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Macroscopic copper dendrites are self-assembled in a porous hydrogel without
the application of an external potential. The copper dendrites possess fractal
characteristics. The impact of the medium thickness, the initial concentration of
copper (II) ions, and the solvent polarity on the evolving copper dendrites are
addressed by investigating the fractal dimension, lacunarity, and Shannon entropy
(SE) of the structures. The analysis gives a quantitative description of the copper
dendriticmorphology and its connection to themechanismof self-assembly. The
fractal dimension of the dendrites falls in the range of 1.75–1.85. High self-similar
complex systems show low lacunarity and high Shannon entropy, reflecting the
low density of gaps and the high level of detail.
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1 Introduction

Copper dendrites synthesized over a broad range of scales have been attracting great
attention due to their electrical conductivity [1], sensing [2], antibacterial [3], and catalytic
[4] activity. Many methods for the preparation of copper dendrites and modification of
substrates with copper dendrites have been used, including hydrothermal [5], chemical
vapor [6], and electrochemical deposition [7, 8]. The methods utilized use energy and are
assisted with surfactants or seed-mediated growth agents. In our study, copper dendrites are
self-assembled in an agar hydrogel medium when the originally homogeneously distributed
copper (II) ions in the medium are put in contact with zinc metal. The method does not
require any external field, and the preparation of the copper dendrites in agar has the
advantage of locking the pattern in space, thus protecting it from convectional deformation.

Dendrites are complex fractal-like spatial patterns of metals. The size and shape of
dendrites have a large influence on the material’s electrical and mechanical properties [9].
Thus, a complete quantification of the branching nature of dendrites is valuable. Dendrites
can be described using fractal analysis techniques. Fractals are mathematical sets that
exhibit a repeating pattern displayed at every scale [10]. Fractals are characterized by a non-
integer fractal dimension, which describes the complexity at the contour of a fractal.
However, since the fractal dimension describes the topology in the outline, patterns with the
same fractal dimension may still look different. Thus, a more complete quantification also
addresses the lacunarity of the dendrite [11, 12]. Lacunarity is a term used in geometry to
describe how patterns, particularly fractals, vary spatially across different scales. It is derived
from the Latin word “lacuna,” which means “gap” or “lake,” and is related to the size
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distribution of the gaps. It allows the quantification of translational
invariance with scale-dependent changes in the structure; thus, it is a
measure of the texture of the fractal. There are several methods for
measuring lacunarity, including box sliding algorithms, which look
at a digital image from many levels of resolution to examine how
certain features change with the size of the element used to inspect
the image. The arrangement of pixels is measured using square
elements with different sizes. For each size, a box is slid successively
on the image, covering it completely, and each time it is laid down,
the number of pixels that fall within the box is recorded. The local
variances or changes in density are analyzed, as the observation
window changes in size. Fractals with more or larger gaps generally
have higher lacunarity; on the other hand, if a fractal is almost
translationally invariant, it has low lacunarity. The morphological
features of dendrites can also be characterized by the Shannon
entropy (SE) [13], which is a fundamental concept in classical
information theory. Shannon entropy quantifies the average
uncertainty about a variable. In the context of spatial patterns,
the Shannon entropy of a system quantifies the average amount
of information needed to locate a point within the set with a certain
precision. The higher the entropy of the set, the more random it is,
and the more complicated are the points representing the set. The
determination of Shannon information entropy in order to probe
the nature of correlation effects has recently advanced and has been
applied to many systems. These include the Schrödinger equation
with an asymmetric rectangular multiple well [14] and squared
tangent potential well [15], the two-electron ground state and lower
lying excited states atomic systems [16], the eigenstates for the
Pöschl–Teller-like potential [17] and a symmetrical and
asymmetrical trigonometric Rosen–Morse potential [18, 19], and
two hyperbolic single-well potentials in the fractional Schrödinger
equation [20].

Copper dendrites under varying experimental conditions are
obtained, and their fractal character is confirmed using the box-
counting method for calculating the fractal dimension [21]. Fractal
dimensions in the 1.75–1.85 range are obtained. Insights into the
underlying processes are addressed by comparing the lacunarity of
the copper dendrites at different medium thicknesses, initial Cu2+

concentration, and medium ionic strength. The findings are
described in the context of the diffusion-limited cluster
aggregation (DLCA) model for the growth mechanism [22]. The
relation between the homogeneity of the fractals, characterized by
their lacunarity, and the extent of self-similarity, characterized by
the Shannon entropy, is investigated. The results demonstrate that
highly branched homogenous fractals possess the most complex
self-similar structures. Such treatments assist in the engineering and
design of functional materials with the desired characteristics.

2 Materials and methods

2.1 Experimental

Agar solutions of copper (II) chloride are prepared by mixing
the desired amounts of CuCl2·2H2O (Merck) and agar powder
(Sigma-Aldrich) in distilled water. The mixtures are heated until
the solutions become homogeneous. The following solutions are
prepared: 1.0 M Cu2+ in 0.8%–1.5% with 0.1% step agar and 0.8 M,

1.2 M, 1.4 M, and 1.6 M Cu2+ in 1% agar. In addition, solutions with
potassium chloride (Sigma-Aldrich) are prepared by adding 0.1 M,
0.2 M, 0.3 M, 0.4 M, and 0.5 M KCl to the 1.0 M Cu2+ and 1% agar
system. A thin layer of each agar solution (13 mL) is filled in a 9-cm
diameter methacrylate Petri dish. The solutions homogeneously fill
the Petri dishes with no air bubbles trapped and are left to jellify
overnight at room temperature. On the next day, a zinc metal
(Sigma-Aldrich, purity 99.9%) formed into a 0.75 cm diameter
and 1 cm height cylinder is placed at the center of each petri
dish, with the one-disc face of the cylinder touching the agar
solution. The systems are left to develop, and the aggregated
copper dendrites at the zinc electrode are photographed 24 h
after the onset of the Cu2+/Zn reaction. Clear images of the
copper dendrites are taken from the bottom instead of the top of
the Petri dish, because in few cases, morphological perturbations
close to the zinc electrode occurred at the outer surface of the jellified
solution. Such perturbations may be due to parameters such as
dissolved and evolved gases in the solution [23]. Images are then
taken for fractal analysis.

2.2 Image analysis

For fractal dimension and lacunarity analysis, the images are
color-de-convoluted using Fiji: ImageJ software [24]. The color
channel Giemsa vector, color 2, is selected. The selected color
split gives the copper dendritic pattern standing out of the
background with the most accuracy. The split is then
converted to a binary black-and-white image. Figure 1 shows
the original image, the split, and the binary image for the 1.0 M
Cu2+ and 1.4% agar system as an example. Then, using FracLac
[25], a plug-in for ImageJ, the fractal dimension is calculated
using a box-counting algorithm, and the lacunarity is calculated
using the gliding box [12] method by setting the maximum box
size at 30% of the image.

The Shannon entropy is determined by changing the dendrite
image to an 8-bit grayscale format and generating the frequency
distribution of the 256-pixel values using ImageJ. The region of
interest (ROI) for all images is chosen as a circle with an 8.6 cm
diameter. Calculations are then performed based on the relative
frequency of each pixel value.

3 Results

Copper dendrites formed from 1.0 M CuCl2·2H2O in 0.8%,
0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, and 1.5% agar solutions are
shown in Figure 2. No dendrite structures were obtained at agar
percentages less than 0.8% and greater than 1.5% with 1.0 M
CuCl2·2H2O. Copper dendrites formed from 0.8 M, 1.2 M,
1.4 M, and 1.6 M CuCl2·2H2O in 1% agar are shown in Figure 3.
At CuCl2·2H2O concentrations less than 0.8 M and greater than
1.6 M in 1% agar, no dendrite structures were obtained. Dendrite
structures obtained by adding 0.1 M, 0.2 M, 0.3 M, 0.4 M, and 0.5 M
KCl to 1.0 M CuCl2·2H2O and 1% agar are shown in Figure 4. In the
figures, the copper dendrites grow radially around the zinc electrode
in the two-dimensional experimental setup due to the small
thickness of the hydrogel medium; thus, their 2D image
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inspection is valid. The diameter of the ROI of the systems, as shown
in Figures 1–4, is 8.6 cm.

The fractal dimension is a non-integer dimension that originates
from the power law relationship between the length scale and the number
of objects [10]. The box-counting fractal dimension Db is obtained from
the relationship: lnN � Db ln(1/r) + lnk, where N is the number of
boxes covering the object, r is the side of a box, and k is a constant. Db is
the slope of the linear part within the cutoff lengths in the ln N–ln (1/r)
plot. The fractal dimensions for the copper dendrites shown in Figures
2–4, calculated using the box-counting method, are presented in Table 1.

The lacunarities of the copper dendrite fractals, shown in
Figures 2–4, are determined using the gliding box method and

are plotted for varying agar percentages in Figure 5A, varying
Cu2+ concentrations in Figure 5B, and varying KCl
concentrations in Figure 5C. Lacunarity analysis is a measure
of the deviation of a fractal from translational invariance and
thus can be considered a scale-dependent measure of the
heterogeneity or texture of a fractal since translational
invariance is scale-dependent [11]. Lacunarity analysis can
indicate differences between structures that have the same
fractal dimension. The lacunarity is calculated by adopting
the gliding box method by allowing a box of size ε to move
over the entire binary image with a grid orientation g,
overlapping itself at each side. The basic number of

FIGURE 1
(A) Initial image of the copper dendrite structure for 1.0 M Cu2+ in the 1.4% agar system. (B) Giemsa vector color 2 channel of the system in (A). (C)
Binary black-and-white contrasted image of the system in (B).

FIGURE 2
Copper dendrites formed from 1.0 M CuCl2·2H2O in agar. The corresponding agar percentage is indicated below each system.
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lacunarity at a specific size and grid orientation is λε,g, with λε,g =
(σ/μ)2ε,g, where σ is the standard deviation and μ is the mean
pixel per box. The mean of λε,g over all box sizes E and at a grid

orientation g is Λg with Λg � [∑
E

ε�1
λε,g(ε)]/E. Finally, the lacunarity

over all grid orientations G is Λ with Λ � [∑G
g�1Λg]/G [25].

The Shannon entropy of the copper dendrite fractals shown in

Figures 2–4 is plotted for varying agar percentages in Figure 5A,

varying Cu2+ concentrations in Figure 5B, and varying KCl

concentrations in Figure 5C. The Shannon entropy captures the

complexity and degree of detail in the fractal structure. The Shannon
entropy is computed based on the relative frequency/probability pi

FIGURE 3
Copper dendrites formed from CuCl2·2H2O in 1% agar. The corresponding concentration of CuCl2·2H2O is indicated below each system.

FIGURE 4
Copper dendrites formed from 1.0 M CuCl2·2H2O and KCl in 1% agar. The corresponding KCl concentration is indicated below each system.

TABLE 1 Fractal dimension Db calculated using the box-counting method for the dendrites in Figures 2–4.

1.0 M CuCl2·2H2O

Agar % 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

Db 1.75 1.79 1.80 1.79 1.78 1.77 1.75 1.75

Standard error % 4.3 4.0 6.5 3.9 4.2 4.9 4.1 3.2

1% agar

CuCl2·2H2O concentration 0.8 M 1.0 M 1.2 M 1.4 M 1.6 M

Db 1.77 1.80 1.77 1.75 1.71

Standard error % 4.9 6.5 3.6 4.1 3.8

1.0 M CuCl2·2H2O and 1% agar

KCl concentration 0.1 M 0.2 M 0.3 M 0.4 M 0.5 M

Db 1.79 1.80 1.78 1.80 1.78

Standard error % 3.4 4.4 4.2 5.2 3.9
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of the 256-pixel values in the grayscale format of each fractal
structure; SE � ∑255

i�0pi log2(1/pi) [26]. Finally, Figure 6 shows a
plot of the Shannon entropy as a function of fractal dimension Db for
different agar percentages and 1.0 M CuCl2·2H2O concentration.

4 Discussion

The diffusion-limited cluster aggregation is a widely used model
that describes the generation of clusters from colloidal aggregation

driven by Brownian motion [27, 28]. The growth process can be used
to describe the formation of fractal-like electrodeposits and metal
dendrites. In DLCA, randomly moving colloids, upon entering the
interaction region of a growing cluster, will irreversibly combine with
it. Compared to diffusion-limited aggregation (DLA) [29, 30], which
involves individual particles performing random walks and
aggregating on the growing structure, DLCA involves the
aggregation of colloids, thus leading to more complex structures.
In the Cu2+/Zn system, the copper (II) ions are originally
homogeneously distributed in the agar medium. When zinc metal
is set in contact with the agar solution, the fast thermodynamically
favorable oxidation–reduction reaction, Zn (s) + Cu2+ (aq) → Zn2+

(aq) + Cu (s), takes place at the zincmetal, and the reduction of copper
(II) ions to copper metal starts. Based on the values of the fractal
dimension obtained for our systems shown in Table 1, which are
almost the same and fall in the 1.75–1.85 range characteristic of
DLCA, the mechanism involves the formation of colloids before
clustering on the growing dendrite. This deposition of copper will
deplete the electrode region from copper (II) ions and thus lead to the
migration of peripheral Cu2+ ions toward the growing electrode due to
the concentration gradient. The arriving copper (II) ions will undergo
reduction, followed by colloid formation, and then clustering. The
smallest value of the fractal dimension 1.71, which is also below the
DLCA range, is obtained only for the 1.6 M CuCl2·2H2O in 1% agar.
This value is close to the 1.7 limit value for DLA and suggests the shift
of the mechanism to solely diffusion-limited, or alternately, it
confirms the decrease in fractal dimension as the primary particle
radius increases in DLCA [31] at the highest Cu2+ concentration. In all

FIGURE 5
(A) Plots of the variations of the lacunarity (Λ) and Shannon
entropy (SE) with agar percentage for 1.0 M CuCl2·2H2O systems. (B)
Plots of the variations of the lacunarity (Λ) and Shannon entropy (SE)
with the concentration of Cu2+ ions for the 1% agar systems. (C)
Plots of the variations of the lacunarity (Λ) and Shannon entropy with
the concentration of KCl for the 1.0 M CuCl2·2H2O in 1% agar systems.
The lines connecting the points are only an aid for the eye.

TABLE 2 Characteristics of systems with low lacunarity and high Shannon
entropy.

Lacunarity (low) Shannon entropy (high)

Less gaps Diverse pixel intensity–less predictable

High branching Detailed

Uniform Self-similar

Homogeneous Complex

FIGURE 6
A plot of the variation of the fractal dimension (Db) with Shannon
entropy (SE) for copper dendrites obtained with 1.0 M CuCl2·2H2O at
different agar percentages. The dotted line is the best fit of the
experimental points.
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instances, the copper fractals arise as a joint consequence of
randomness and optimality [32]. Randomness is due to the
Brownian motion of the ions or clusters, and optimality is the
optimal energy expenditure along energetically favorable
crystallographic directions on the growing dendrite. Furthermore,
the fact that fractal formation is restricted to the experimental ranges,
as shown in Table 1, confirms that the aggregation of copper dendrites
in porous media is a complex multi-parametric phenomenon.

Distinctions between the textures of the copper dendrites with
varying agar percentages, Cu2+ initial concentration, and the presence
of an inert salt are elucidated by addressing the lacunarity of the
systems. The lacunarity in Figure 5A for systems with 1 M
CuCl2·2H2O is almost the same and the lowest at the intermediate
agar percentages. The low values of lacunarity for 0.9%, 1%, 1.1%,
1.2%, and 1.3% agar reflect less density of gaps andmore uniformity in
the structures than in the less developed structures at the lowest and
highest agar percentages, as shown in Figure 2. Although the
migration of Cu2+ ions toward the growing electrode becomes
slower as the porosity of the medium decreases with increasing
agar percentage, branching depends more on the extent of
aggregation than on the rate of diffusion of ions. On the other
hand, an increase in lacunarity and thus an increase in the density
of gaps and inhomogeneity of the systems are obtained by increasing
the initial concentration of copper (II) ions at 1% agar, as shown in
Figure 3 and Figure 5B. With increasing copper ion concentrations,
the primary particle radius increases [31]. This dominance of the
growth of the colloids over clustering leads to less branching and
results in less dense dendrites. Finally, the most homogeneous and
branched structures with the lowest lacunarity are obtained after the
addition of the inert salt KCl to the 1.0 M CuCl2·2H2O and 1% agar
systems, as shown in Figure 4 and Figure 5C, respectively. Due to the
presence of K+ and Cl− charge carriers that increase the ionic strength
of the medium, metallic copper nuclei formation, on which colloids
grow via diffusion, is enhanced, thus forming islands that, upon
connection, form fractals with high branching and low lacunarity.

The degree of uncertainty and randomness in the copper dendrite
structures is also addressed by calculating the Shannon entropy using
the frequencies of the different intensity levels in the grayscale images
[33, 34]. Shannon entropy has been effective in describing the degree
of disorder in a diversity of disciplines [35–37]. The Shannon entropy
obtained for the copper dendrite fractals falls between 5.6 bits and
6.3 bits, as shown in Figure 5. The values are within the 0 bits and
8.1 bits range for a pool of 256-pixel variables. High entropy values
indicate that the pixel intensities are diverse and less predictable,
representing a self-similar pattern. Conversely, low entropy values
indicate that the pixel intensities are uniform and predictable,
representing a less detailed pattern. The variations in lacunarity
and Shannon entropy for the copper dendrites are consistent, as
shown in Figure 5. For systems with high lacunarity values reflecting
the high density of voids, the Shannon entropy and, thus, the level of
detail are low and vice versa, as shown in Table 2. The most detailed
and complex structure with the highest Shannon entropy and a low
lacunarity is 1.0 M CuCl2·2H2O and 0.2 M KCl in 1% agar.

Although the fractal dimension and Shannon entropy are two
measures that capture different aspects of the pattern, where the
fractal dimension focuses on the complexity and self-similarity at the
contour of the fractal, while the Shannon entropy concentrates on the
overall complexity of the pattern, a linear positive correlation between

the two is obtained for systems with varied agar percentages, as shown
in Figure 6. This result confirms the relationship between the Renyi
entropy Sq [34, 38], which is a generalization of the Shannon entropy,
and the fractal dimension, given by the equation Sq(ε) = -Db logb(ε).
Here, q is the order of Renyi entropy, and ε refers to the sides of boxes
for measurements expressed at base b logarithm. The Renyi entropy
converges to the Shannon entropy as q → 1. This behavior indicates
that the information content at different scales is consistently
changing in a linear manner.

5 Conclusion

Spatial copper dendrite patterns with fractal characteristics are
self-assembled without the intervention of an external field. The
morphologies of the patterns are described by determining the
lacunarity and Shannon entropy of the systems. The physical
characteristics are explained on the basis of ion dynamics and
colloid clustering in different agar porosities and solutions with
different ionic strengths. The variations in lacunarity and Shannon
entropy obtained are consistent in the sense that systems with high
lacunarity values, reflecting the high density of gaps, possess low
Shannon entropy, reflecting a low level of detail and hence self-
similarity. In addition, a linear relationship is obtained between the
fractal dimension and Shannon entropy, reflecting the self-similar
nature of the copper dendrite systems.
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