. The bright circle in themiddle of the SRμCT cross-section is an artifact
from the image stitching process for 360° reconstruction. Furthermore, ring artifacts are clearly visible in the top left background area.
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IoU � A ∩ B( )
A ∪ B

� TP

TP + FP + FN
(1)

where A is the ground truth segmentation and B is the predicted
segmentation. This calculation can also be described in terms of TP -
true positives, FP - false positives, and FN - false negatives. From the
results, the mean intersection over union (mIoU), which is the
average between the IoU obtained from each label (residual material,
degradation layer, bone tissue, background) was calculated as
(Eq. 2):

mIoU� IoU res.mat.( )+ IoU deg. layer( )+ IoU bonetissue( )+ IoU background( )

4
(2)

2.3.2 Quantification of degradation and
osseointegration parameters

The segmentations predicted by the CNNs were used to
calculate the degradation and osseointegration parameters DR
[mm/a], BIC [%], and BV/TV [%]. The same was performed on
the ground truth segmentations and the relative errors between the
ground truth and predicted values were calculated with Eq. 3.

relative error %[ ]
� parameter prediction( ) − parameter ground truth( )

parameter ground truth( )

(3)

The DR was calculated from Eq. 4 [54], which involves the
volume loss (VL) of the implant over time and characterizes the
implant degradation:

DR � Vi − Vr

Ai · t � VL

Ai · t (4)

Vi is the initial screw volume (reference volume) and Vr is the
residual screw volume. A segmented volume of a reference screw is
used to calculate Vi. Since both the reference and degraded screw
sample must represent the same volume section, a reference implant
is registered and resampled on the predicted segmentations volume.
Ai is the initial surface reference area and it is given by the total
number of surface voxels of the reference screw multiplied by the
voxel face area. t is the degradation time.

To evaluate the osseointegration of the implant and
consequently its stability, the BIC was calculated according to Eq.
5 [9–11].

BIC � # boundary voxel faces of implant in contact with bone
# total surface voxel faces of implant

(5)

The number of boundary voxel faces of the implant in contact
with the bone is calculated by counting the number of voxels from
the residual material + degradation layer labels in contact with the
bone tissue label. Similarly, the total number of surface voxel faces of
the implant is given by the number of voxels from the residual
material + degradation layer labels in contact with the background
label and bone tissue label. The BV/TV was calculated according to
Eq. 6 [9–11], making it possible to analyze the bone formation
around the implant.

BV/TV � # bone voxels in ROI
# bone + background voxels in ROI

(6)

For this purpose, one region of interest (ROI) around the
implant of each sample was selected by enlarging the non-
degraded, registered reference screw. The ROI corresponded to
an enlargement of 1 mm, which is approximately twice the size
of the screw threads. The size was selected to account for the effect
the threads might have on bone tissue formation.

All the calculations needed for the characterization of the
ZX00 implants were performed on the segmented data and were
computed through a Python script, in which libraries including
NumPy [55], SciPy [56], and sci-image [53] were used to perform
image manipulation and processing.

2.4 Predictions of unlabeled data and further
comparisons

After selecting the best model among those evaluated in this
work, nine unlabeled SRµCT volumes from the prediction dataset
served as input for obtaining their segmentations through deep
learning. Thus, the generalization performance of the model
was assessed.

3 Results and discussion

3.1 Comparison of the CNN models
performance

3.1.1 Training and validation—influence of image
input size on mIoU

Figure 2A shows the obtained results for the training and
validation mIoU for the TomoSeg framework, considering different
image input sizes. Overall for this framework, the mIoU improved with
increasing of the image input size. The HR-Net showed the best
performance, obtaining a higher mIoU (90.95%) for an image input
size of 1,024 × 1,024. For the same input size, the U-Net had a similar
performance (90.88%). In general, the U2-Net performed inferiorly to
the other models, except for the train image size of 512 × 512. The
preparation of the input data for training and validation involves the
pre-processing of the volumes by patching the input image to the
required size of themodel’s first convolutional layer. Since this cropping
is done randomly, a larger input size means less information loss in
training and validation and leads to an increase in the probability that
the input image will be patched with information concerning all the
classes to be identified, increasing themIoU. Due to implementations of
the used frameworks, a non-random, targeted patch selection strategy to
more directly address the challenge of under-represented classes, was
not possible, directing the focus toward prioritizing the optimization of
patch size. Figure 2B shows the mIoU comparison for the best-
performing TomoSeg implementations (those with an image input
size of 1,024 × 1,024) and the other trained frameworks (Scaled U-Net,
and 2D and 3D nnU-Net), where the image input size was
automatically chosen by the application.

The results displayed in Figure 2B show that the best training
and validation performance in terms of mIoU was obtained by the
2D nnU-net (mIoU = 94.95%), followed by the 3D nnU-Net
(mIoU = 93.10%). The Scaled U-Net obtained a mIoU
performance equal to HR-Net, while the U2-Net continued to
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have an inferior segmentation performance among the compared
models. Unlike the TomoSeg framework, the training and validation
of the Scaled U-Net and the nnU-net considered one image input
size. Comparing the effect of image input size on mIoU, Baltruschat
et al. [32] obtained better performance for a comparable
segmentation task with an image input size of 512 × 512, which
was also chosen for this work. Despite using a smaller input size and
also being a 2D model, the Scaled U-Net incorporates 3D
information through multi-axes fusing, which includes more
information for model training, using techniques such as rotating
the analyzed volumes around each of its axes [32]. This may explain,
therefore, the better performance of this model compared to HR-Net
and U-Net, with image input sizes of 1,024 × 1,024. Concerning the
nnU-Net, the input image sizes for the two models analyzed were
optimized automatically by the framework. In this case, the
implementation prioritizes large patch sizes so that the contextual
information during training and validation is increased. This is done
by considering factors such as the original voxel size of the data and
the ratio of classes that are labeled [33]. For the 2D model, it can be
seen that the used value of 1,280 × 1,024 is closer to the image input
size values from the best-performing models obtained with the
TomoSeg framework. The 3D model, however, uses an input size
of 228 × 228 × 48, especially since the automation decisions of nnU-
Net consider factors such as the limited memory budget of the GPU
in use, which is the case when training 3D models. In fact, while all
2D models in this work were trained with 2 GPUs and the training
time was between 21 and 26 h, the 3D model in the nnU-Net took
10 GPUs and the training time was 45 h. In this context, it can be
seen that although the 3D model of nnU-Net performs well with
respect to semantic segmentation, robust hardware is required for
the architecture to be trained. For users who do not have the
availability of GPUs with full computing power, 2D models are
more feasible in terms of hardware and time.

The mIoU results of the trained models are influenced by factors
such as the architecture of the models, the number of downsampling
and resolution stages, the activation functions, and the

normalization techniques used. These factors impact the feature
extraction, weight backpropagation, and overall convergence of the
models, thus affecting the resulting mIoU scores. For the TomoSeg
framework, the implementations of the U-Net, the HR-Net, and the
U2-Net followed the base architecture of each model proposed in the
literature and, therefore, will not be discussed in much detail. The
framework used convolution operations followed by batch
normalization and ReLU activation. U-Net had four
downsampling operations for feature extraction. HR-Net had
four stages with a new resolution block added from the second
stage onwards. U2-Net had five encoder and four decoder stages with
RSU blocks. Scaled U-Net had an extra resolution level compared to
TomoSeg’s U-Net. Mish function was used for activation after batch
normalization. The additional resolution layer, along with the nine-
axis fusion implementation, contributed to achieving similar mIoU
as higher input sizes trained with the TomoSeg framework for the
512 × 512 input size in the ’Scaled U-Net’ implementation. The
nnU-Net automatically configures itself based on the input dataset.
While it shares the general structure of the U-Net model, some
modifications were made, including the use of 8 different resolution
levels for both trained models in the framework. Moreover, to enable
larger patch sizes, Isensee et al. [33] proposes the use of instance
normalization [57], while the other models studied in this work used
batch normalization. According to the literature, batch
normalization has inferior performance when large patch sizes
are considered [57, 58]. Moreover, the activation function in
both nnU-Net models is based on the leaky ReLU, which
considers a negative slope for values smaller than zero. This
allows for feature maps to be weighted also for negative values,
influencing the weight backpropagation. In literature, CNNs that
used leaky ReLU showed faster convergence than those that used
only ReLU [59, 60].

3.1.2 Testing data—mIoU of predicted test samples
The test of the trained models was performed by using the data

volume of two samples that were not used in the training process. Only

FIGURE 2
Effect of the image input size on the training/validation mIoU of the different models. (A) Effect of image input size on mIoU in the TomoSeg
framework. The U-Net, HR-Net, and U2-Netmodel implementations were trainedwith different image input sizes to verify the influence of this parameter
on the segmentation performance. (B) Considering the best-performed models within the TomoSeg framework (image input size of 1,024 × 1,024),
further comparisons were made with the Scaled U-Net and nnU-Net frameworks. For the Scaled U-Net, the image size was selected according to
the results by Baltruschat et al. [32]. The input sizes for the nnU-Net models were automatically chosen by the framework.

Frontiers in Physics frontiersin.org06

Lopes Marinho et al. 10.3389/fphy.2024.1257512

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1257512


the models compared in Figure 2B were considered for testing. Table 4
shows for each tested model, the IoU for the segmented labels of each
sample and their respective mIoU. In general, the labels background,
residual material, and bone tissue showed IoUs above 90% for both
samples, in all considered models. However, the degradation layer
proved to be the most difficult to segment, obtaining the lowest IoUs.
For sample 1, the degradation layer achieved IoUs between 79.48% (for
the U2-Net) and 86.59% (for the 2D nnU-Net). For sample 2, the U2-
Net also had the lowest accuracy for the degradation layer between the
models, reaching an IoU of 60.13%., while the 2D nnU-Net had the best
IoU between the models for the same label (IoU = 71.18%). Baltruschat
et al. [32] reported similar findings for the degradation layer
segmentation in a comparable segmentation task. The study
reported lower IoU values for the label degradation layer (79.31%–
80.16%) than for the classes residual material and bone tissue, which
achieved substantially higher IoU values (93.65%–93.10% and 96.72%–
96.83%, respectively). Moreover, in a previous study using similar ex
vivo data, Bockelmann et al. [17] showed that the label ”corroded screw”
(degradation layer in this work) was the most challenging to be
predicted, achieving a maximum Dice score of 54.1%. The Dice
score is a metric similar to the IoU and also measures the
performance of the semantic segmentation of ground truth data in
comparison with predicted data. In general, the difficulty of the models
in segmenting the degradation layer is related to the grayscale values
present in the tomographic reconstructions for this region. In fact, the
degradation layer has a more heterogeneous appearance due to the
different corrosion products and discontinuities such as cracks in some
parts of this region. This makes it difficult for the CNN models to
generalize the predictions of this label since each sample presents
peculiarities in the morphology of this layer. In the broader context,
the degradation layer contains a smaller voxel count (surface-to-volume
ratio) compared to the residual material, bone tissue, and background
labels. This discrepancy in voxel distribution introduces a fairness
challenge in the segmentation of the degradation layer. Given the
less prominent nature of the corrosion phase, more voxels
corresponding to the corrosion phase can significantly impact the
results, unlike the other phases where such variations might be less
consequential [61]. Since the models trained in this work make a

random initial patch of the input data, this problem is further escalated
due to the probability of a small number of voxels corresponding to the
degradation layer being present in the training/validation phases. It is
important to note that the choice to use semi-automatic segmented CT
volumes as ground truth was pragmatic, considering their practical
availability despite potential limitations. While a phantom volume
could offer more controlled ground truth, our focus was on
assessing current frameworks within the context of available
real-world data.

3.1.3 Qualitative and quantitative analysis of
predicted segmentation of test samples

To better interpret the differences in IoU, Figure 3 displays example
slices for the segmentations of each tested model for sample 1. As can be
seen, the degradation layer is proportionally the label with the least
information in the whole segmentation. The differences between the
degradation layer label from the ground truth segmentations and those
obtained by the models are, in general, subtle. However, when the whole
volume is considered, small differences involving the voxels of this label
translate into a large difference in IoU. Such mislabeling for the
degradation layer was observed for almost the entire predicted
segmentation volumes for those models even though normalization
of the SRµCT data was performed to prevent poor generalization
performance. By normalizing the voxel values, we bring them to a
common scale, enabling the network to focus on more relevant
information. Without normalization, a CNN might assign different
weights to similar features due to variations in contrast, resulting in
decreased generalization performance. Moreover, it is also possible to
observe that in certain instances, the obtained predictions seem to have a
more accurate segmentation than the segmentation proposed by ground
truth data. This is especially true for the U-Net and the 2D and 3D nnU-
Net. Example slices for sample 2 can be seen in Supplementary
Appendix Figure SA2.

The predicted data were also quantitatively analyzed against the
reference data by comparing degradation and osseointegration
parameters such as the DR, BIC, and BV/TV. Figure 4 shows the
mean relative error calculated between the above-mentioned
parameters, considering the ground truth and predicted segmentation

TABLE 4 mIoU values for the tested CNNmodels. Tests were performed by predicting the segmentation of two unseen sample data (from 6 to 12 weeks of
implantation times). Bold text shows the highest values for each column. *Models from TomoSeg framework with image input size of 1,024 × 1,024.

Model Intersection over union/%

Background Residual material Degradation layer Bone tissue mIoU/%

Sample
1

Sample
2

Sample
1

Sample
2

Sample
1

Sample
2

Sample
1

Sample
2

Sample
1

Sample
2

U-Net* 95.40 97.79 98.84 99.40 84.66 61.17 98.11 96.26 94.26 88.66

HR-Net* 92.54 97.35 98.77 99.38 84.28 65.59 96.87 95.29 93.12 89.40

U2-Net* 96.21 97.87 97.41 99.23 79.48 60.13 98.57 96.44 92.92 88.42

Scaled
U-Net

90.89 96.36 97.89 97.22 79.57 60.53 94.03 93.33 90.09 87.36

2D
nnU-Net

94.47 98.28 98.94 99.48 86.59 71.18 97.73 97.09 94.43 91.49

3D
nnU-Net

93.32 98.27 98.94 99.48 86.40 70.99 97.24 97.08 93.98 91.46
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of both tested samples. The detailed results can be found in Table 5.
Overall, the relative error for the DR and BV/TV parameters showed less
deviation from the ground truth values (less than 5%) for all tested
models. In contrast, the BIC parameter differed significantly, achieving

mean relative errors of more than 120%. The DR parameter is calculated
based on the initial and final implant volumes (Eq. 4), where the latter is
dependent on the residualmaterial label. From this perspective, the lower
deviation from the ground truth DR values is in agreement with the high

FIGURE 3
Representative slices of image data from one test sample and the corresponding predicted segmented data sets for all tested models. The bright
circle in the middle of the reconstructed and denoised image is an artifact from the image stitching process [11]. All the insets correspond to a zoom-in
area of 1 mm2.
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IoU values obtained for this label for both samples. Regarding the BIC
parameter, the values obtained with the predicted segmentations showed
to be higher than the reference ones. The BIC is strongly related to the
degradation layer, and therefore it is very sensitive to mislabeling. In fact,
for sample 1, this error becomes smaller because the number of contact
voxels between the degradation layer and the bone tissue is also less due
to the morphology of the implant and its surroundings. However, this
error becomesmuchmore expressive in sample 2, as there is muchmore
bone tissue in contact with the degradation layer considering the whole
volume analyzed. Finally, the parameter BV/TV, which is calculated
considering a 1 mm ROI, is only dependent on the bone tissue and
background. As stated earlier, those labels achieved high IoU for all tested
models, thus explaining the negligible error below 2% for the majority of
models and samples.

3.2 Prediction of unlabeled data

The 2D nnU-Net was used to predict the segmentation of
unlabeled SRµCT data. This data refers to ZX00 implants

explanted from sheep at different healing times (6, 12, and
24 weeks). The prediction of samples was performed for three
samples for each time point. Figure 5 shows the denoised slice
after tomographic reconstruction and the predicted segmentation by
the 2D nnU-Net, for a selected cross-section for one sample per
healing time considered. In addition, the insets display a
magnification of problematic points of the segmentation of the
deep learning prediction. It is important to point out that the
samples chosen were images that could exemplify most of the
problems encountered in the predictions of the segmented
volumes. For the 12-week sample, it is possible to see that some
voxels from the residual metal label were mislabeled into
degradation layer voxels. In addition, the bone tissue label also
needed to be corrected, because the CNN failed to predict the bone
lacunae, which should have been assigned to the background label.
In fact, this problem was found in all samples analyzed, indicating
that the CNN model had difficulties identifying small features. This
happened even though these small features were segmented as
background within the ground truth segmentations used for the
CNN training. Moreover, in the 24-week sample, it is possible to see
that there was mislabeling of the background label in the region
corresponding to the residual material label. Although the datasets
used for prediction are from a different source than the datasets used
for training/testing and validation, image quality metrics such as
SNR and CNR were calculated to confirm that the image quality,
when considering key parameters, remains consistent. Additionally,
previous research has highlighted the effectiveness of CNN models
trained using diverse data sources. This indicates that despite
inherent differences among data sources, CNN models showcase
adaptability across varied imaging conditions [62].

Due to the incorrect segmentation in parts, (semi-)manual
corrections become necessary before quantification of the
degradation rate and other parameters is possible. Figure 5 is also
showing the corrected segmentation. Despite the time investment in
training CNNs, their integration streamlines segmentation, allowing
faster processing evenwithmanual adjustments. Tools utilizing CNN-
generated outputs as a foundation expedite manual corrections,
notably accelerating the segmentation of extensive synchrotron
data. While not eliminating manual segmentation entirely, this
hybrid approach significantly expedites the process, offering a
time-efficient solution while upholding segmentation quality [10,
32]. To further enhance the generalizability of the model it should,
therefore, be updated continuously, e.g., in a loop, using a small

FIGURE 4
Relative error for degradation and osseointegration parameters.
The segmentations predicted with the two test samples were used to
calculate the parameters for implant degradation and
osseointegration. The graph shows themean value of the relative
error for the two samples compared to the reference segmentation
and each bar shows the standard deviation (error bars).

TABLE 5 Degradation and osseointegration metrics from ground truth and predicted segmentations. Ground truth values are in bold. The values in the
brackets are the relative errors for each measured parameter against the ground value. (−) represents the errors that are less than 1%.

Parameter Segmentations

Sample G. Truth U-Net HR-Net U2-Net Scaled U-Net 2D nnU-Net 3D nnU-Net

DR/mm · a−1 1 0.58 0.58 (−) 0.57 (−1%) 0.58 (−) 0.57(-1%) 0.58 (−) 0.58 (−)

2 0.36 0.36 (−) 0.35 (−1%) 0.36 (−) 0.34 (−4%) 0.36 (−) 0.36 (−)

BIC/% 1 5.25 7.36 (+40%) 8.42 (+60%) 9.02 (+71%) 5.99 (+14%) 7.76 (+47%) 7.62 (+45%)

2 7.48 19.65 (+162%) 16.01 (+114%) 14.25 (+90%) 17.54 (+134%) 18.44 (+146%) 21.31 (+184%)

BV/TV/% 1 22.48 21.81 (−2%) 22.18 (−1%) 22.02 (−2%) 22.02 (−2%) 22.44 (−) 22.40 (−)

2 56.83 55.60 (−) 57.01 (−) 55.70 (−1%) 57.90 (+1%) 57.08 (−) 57.65 (+1%)
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number of corrected slices and various SRµCT datasets. This could be
done by an active learning approach [52, 63]. By doing so and adding
model-in-the-loop annotations [64], one may ultimately arrive at a
more powerful tool for the semantic segmentation of SRµCT data. In
addition, the frameworks used in this work could take advantage of
recent studies that seek to define the key problems that lead
algorithms to fail in tasks such as semantic segmentation, in order
to obtain more robust CNN models for this challenging task [65, 66].

4 Conclusion

This work aimed to study the use of deep learning for the semantic
segmentation of SRµCT data of biodegradable Mg-based implants.

Three CNN frameworks were used for comparison and their
performance in terms of mIoU was analyzed. It became clear in
this evaluation that the image input size influences the mIoU. Among
the tested and validated models, the best-performing ones were the
nnU-Net 2D and 3D, which obtained mIoU performances greater
than 93%, while the others had mIoU less than 91%. However,
identifying the degradation layer label proved challenging due to
its morphological heterogeneity and low contrast in the input images.
Quantitative evaluation of the segmentations revealed smaller errors
for degradation and osseointegration parameters, except for bone-
implant contact (BIC), where high errors were observed. The
limitations of the CNNs in identifying the degradation layer were
considered themain cause of the higher errors. In conclusion, the deep
learning architectures proved to be capable of obtaining a good

FIGURE 5
Selected cross-sections of the reconstructed and denoised images, along with their predicted and corrected segmentations, for one sample per
healing time considered. The images also display insets where it is possible to compare problematic results from the predicted segmentations and the
corrections which were done in order to calculate the degradation and osseointegration parameters with reliability. The scale of the insets is 0.5 mm.
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performance in the semantic segmentation of SRµCT data but could
be further improved by continuous retraining.
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