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Steric blocking upside down: a
different way of thinking about
the competition between myosin
and tropomyosin

Joseph M. Chalovich*

Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina
University, Greenville, NC, United States

At low free Ca?*, the actin binding proteins tropomyosin, troponin |, troponin T
and troponin C inhibit contraction in striated muscles. Ca®* activation alters the
position of tropomyosin on actin to uncover binding sites for high affinity forms of
myosin (i.e., myosin-ADP). Inhibition of contraction is commonly thought to
result from steric blocking of myosin binding to actin by tropomyosin. However,
myosin-ADP binding to actin is energetically more favorable than localization of
tropomyosin in the blocking position. Tropomyosin is an effective inhibitor of
binding only at low levels of myosin-ADP. At low free Ca?*, troponin-tropomyosin
also inhibits the rate of a step associated with Pi release to about 1% of the
maximum rate. This results in accumulation of myosin with bound ATP and ADP-
Pi. Such myosin binds weakly to actin. Ca?* activation increases the rate of Pi
release, but not to the maximum value, and increases the population of myosin-
ADP. The high affinity binding of myosin-ADP to actin can displace tropomyosin
into the fully active position in relation to the amount of myosin-ADP bound. It
seems likely that an important outcome of the steric clash between myosin-ADP
and tropomyosin is the dual activation by Ca?* and myosin-ADP. The C-terminal
region of troponin T (TnT) contributes to the incomplete activation by Ca®* alone.
Because this region of TnT is highly conserved, the ability of myosin-ADP to move
tropomyosin may be more important than any restriction that tropomyosin may
place on myosin binding.

KEYWORDS

steric blocking, striated muscle regulation, tropomyosin, troponin, weak binding, strong
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Introduction

I often ask medical and graduate students to explain how striated muscle contraction is
regulated. The common response is that tropomyosin sterically blocks myosin binding to
actin at low Ca** levels. I suspect that most of my peers would find that answer to be
basically correct although lacking in detail. The purpose of this article is to consider the
possibility that steric blocking functions in the reverse manner: increased levels of high

Abbreviations: S1, subfragment 1; HMM, heavy meromyosin; myosin-ADP-Pi, myosin containing the
products of ATP hydrolysis; regulated actin, actin containing tropomyosin, troponin T, troponin | and
troponin C; strong binding state, having properties similar to myosin with bound ADP; weak binding
state, having properties similar to myosin with bound ATP or ADP-Pi.
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FIGURE 1

Diagram showing that Ca?* increases both a rate constant

between bound actomyosin states and the affinity between actin and
myosin. Force producing states are in bold. M is myosin, A is actin,
uppercase K's are equilibrium constants, and lower-case k's are

rate constants. States on the left, called weak binding states,
predominate at low free Ca®*. Those on the right, called strong binding
states (in bold), predominate at saturating Ca** when tropomyosin
(wavy lines) has changed its position on actin (open circles). Force
production occurs after the transition from pre-force states to force
producing attached states. Coupling of rate constants of the upper
and lower kinetic pathways and the equilibrium constants for different
myosin-nucleotide complexes to regulated actin occurs because
detailed balance requires that K;*ka/k_» = K4*ks/k_ 3. Rate constants ks
and k_z are Ca®* independent. k_, is unlikely to increase with Ca®* as
that is contrary to force production. Both k, and K4 increase with Ca?*.
These increases are coupled. Such coupling occurs wherever a slow
step opposes a step that increases at high Ca* levels.

affinity myosin molecules force tropomyosin more into the
activating position. That is, Ca** and high affinity myosin
binding are co-activators.

Muscle contraction is driven by the hydrolysis of ATP. Rapid
phosphate release can occur only when myosin is bound to actin,
ensuring that ATP hydrolysis is coupled to force production
(Figure 1). In skeletal and cardiac muscles this process is
inhibited at low free Ca’" by the actin associated proteins
tropomyosin, troponin I, troponin T and troponin C.

Several laboratories showed in the 1970s that Ca** binding to
troponin changes the position of tropomyosin relative to actin
[1-5]. The mechanism of tropomyosin movement is becoming
more clear as a result of high resolution images [6-10]. Two of the
three known positions of tropomyosin on actin overlap the
binding site for force producing myosin species such as
myosin-ADP  [9]. Ca®* alone does not fully stabilize
tropomyosin in the fully unblocked state; that also requires
binding of myosin-ADP or rigor myosin to actin. The Ca**-
dependent change in tropomyosin orientation led to the proposal
that
tropomyosin sterically blocks the binding site of myosin on

regulation of muscle contraction occurs because

actin at low free Ca** [2]. However, the winner of any
competition depends on the concentrations and affinities of
the competing molecules. It is unclear that tropomyosin
normally wins that competition. Furthermore, tropomyosin
does not appear to compete effectively with myosin that has
bound ATP or ADP-Pi.
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Tropomyosin-troponin also inhibits the transition between two
bound actin-myosin complexes. Figure 1 shows an abbreviated
scheme of actin activated ATPase activity of myosin. Inhibition
of a step associated with Pi release, k, in Figure 1, reduces activity
independently of the level of myosin binding to actin. As a
consequence of this inhibition there is reduction of the high
affinity myosin species such as myosin-ADP.

Evidence for an increase in the rate constant of a process
associated with Pi release, k, in Figure 1, will be given in
following sections. It will also be shown that the effect of
tropomyosin on myosin binding depends on the nucleotide
bound to myosin. Refering again to Figure 1, Ca** has a greater
effect on the binding of myosin-ADP to actin-tropomyosin-
troponin (K;) than on binding of myosin-ADP-Pi (K;). The rate
constant ks is not Ca®* sensitive as this process occurs when myosin
is detached from actin. Therefore, increases in both k, and K, ensure
that detailed balance is maintained (K;*k,/k., = Ky*ks/k 3).

It is worthwhile noting that while myofibrils and other organized
systems have distinct advantages for studying muscle contraction
[11], the topic of discussion here is specifically the role of
tropomyosin and troponin in regulation. It is now known that
the availability of myosin heads can be directly regulated [12]. This
involves the interaction of both myosin heads in a pair with each
other [13, 14] and the super relaxed state [ 15, 16]. Emphasis is placed
here on solution studies where direct control over myosin
availability cannot occur and those fiber studies where the
presence of myosin regulation cannot detract from the results.

Myosin in weak binding or non-
activating states

In the late 1970s several laboratories studied the interaction of
soluble subfragments of myosin (S1 with one catalytic unit and
HMM with two catalytic units) with actin-tropomyosin-troponin.
Two broad classes of interaction species were identified. Weak
binding species (containing bound ATP or ADP-Pi) have a low
affinity for actin-tropomyosin-troponin that is relatively insensitive
to Ca®. Strong binding species, or force producing species
(i.e, containing bound ADP or lacking a nucleotide) have a
much higher affinity for actin and their binding to actin is
affected to a greater extent by Ca** binding to troponin C.

Evidence for low affinity binding of S1 to actin in the absence of
tropomyosin or troponin, during steady-state ATP hydrolysis, was
observed by rapid light scattering measurements [17]. This binding
to actin is weak with an actin affinity, less than 1/400th of that of S1-
ADP [18]. Such low affinity binding has a rapid detachment rate
from actin as seen in stiffness measurements of single rabbit psoas
fibers [19, 20]. This rapid detachment rate [21] contributes to the
difficulty of detecting this interaction.

Binding of S1 to actin-tropomyosin-troponin, during steady-
state ATP hydrolysis is relatively unaffected by Ca* [22-24].
Somewhat larger effects of Ca** were reported with the larger
myosin fragment, HMM. Ca**-dependent increases in affinity for
actin-tropomyosin-troponin were reported ranging from 1-fold [25]
to 5-fold [26] to 10-fold [27]. However, studies on single muscle
fibers, containing intact myosin, support a modest effect of Ca** on
binding of myosin in single rabbit psoas fibers. Thus, pre-force
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Curves describing binding of S1-ADP to actin-tropomyosin-
troponin in the absence (red line) and presence (broken green line) of
Ca?®*. Sl is the soluble, single headed, fragment of myosin. Theta is
[Slpoundl/[Actingtal and [S1-ADPlg e is the concentration of the
unbound myosin-nucleotide complex. Illustrative curves were
produced from a model of equilibrium binding to regulated actin [35]
using the following parameters: K, = 4.1 X 10°, K; = K,/80. For Ca®* L' =
1,Y =114 Forlow Ca?*, L' =126, Y = 1.16. Parameters are for binding at
180 mM ionic strength [36].

producing cross-bridges have been detected in skinned rabbit psoas
muscle fibers even at physiological ionic strength [28]. Furthermore,
estimates of the Ca** dependency of the association constant for pre-
force producing states of myosin was made using the ATP analogue,
ATPyS [29]. A modest 2-5-fold increase in association binding
constant at saturating Ca’" was observed. These modest changes in
affinity could produce only small changes in myosin binding in
muscle because of the high effective actin concentration
in muscle [30].

There are qualitative differences in binding of weak binding
and strong binding myosin species to actin-tropomyosin-
troponin [31]. In one study, the binding constants of strong
and weak binding species of S1 were matched by measuring the
strong binding species at a higher salt concentration. Increasing
concentrations of weak binding species of S1 yielded a
noncooperative, hyperbolic binding curve. In contrast, the
strong binding
with
S1 concentrations. For that reason, weak binding or pre-force

species exhibited positive cooperativity

consistent competition with tropomyosin at low
producing states are sometimes called non-activating while

strong binding or force producing states are called

activating states.

Myosin in strong binding or activating states

These states have a high affinity [32, 33] and they overlap the
inhibitory tropomyosin binding sites on actin. Binding of such
myosin states can displace tropomyosin to the active or non-
blocked position on actin. Binding of strong states of myosin to
pyrene labeled actin results in a fluorescence change not seen with
weak binding states [33, 34].

It is instructive to examine equilibrium binding curves of S1-
ADP at low and high Ca®'. Figure 2 shows that S1 binding at
saturating Ca®" follows a simple hyperbolic pattern. At very low free
Ca’" levels the binding has a sigmoidal shape characteristic of
positive cooperativity [32, 35]; see also [37].
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This cooperative binding curve has been explained by an
equilibrium of regulated actin between states that have low and
[35].
Tropomyosin-troponin reduces binding at low concentrations of
S1-ADP. As the concentration of S1-ADP is increased, there is a
cooperative transition to a strong binding state of actin-

high affinities, respectively, for strong myosin states

tropomyosin-troponin. Thus, binding of S1-ADP, or other
“activating” form of myosin can cause tropomyosin to shift from
the blocked state to a state that allows activity. The cooperativity of
this process allows myosin to activate binding over a narrow range of
myosin concentrations. Tropomyosin-troponin can inhibit binding
of myosin in activating states to regulated actin, as in the original
Steric Blocking model, but only when the available concentration of
myosin heads with bound ADP is very low.

Tropomyosin-troponin inhibits ATPase
activity even when myosin is bound to actin

Although the focus of tropomyosin is usually on its effect on
myosin binding to actin, the tropomyosin-troponin complex also
directly influences the rate of ATP hydrolysis by myosin bound to
actin. Several studies have shown that the ATPase activity of myosin
subfragment 1 is inhibited at low Ca** levels even when most of the
myosin S1 is bound to actin [23, 25, 38-40] and when SI is
crosslinked to actin with a zero length crosslinker [41]. The
inhibited step was proposed to be associated with the process of
Pi release from myosin. The rate of Pi release is very slow when
myosin is detached from actin. Therefore, inhibition of Pi release
from myosin-ADP-Pi bound to actin has a large impact on the
overall rate of ATP hydrolysis [23] (see Figure 1).

Conformation that Ca®* controlls the rate of a step associated
with Pi release was later demonstrated [42]. The rate of Pi release
increases 117-fold (relative to saturating skeletal thin filaments at
very low Ca®" or about 1,000-fold relative to myosin in the absence of
actin) with both Ca** binding to troponin and rigor S1 binding to
actin [40]. These extremes are likely lower and upper limits to the
regulation by Ca®*. Large increases in the rate of Pi release also occur
with native cardiac thin filaments [39]. Evidence for regulation of a
transition between two attached actin-myosin states also comes
from the Ca’" dependence of the rate of force redevelopment in
psoas muscle fibers [43].

Inhibition of Pi release at low Ca** levels has three consequences:
inhibition of ATP hydrolysis, reduction in high affinity myosin
species (through detailed balance) and inhibition of binding of
residual myosin-ADP by tropomyosin in the binding competition
shown in Figure 2.

Accumulation of high affinity, activating
states of myosin leads to an increase in
ATPase activity

The rate of ATP hydrolysis by myosin S1 in the presence of
regulated actin increases during the last 10% or so of the reaction
[44]. That increase is striking at low Ca®" levels where the regulated
actin is initially in the inactive state. That activation is driven by the
accumulation of S1-ADP that binds tightly to actin [45] and
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increases ATPase activity [46]. A theoretical model explaining the
extra activation of ATPase activity at high concentrations of myosin
S1 was proposed some years ago [47]. As with the earlier model of
myosin S1 binding to regulated actin [35], the accumulation of
myosin-ADP was proposed to stabilize the active state of regulated
actin leading to an increase in activity.

At saturating Ca*" levels, the increase in the ATPase activity, by
strong or activating species of myosin, is termed potentiation [45].
Potentiation can be readily demonstrated by doping the ATPase
assay with S1 modified with N-ethylmaleimide. This NEM-S1 has
little intrinsic ATPase activity but it binds tightly to regulated actin
even in the presence of ATP and stabilizes the active state of actin-
tropomyosin-troponin [48]. Subsequent research reinforced the idea
that Ca®* does not give full activation of ATPase activity; attachment
of “activating” species of myosin was also necessary [49-51].

Dual activation by Ca®* and strong binding
crossbridges is partially due to the
C-terminal basic residues in troponin T

The 1981 model of regulation of ATPase activity had three “states”
of actin-tropomyosin-troponin [47]: inactive-Ca**-free, inactive-Ca**-
bound and active. Both Ca** and an increase in myosin-ADP were
deemed essential for stabilizing the active state of actin-tropomyosin-
troponin. That model correctly simulated ATPase activity at varying
concentrations of both actin and myosin S1.

In 1993 a model was proposed for regulation of binding of
myosin S1 to actin in the absence of ATP [52]. That binding
model has 3 states commonly called B (blocked), C (calcium
stabilized), and M (myosin stabilized). It is unclear if these
binding states are identical to the states defined from ATPase
activities. In much of our work, we estimate the population of the
active state of actin-tropomyosin-troponin from the ATPase
activity and use binding measurements to estimate the
population of the B state [53-55]. We normally assume that
the B state is a measure of the inactive-Ca**-free state but that has
not been proven.

Hypertrophic cardiomyopathy causing mutations of troponin
often change the distribution of the aforementioned states of actin-
tropomyosin-troponin [53, 54]. Mutations that reduce or eliminate
positive charges within the C-terminal region of TnT facilitate
transitions to the active state [50, 55, 56]. Such mutations
increase the activation by Ca** from about 30% to about 70% of
the maximum rate possible at a low actin concentration. When
substituted for wild type TnT, in single muscle fibers, there is a
substantial reduction in the Ca** concentration required for half
maximal activation [57-59]. The C-terminal region of TnT is highly
conserved [54] and stabilizes binding of tropomyosin to the non-
activating positions of tropomyosin on actin. When wild type TnT is
present, both high affinity myosin binding to actin and Ca** are
needed to move tropomyosin fully to the active position. This is
important because deletions of the C-terminal region of TnT, in
cardiac muscle, are associated with hypertrophic cardiomyopathy
[60]. The conservation of this C-terminal extension in many animal
species [54] highlights the significance of displacement of
tropomyosin by high affinity myosin, that is steric blocking
upside down.
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Discussion

The purpose of this note is to explore the function of
tropomyosin-troponin as one component of the overall
regulation of striated muscle contraction. It is important to
understand the workings of each component to understand the
entirety of muscle regulation. Knowledge of the role of each
component is particularly important in trying to mitigate
dysfunction caused by naturally occurring mutations.

Regulation of contraction has been the object of debate for many
years. Following structural evidence for overlapping binding sites for
tropomyosin and non-ATP containing myosin for binding to actin,
there has been a discussion as to whether regulation occurs by
controlling numbers of attached crossbridges or by rate modulation,
i.e., controlling the rate of transition between bound actin-myosin
states. A stumbling block for many to consider the latter possibility is
that the number of attached myosin crossbridges increases following
activation by Ca**. We now know that some of those effects could be
due to myosin linked regulatory mechanisms that do not directly
involve tropomyosin movement. However, there is certainty
competition between binding of myosin-ADP and tropomyosin
for actin binding and one needs to explain how this may
contribute to changes in myosin binding during Ca®" activation.

There are several possible mechanisms by which tropomyosin
and troponin could produce a Ca** dependent increase in myosin
binding. One possibility is that these proteins inhibit all myosin
binding at low free Ca** levels. That view is most often seen in
textbooks. McKillop and Geeves introduced a composite two-step
binding model in which the first step is assumed to be steric blocking
and the second step is a transition between two myosin-actin bound
states [52]. That model is widely cited as describing overall activity,
but it does not include the transitions shown in Figure 1 that are
strictly ATP dependent. It is possible that the second regulated state
in the binding model is a measure of the rate of ATP product release
in Figure 1. If that is the case, then the effects of Ca®" on both
processes should be comparable to each other.

The mechanism outlined in the present work is totally
dependent on ATP as it is based on the great differences in
binding of myosin-ATP (or ADP-Pi) and myosin-ADP to actin.
Decreases in activity at low Ca*" levels result in accumulation of low
affinity, rapidly detaching myosin species containing ATP or ADP-
Pi (Figure 1). Tropomyosin would be situated in the “blocked” state
on actin, but it would not block attachment of myosin in these low
affinity states.

Ca’* binding to troponin C creates an equilibrium mixture
between an inactive state, where tropomyosin partially overlaps
the myosin-ADP binding site (the C state), and the active state where
there is no overlap in the binding sites for myosin-ADP and
tropomyosin. In solution, the ATPase activity increases from
near zero to about 30% of the maximum value. From the
argument given in Figure 1, this partial activation decreases levels
of myosin containing bound ATP and ADP-Pi and increases
myosin-ADP levels. The level of myosin-ADP increase depends
on the rate of ADP release from myosin (in muscle varying inversely
on the speed of shortening) and the ATP concentration. To the
extent that myosin-ADP accumulates, there is an additional increase
in activity as the inhibitory effects of the C-terminal region of TnT
are overcome.
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Tropomyosin movement over actin remains a central feature in
regulation both by participating in the control of the rate of release of
the products of ATP hydrolysis and by overlapping the myosin
binding site to allow dual activation by Ca** and myosin-ADP.
Interesting questions remain such as how the effects produced by
tropomyosin and troponin are altered by the other regulatory
systems present in muscle. It also appears that there is more to
be learned about the reason for conserving the C-terminal region of
TnT and the resulting dual activation by Ca®" and “activating”
species of myosin. For example, why does deletion of the C-terminal
region of TnT increase the total activation in solution but increase
Ca®* sensitivity in muscle fibers? Understanding the role of
tropomyosin-troponin in regulation is a step in answering
these questions.
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