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This research paper introduces a family of one-dimensional S-unimodal maps
based on the Gaussian function, designed to exhibit robust chaos across a wide
range of parameters. These maps are developed to display robust chaos by
avoiding multiple fixed points that are primarily responsible for the coexisting
attractors in 1D maps. The parameter space analysis reveals that chaotic
behaviour is sustained across the entire parameter space, except for a very
narrow region. The study employs a comprehensive computational approach,
including quantitative measures such as sample entropy, Lyapunov exponent,
and invariant measures. The uniformly higher values of sample entropy, uniform
positive values of the Lyapunov exponent, and the existence of invariant
measures in a region of parameter space confirm the presence of robust
chaos in these maps. Such a promising class of robust chaotic maps may be
potentially used in diverse fields such as chaos-based cryptography, pseudo-
random number generation, communication systems, and more.
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Introduction

The study of chaotic behaviour in nonlinear dynamical systems is a fascinating area,
marked by the emergence of periodic windows and co-existing attractors when subjected to
different initial conditions within the parameter space. A slight perturbation in the
parameters can lead these systems into a periodic regime, a phenomenon often referred
to as “fragile chaos”. Conversely, in certain regions of the parameter space, where no
periodic windows exist, a single chaotic attractor prevails over a range of parameters, giving
rise to what we term “robust chaos.” The notion of robust chaos was first introduced by
Banerjee et al. [1] in 1998 through their pioneering work on an electrical circuit known as
the boost converter. This circuit’s mathematical model is a two-dimensional piecewise
smooth map, showcasing a rich collection of border collision bifurcations leading to robust
chaos. Their work also provided a condition for the existence of robust chaos in such
systems, along with the conjecture that many other piecewise systems might exhibit robust
chaos through border collision bifurcations.

Subsequent research by Potapov and Ali [2] in 2000 demonstrated that a network of
neurons, activated with a one-dimensional piecewise smooth map as an activation function,
can lack stable periodic functions, thus exhibiting robust chaos within specific parameter
ranges. Andrecut and Ali [3–5], in their 2001 work extended this understanding by
illustrating that even smooth one-dimensional unimodal maps could exhibit robust
chaos within a broad parameter range. They also outlined a general procedure for
generating smooth unimodal maps that exhibit robust chaos in the vicinity of the
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parameter space. Moreover, they presented a theorem providing a
general condition for the occurrence of robust chaos in S-unimodal
maps. In 2004, Parez [6] presented several simple polynomial
unimodal maps that manifest robust chaos, accompanied by their
respective Lyapunov exponents and invariant distributions.

Kowalczyk [7], in 2005, analyzed the border collision bifurcation
in non-invertible piecewise linear maps. Aguirregabiria [8], in 2009,
proposed methods to generate robust chaos maps whose Lyapunov
exponent varies with the system parameter, deviating from earlier
robust chaos maps like S-unimodal or piecewise smooth maps,

FIGURE 1
Newly constructed S-unimodal functions (Eq. 3) with positive (+) sign for different values of parameters a and v: (A) For a fixed value of a (i.e., a = 1)
and different values of v, (B) For a fixed value of v (i.e., v = 2) and different values of a and (C) same values of both parameters a and v.
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which maintain almost constant Lyapunov exponents throughout
the robust chaos range. This work also challenged the notion that a
negative Schwarzian derivative is necessary for robust chaos, citing
examples from the literature. Elhad and Sprott [9], in their
2011 work, introduced a novel approach to inducing robust

chaos within planar maps. They accomplished this by employing
a simple piecewise smooth feedback mechanism, provided specific
realizable conditions were met. Additionally, they demonstrated the
effectiveness of this method through practical examples. Further
contributions in 2016 to the understanding of robust chaos came

FIGURE 2
Newly constructed S-unimodal functions (Eq. 3) with negative (−) sign for different values of parameters a and v: (A) For a fixed value of a (i.e., a = 1)
and different values of v, (B) For a fixed value of v (i.e., v = 2) and different values of a and (C) same values of both parameters a and v.
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from Han et al. [10], who formulated a theorem establishing criteria
for robust chaos within 2D piecewise smooth maps. Gledning’s [11]
revisited the concept of robust chaos in the context of piecewise
smooth maps and provided a fresh toolkit for exploring this
phenomenon.

Recent research activities showed a growing interest in
identifying, constructing, and designing nonlinear dynamical
systems that exhibit robust chaos and applying them in areas
such as pseudo-random number/bit generation and various
cryptographic and communication applications. In this context,
Hua and Zhou’s [12, 13] work in 2017 proposed various
nonlinear operations and combinations thereof on popular 1D
chaotic maps to generate new mathematical models with chaotic
behaviour. Similarly, Patra and Banerjee [14], in 2018, investigated
robust chaos in a 3D piecewise linear map and derived sufficiency
conditions for homoclinic and heteroclinic intersections.
Jiteurtragool [15], in 2018, presented simplified forms of generic
sigmoidal chaotic maps and a linearized sigmoidal chaotic map

exhibiting chaotic behaviour over a wide parameter range. Hua et al.
[16], in 2017, devised an effective approach for creating
n-dimensional hyperchaotic Cat maps, tailored to desired levels
of complexity. Elhadj’s [17] in 2019, proposed chaoticification
methods for one-dimensional chaotic maps using S-unimodality
and Collet-Eckman conditions. Zhu et al. [18] in the same year,
introduced a 2D logistic-modulated-sine-coupling-logistic chaotic
map (LSMCL), displaying enhanced chaotic behavior. Zhu et al. [19]
in 2019, introduced quadratic polynomial chaotic maps, and
Alawida et al. [20] proposed combined cosine functions with
chaotic maps to create novel chaotic maps with expanded
characteristics. In 2019, Hua et al. [21] suggested a sine
chaotification model by incorporating a sine function as a
nonlinear chaotification transform, which elevated the chaotic
characteristics of the original map. The resulting enhanced
chaotic map showcased superior chaos complexity and a notably
expanded chaotic range compared to its seed. Around the same time,
Zhu et al. [22] presented a novel 2-D chaotic map named LSMCL
(Logistic-modulated-sine-coupling-logistic). This map utilized the
logistic map for modulating the sine map and then combined the

FIGURE 3
Parameter space showing stability regions for the point x � 0 of
S-unimodal function (Eq. 3) (Top frame for positive (+) sign, Bottom
frame for negative (−) sign). The blue region represents stability and
the red region represents the instability of x � 0.

FIGURE 4
Sample entropy for the newly constructed family of 1D
S-unimodal maps (Eq. 3). Top frame for positive (+) sign and bottom
frame for negative (−) sign.
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resulting modulation with the sine map itself. It resulted in a
superior chaotic performance when compared to other
established chaotic maps in terms of Lyapunov exponent, and
Kolmogorov entropy.

In 2020, Hua et al. [23] developed a two-dimensional modular
chaotification system (2D-MCS) to enhance the chaos complexity
of existing 2-D chaotic maps. The modular operation used here
acted as a bounded transform, leading to improved chaotic
behaviour in a broad parameter range, a feat difficult to
achievable by conventional chaotic maps. The scheme was
applied to well-known chaotic maps such as the Henon map,
Zeraoulia-Sprott’s map, and Duffing map, explaining its
effectiveness in generating highly chaotic behaviours. Further,
Hua et al. [24] introduced a two-dimensional (2D) sine
chaotification system (2D-SCS) to increase the complexity and
extend the chaotic ranges of 2-D chaotic maps. They successfully
demonstrated the practical application of 2D-SCS to some specific
2D chaotic maps. Zhu et al. [25] introduced a novel composite
chaotic system known as the parallel chaotic system (PCS) by

combining multiple basic chaotic maps in parallel. Within the PCS,
enhancements to the Lyapunov exponent and the range of chaotic
behaviour were achieved through the introduction of additional
parameters. In 2022, Hua et al. [26] proposed a two-dimensional
(2-D) parametric polynomial chaotic system denoted as 2D-PPCS.
This versatile framework was capable of generating various 2-D
chaotic maps by adjusting the coefficients of the exponents. The
2D-PPCS initialized two parametric polynomials and subsequently
employed modular chaotification on these polynomials. By
manipulating different control parameters, the 2D-PPCS could
fine-tune its Lyapunov exponents to achieve resilient chaotic
behaviours with the desired level of complexity. In 2023, Yi-Bo
et al. [27] introduced the 2D-LMSM, an enhanced chaotic
mapping developed from logistic and sine mappings. This
mapping demonstrated effectiveness in generating resilient
chaotic signals across a wide range of parameter values,
particularly in applications like speech encryption. In the same
year, Vinko et al. [28] conducted an analysis of the robustness of
chaos and edge-of-chaos regime for Chua’s system utilizing a novel
figure of merit based on the correlation coefficient and
Lyapunov exponent.

Overall, the research focused on designing and analyzing the
nonlinear dynamical systems exhibiting robust chaos and their
applications in various domains, continues to expand. In the next
section, we introduce a novel family of S-unimodal maps that
exhibits robust chaos in a wide range of parameter space.

The novel S-Unimodal map family

The Gaussian 1D map exhibits diverse dynamical behaviours,
which include period doubling chaos, reverse period doubling, and,
most notably, the presence of co-existing attractors-a relatively rare
phenomenon in one-dimensional nonlinear maps, across a wide
range of parameter settings [29]. Also, the presence of co-existing
attractors in the Gaussian map and its q-deformed version has been
analyzed by Patidar and Sud [29] and concluded that the appearance
of co-existing attractors in one-dimensional nonlinear maps can be
attributed to the existence of multiple fixed points.

Thus, in the quest for 1D maps exhibiting robust chaos, our
preference is for one-dimensional maps free from multiple fixed
points for a wider setting of parameter space. With this objective in
mind, we’ve introduced a new family of 1D smooth unimodal maps,
built on the foundation of the Gaussian function. These maps are
developed to consistently exhibit robust chaos across a broad range
of parameter settings, effectively circumventing the presence of
multiple fixed points, which are the primary culprits behind the
co-existing attractors in 1D S-unimodal maps.

The modified Gaussian function that we use for designing the
new family of S-unimodal maps, is as follows:

f x, a( ) � exp −a x

a
− 1
2a

( )2( ) − exp − 1
4a

( ), (1)

The above function.

(i) possesses a unique maximum at the critical point x � 0.5
in x ∈ [0, 1],

(ii) f(0, a) � f(1, a) � 0 and

FIGURE 5
Numerically computed invariant measures for the newly
constructed family of 1D S-unimodal maps (Eq. 3) for a selected set of
parameters. Top frame for positive (+) sign and bottom frame for the
negative (−) sign.
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(iii) the Schwarzian derivative of f(x, a) i.e.,

Sf x, a( ) � f‴ x, a( )
f′ x, a( ) − 3

2
f″ x, a( )
f′ x, a( )( )

2

� − 12a2 + 16x4 − 32x3 + 24x2 − 8x + 1( )
2a2 2x − 1( )2

� −12a
2 + 2x − 1( )4

2a2 2x − 1( )2

is negative for all values of x in [0, 1] except x � 0.5.
Therefore, f(x, a) is a S-unimodal function of class C3 on the

interval x ∈ [0, 1].
Now we follow the general recipe of Andrecut and Ali [4] for

generating a new family of one-dimensional S-unimodal functions
F(±)(x, a, v), using the S-unimodal function f(x, a) (Eq. 1) as below:

F ±( ) x, a, v( ) � 1 − v±f x,a( )

1 − v±f c,a( ) ∀ v ≠ 1, v> 0, (2)

FIGURE 6
Lyapunov exponent for the newly constructed family of 1D S-unimodal maps (Eq. 3). Top frame for the positive (+) sign and bottom frame for the
negative (−) sign.
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TABLE 1 Various S-unimodal functions and S-unimodal function families based on them along with the corresponding instability conditions for the point
x � 0 i.e., condition for the existence of chaos.

S.
No.

Base S-Unimodal function
f(x, a); x ∈ [0, 1] and critical point

(c) where f′(c, a) � 0

Family of S-unimodal
functions F(±)(x, a, v) (∀ v ≠ 1, v >0)

instability condition
for x � 0 i.e. the existence of

chaos F′(±)(0, a, v)> 1(∀ v ≠ 1, v >0)

1 ax(1 − x); c � 0.5 1 − v±ax(1−x)

1 − v±(a4)
| ln(v) a
1 − v±(a4)

|> 1

2 ax(1 − x2); c � 1�
3

√
1 − v±ax(1−x2 )

1 − v±(
2a

3
�
3

√ )
| ln(v) a
1 − v±(

2a
3
�
3

√ )|> 1

3 asin(πx); c � 0.5 1 − v± asin(πx)

1 − v±a
|ln(v) aπ
1 − v±a

|> 1

FIGURE 7
Stability regions for the point x � 0 of 1D S-unimodalmap families constructed using the logistic, cubic and sine functions (see Table 1 for reference):
Top-left frame is for logistic function with positive (+) sign, top-right frame is for logistic function with negative (−) sign, middle-left frame is for cubic
function with positive (+) sign, middle-right frame is for cubic function with negative (−) sign, bottom-left frame is for sine function with positive (+) sign,
bottom-right frame is for sine function with negative (−) sign.
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here x � c is a critical point where f′(c, a) � 0.
It can be easily verified that the Schwarzian derivative of

F(±)(x, a, v) i.e.,

SF x, a, v( ) � F‴ x, a, v( )
F′ x, a, v( ) − 3

2
F″ x, a, v( )
F′ x, a, v( )( )

2

� Sf x, a( ) − 1
2

ln v( )f′ x, a( )[ ]2.
Since Sf(x, a) is negative for all values of x ∈ [0, 1] except

x � 0.5, therefore SF(x, a, v) is negative for all x ∈ [0, 1] and
v > 0 except x � c � 0.5 and v � 1. Therefore F(±)(x, a, v) is also
a S-unimodal function.

Since the Schwarzian derivative is negative and the function has
a unique maximum at x = c, there can be at most one attracting

periodic orbit with the critical point in its basin of attraction, i.e., the
orbit with initial condition x = c = 0.5 will approach to x � 0 in few
iterates. The point x � 0 will be unstable if
F(±)′ (0, a, v) �

∣∣∣∣∣∣ln(v)f′(0,a)1−v±f(c,a)
∣∣∣∣∣∣ >1 ∀ v > 0, v ≠ 1. In such case, the map

does not possess any stable periodic orbit, hence a chaotic
attractor prevails.

Parameter space analysis

Stability analysis

The explicit analytic form of the family of newly constructed
one-dimensional S-unimodal functions and the condition of

FIGURE 8
Sample Entropy for 1D S-unimodal map families constructed using the logistic, cubic and sine functions (see Table 1 for reference): Top-left frame is
for logistic functionwith positive (+) sign, top-right frame is for logistic function with negative (−) sign, middle-left frame is for cubic function with positive
(+) sign, middle-right frame is for cubic function with negative (−) sign, bottom-left frame is for sine function with positive (+) sign, bottom-right frame is
for sine function with negative (−) sign.
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instability of x � 0 i.e., the condition of existence of chaotic orbit
may be written as follows:

F ±( ) x, a, v( ) � 1 − v± exp −a x
a− 1

2a( )2( )− exp − 1
4a( )

1 − v± 1− exp − 1
4a( )( ) ∀ v ≠ 1, v> 0 (3)

F ±( )′ 0, a, v( ) � ln v( ) 1
a exp − 1

4a( )
1 − v± 1− exp − 1

4a( )( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣> 1∀ v> 0 v ≠ 1 (4)

We are considering the chaotic iterated map in the form xn+1 �
F(xn, a, v).

In Figure 1 and Figure 2, we have depicted the shape of the newly
constructed S-unimodal functions in the interval x ∈ [0, 1] for
various choices of parameters a and v. Frames 1(a), 1(b) and 1(c)
correspond to the positive (+) sign, i.e., for F(+)(x, a, v) and Frames

2(a), 2(b) and 2(c) correspond to the negative (−) sign, i.e., for
F(−)(x, a, v). We observe that the shape of the function resembles
the familiar logistic function and there appear sensitive variations
with respect to the parameters a and v.

In Figure 3, we illustrate the regions of the parameter space (a, v)
where the condition of instability of x � 0 is satisfied (shown in red) and
not satisfied (shown in blue) by computing the derivative ofF(±)(x, a, v)
atx � 0 i. e.,F(±)′ (0, a, v) (refer to Eq. 4). Particularly in the top framewe
present the results corresponding to the positive (+) sign and in the
bottom frame we present the results for the negative (−) sign.

We observe that in the entire parameter space (a, v) the point
x � 0 is unstable except for a very narrow region near a � 0. The
case v � 1 is excluded from all the computations for the obvious
reason that F is not defined for this choice.

FIGURE 9
Invariant Measures (IVM) for 1D S-unimodal map families constructed using the logistic, cubic and sine functions (see Table 1 for reference): Top-left
frame is for logistic function with positive (+) sign, top-right frame is for logistic function with negative (−) sign, middle-left frame is for cubic functionwith
positive (+) sign, middle-right frame is for cubic function with negative (−) sign, bottom-left frame is for sine function with positive (+) sign, bottom-right
frame is for sine function with negative (−) sign.
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Based on the argument presented earlier, a chaotic orbit can
exist across the entire parameter space (a, v) where the point x � 0
is unstable. To confirm the presence of chaotic orbits within this
parameter space, we conducted an extensive computation
involving two quantitative measures: Lyapunov exponents and
Sample Entropy. Additionally, to validate the existence of ergodic
dynamics within the newly constructed family of S-unimodal
maps, we performed numerical computations of the invariant
measure for several representative sets of parameters. Below, we
provide a concise overview of these measures and a detailed
description of our computational process and the results
we obtained.

Sample entropy analysis

Sample entropy has become one of the important and valuable tools
to quantify the regularity and complexity of dynamical systems found
across various disciplines from neuroscience and physiology to
engineering and finance. Sample Entropy is a non-linear time-series
analysis technique that provides insights into the complexity, regularity,
and predictability of a dynamical system. Introduced as an improvement
over Approximate Entropy [30], Sample Entropymeasures the likelihood
that similar patterns of data points within a time series will remain similar
when additional data points are included. In other words, it quantifies the
degree of self-similarity or regularity in the data [31].

FIGURE 10
Lyapunov exponent for 1D S-unimodal map families constructed using the logistic, cubic and sine functions (see Table 1 for reference): Top-left
frame is for logistic function with positive (+) sign, top-right frame is for logistic function with negative (−) sign, middle-left frame is for cubic functionwith
positive (+) sign, middle-right frame is for cubic function with negative (−) sign, bottom-left frame is for sine function with positive (+) sign, bottom-right
frame is for sine function with negative (−) sign.
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Mathematically, the sample entropy may be calculated
as follows:

SaEn m, r,N( ) � − ln
C m + 1, r( )
C m, r( )( ), (5)

where m is the pattern length or embedding dimension, r is the
tolerance threshold that defines the maximum difference between
two sets of data points to be considered similar,N is the length of the
time series, C(m, r) represents the number of similar patterns of
lengthm with a threshold r. For all our computations reported here,
we have considered m = 5, r � 0.5 and N = 5000.

We computed the sample entropy for the newly constructed
family of S-unimodal maps considering the parameter space
(0≤ a≤ 10, 0≤ v≤ 10) with a step size of 0.01. The results are
presented in Figure 4. In the top frame, we show the results
corresponding to the positive (+) sign and in the bottom frame
we display the results for the negative (−) sign.

Higher values of sample entropy within the parameter space
indicate the complexity of the dynamics, unpredictability, and the
presence of chaotic behaviour. We observe that the sample entropy
consistently remains elevated throughout the entire parameter
space; there is no region within the parameter space where lower
values of sample entropy are found, except for the very low value of
the parameter a.

Invariant measures and ergodicity analysis

In dynamical systems, invariant measures (IVM) play a pivotal
role by facilitating a portrayal of the system’s long-term behaviour,
thereby facilitating an understanding of its underlying structure and
the ability to forecast its future states. Furthermore, they prove
invaluable in elucidating robust chaos, as they offer a statistical
characterization of chaotic behaviour, encompassing chaos
characterization, stability analysis, predictive capabilities, measure
preservation, and ergodicity. Ergodicity, in particular, serves as the
fundamental prerequisite for the existence of an invariant measure.

The quest for the existence and computation of invariant
measures can be a formidable challenge, often necessitating the
employment of advanced mathematical and computational
techniques. Consequently, the analytical expression of invariant
measures remains unattainable for all chaotic systems. One
commonly adopted approach for estimating invariant measures in
chaotic maps involves conducting extensive numerical simulations
over an extended period and subsequently constructing histograms
that depict the states visited by the system over time. These histograms
can serve as reasonably accurate approximations of the invariant.

In the context of this study, we conducted numerical
simulations, each spanning N � 106 steps, to derive the invariant
measures for each scenario under examination. We have analyzed
several cases corresponding to various pairs of parameters a and v.

We have depicted two of the results in Figure 5, with one
corresponding to the positive (+) sign and the other to the
negative (−) sign, respectively, in the top and bottom frames. In
all other cases corresponding to chaotic behaviour, we have obtained
a similar invariant measure. We have analyzed the IVM for several
different sets of initial conditions corresponding to the same
parameter set also and observed that the probability density

distribution remains invariant concluding the ergodic dynamics
of the newly constructed family of S-unimodal maps. We also
observe that the Invariant Measure (IVM) of the newly
constructed family of S-unimodal maps is qualitatively similar to
the IVM of the logistic map, f(x) � 4x(1 − x) that can be described
by an analytic form 1/(π �����

1 − x2
√ ). This similarity suggests that the

newly constructed family of S-unimodal maps is akin to the
logistic family.

The Lyapunov exponent analysis

The Lyapunov exponent is an important quantitative measure of
a dynamical system’s sensitivity to initial conditions, providing
valuable insights into its predictability and long-term behaviour.
Defined as the average rate of exponential divergence or
convergence of nearby trajectories in phase space, the Lyapunov
exponent quantifies the system’s intrinsic instability. Researchers
use Lyapunov exponents to discern chaotic behaviour, assess the
degree of chaos in a system, and predict its predictability horizon. In
this research paper, we also leverage Lyapunov exponents [32] as a
computational tool to investigate the chaotic dynamics of newly
constructed family of S-unimodal maps, shedding light on its
underlying complexity and providing essential information for
understanding the existence of robust chaos. We have done an
extensive computation of the Lyapunov exponent for the newly
developed family of S-unimodal maps in the parameter space
(0≤ a≤ 10, 0≤ v≤ 10) with a step size of 0.01. At each point in
the parameter space, we iterated the map 5000 times, discarding
some initial transient behaviour, to calculate the average convergent
value of the Lyapunov exponent. The results are presented in
Figure 6, where top frame represents the positive (+ve) sign, and
bottom frame represents the negative (-ve) sign. We may clearly
observe that the Lyapunov exponent remains positive and uniform
throughout the entire parameter space we considered in our
computation, with no instance of negative value. Additionally, we
also verified the robustness of chaos for large parameter values
exceeding a > 10 and v > 10. These findings align with the
analytical results based on stability analysis and the previously
reported results of sample entropy. An important observation is
that the Lyapunov exponent throughout the entire parameter space
converges to a value of ln 2 ≈ 0.6931, further confirming the
conjugacy of the newly constructed family of S-unimodal maps
with the logistic map f(x, a) � f(x, 4) � 4x(1 − x). This discovery
presents us with an infinite number of options within the newly
constructed family of S-unimodal maps, achieved by choosing
various combinations of parameters a (> 1) and v (> 1), all of
which exhibit extreme sensitivity and ergodic behavior
qualitatively similar to the logistic map f(x, a) � f(x, 4) �
4x(1 − x).

Comparison with other S-unimodal
map families

To facilitate a swift comparison of dynamic behaviour, with a
specific focus on the prevalence of robust chaos within the proposed
Gaussian function-based S-unimodal map family and other
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analogous S-unimodal map families, we conducted a simultaneous
parameter analysis.

This
Analysis comprised the assessment of stability, sample entropy,

invariant measures, Lyapunov exponent, etc. for S-unimodal map
families based on logistic, cubic, and sine functions, as done for the
Gaussian function-based S-unimodal map family in the preceding
section. It is worth mentioning here that the conventional
S-unimodal maps (xn+1 � f(xn, a)) with logistic, cubic, and sine
functions also exhibit chaos through a period-doubling route and
coexisting attractors, signifying a delicate form of chaos, namely,
fragile chaos.

The summarized results of our comparative analysis for the
S-unimodal map families constructed using the logistic, cubic and
sine functions are presented in Table 1 and Figure 7, Figure 8,
Figure 9 and Figure 10. It is apparent that S-unimodal map families,
based on various functions, also manifest robust chaos across a
broad spectrum of system parameters. Nevertheless, the Gaussian
function-based S-unimodal maps proposed in this study outperform
others in terms of the existence of robust chaos. We particularly
observe that all the S-unimodal map families based on various
nonlinear functions including the Gaussian function exhibit
robust chaos for a very wide range of parameter space for the
negative (−) sign except for a very narrow region below v � 1. In the
case of S-unimodal map families constructed with logistic, cubic and
sine functions and considering the positive (+) sign, the existence of
robust chaos is observed for smaller regions of parameter space
towards the lower values of parameters a and v. Contrary to this, the
robust chaos is prevalent in the entire parameter space for the
proposed S-unimodal map family based on the Gaussian function
with negative (−) sign also. This comparison validates our claims of
superiority of the proposed Gaussian function-based S-unimodal
map family in terms of exhibiting robust chaos in almost the entire
parameter space, except for very narrow strips/regions for very low
values of parameters a and v.

Conclusion

This paper explores the concept of robust chaos in a family of
one-dimensional S-unimodal maps based on Gaussian functions.
Robust chaos is characterized by the absence of periodic windows
and co-existing attractors in a parameter space neighbourhood. We
have constructed a family of one-dimensional S-unimodal functions
derived from Gaussian function that eliminate the possibility of
coexisting attractors and unstable periodic orbits.

Through a comprehensive analysis, the paper demonstrates the
presence of robust chaotic behavior across a wide parameter space.
This is supported by calculations of Lyapunov exponents, Sample

Entropy, and Invariant Measures along with the conventional
stability analysis. Sample Entropy and Invariant Measures
indicate the complexity and unpredictability of the dynamics,
further confirming the existence of robust chaos. The study’s
findings suggest that these newly constructed S-unimodal maps
exhibit robust chaos over a substantial parameter range, making
them valuable for various applications in chaos-based cryptography,
pseudo-random number generation, and communication systems.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

VP: Writing–review and editing, Writing–original draft,
Visualization, Validation, Project administration, Methodology,
Investigation, Funding acquisition, Formal Analysis,
Conceptualization.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. A part of the
research work presented in this manuscript was conducted under
the SERB, Govt. of India MATRICS Grant (MTR/2018/000203).

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Banerjee S, Yorke JA, Grebogi C. Robust chaos. Phys Rev Lett (1998) 80(14):
3049–52. doi:10.1103/physrevlett.80.3049

2. Potapov A, Ali MK. Robust chaos in neural networks. Phys Lett A (2000) 277(6):
310–22. doi:10.1016/s0375-9601(00)00726-x

3. Andrecut M, Ali MK. Example of robust chaos in a smooth map. Europhysics Lett
(2001) 54(3):300–5. doi:10.1209/epl/i2001-00241-3

4. Andrecut M, Ali MK. Robust chaos in smooth unimodal maps. Phys Rev E (2001)
64(2):025203. doi:10.1103/physreve.64.025203

5. Andrecut M, Ali MK. On the occurrence of robust chaos in a smooth system.Mod
Phys Lett B (2001) 15(12and13):391–5. doi:10.1142/s0217984901001793

6. Pérez G. Robust chaos in polynomial unimodal maps. Int J Bifurcation Chaos
(2004) 14(07):2431–7. doi:10.1142/s0218127404010722

Frontiers in Physics frontiersin.org12

Patidar 10.3389/fphy.2024.1328895

https://doi.org/10.1103/physrevlett.80.3049
https://doi.org/10.1016/s0375-9601(00)00726-x
https://doi.org/10.1209/epl/i2001-00241-3
https://doi.org/10.1103/physreve.64.025203
https://doi.org/10.1142/s0217984901001793
https://doi.org/10.1142/s0218127404010722
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1328895


7. Kowalczyk P. Robust chaos and border-collision bifurcations in non-invertible
piecewise-linear maps. Nonlinearity (2004) 18(2):485–504. doi:10.1088/0951-7715/18/
2/002

8. Aguirregabiria JM. Robust chaos with variable Lyapunov exponent in smooth one-
dimensional maps. Chaos, Solitons and Fractals (2009) 42(4):2531–9. doi:10.1016/j.
chaos.2009.03.196

9. Zeraoulia E, Sprott JC. Robustification of chaos in 2D maps. Adv Complex Syst
(2011) 14(06):817–27. doi:10.1142/s0219525911003402

10. Han D, Min L, Hao L. A chaos robustness criterion for 2D piecewise smooth Map
with applications in pseudorandom number generator and image encryption with
avalanche effect. Math Probl Eng (2016) 2016:1–14. doi:10.1155/2016/1496329

11. Glendinning P. Robust chaos revisited. Eur Phys J Spec Top (2017) 226(9):
1721–38. doi:10.1140/epjst/e2017-70058-2

12. Hua Z, Zhou B, Zhou Y. Sine-transform-based chaotic system with FPGA
implementation. IEEE Trans Ind Elect (2017) 65(3):2557–66. doi:10.1109/tie.2017.
2736515

13. Hua Z, Zhou Y. One-dimensional nonlinear model for producing chaos. IEEE
Trans Circuits Syst Regular Pap (2017) 65(1):235–46. doi:10.1109/tcsi.2017.2717943

14. Patra M, Banerjee S. Robust chaos in 3-D piecewise linear maps. Chaos: Interdiscip
J Nonlinear Sci (2018) 28(12):123101. doi:10.1063/1.5050548

15. Jiteurtragool N, Masayoshi T, San-Um W. Robustification of a one-dimensional
generic sigmoidal chaotic map with application of true random bit generation. Entropy
(2018) 20(2):136. doi:10.3390/e20020136

16. Hua Z, Yi S, Zhou Y, Li C, Wu Y. Designing hyperchaotic cat maps with any
desired number of positive Lyapunov exponents. IEEE Trans Cybernetics (2017) 48(2):
463–73. doi:10.1109/tcyb.2016.2642166

17. Elhadj Z. Chaotifying one-dimensional discrete mappings using S-unimodality
and collet–eckmann condition. Int J Bifurcation Chaos (2019) 29(04):1950050. doi:10.
1142/s0218127419500500

18. Hua Z, Jin F, Xu B, Huang H. 2D Logistic-Sine-coupling map for image
encryption. Signal Process. (2018) 149:148–61. doi:10.1016/j.sigpro.2018.03.010

19. Zhu S, Zhu C, Cui H, Wang W. A class of quadratic polynomial chaotic maps and
its application in cryptography. IEEE Access (2019) 7:34141–52. doi:10.1109/access.
2019.2902873

20. Alawida M, Samsudin A, Teh JS, Alshoura WH. Digital cosine chaotic map for
cryptographic applications. IEEE Access (2019) 7:150609–22. doi:10.1109/access.2019.
2947561

21. Hua Z, Zhou B, Zhou Y. Sine chaotificationmodel for enhancing chaos and its hardware
implementation. IEEE Trans Ind Elect (2018) 66(2):1273–84. doi:10.1109/tie.2018.2833049

22. Zhu H, Zhao Y, Song Y. 2D logistic-modulated-sine-coupling-logistic chaotic map
for image encryption. IEEE Access (2019) 7:14081–98. doi:10.1109/access.2019.2893538

23. Hua Z, Zhang Y, Zhou Y. Two-dimensional modular chaotification system for
improving chaos complexity. IEEE Trans Signal Process (2020) 68:1937–49. doi:10.
1109/tsp.2020.2979596

24. Hua Z, Zhou Y, Bao B. Two-dimensional sine chaotification system with hardware
implementation. IEEE Trans Ind Inform (2019) 16(2):887–97. doi:10.1109/tii.2019.2923553

25. Zhu M, Wang C. A novel parallel chaotic system with greatly improved Lyapunov
exponent and chaotic range. Int J Mod Phys B (2020) 34(07):2050048. doi:10.1142/
s0217979220500484

26. Hua Z, Chen Y, Bao H, Zhou Y. Two-dimensional parametric polynomial chaotic
system. IEEE Trans Syst Man, Cybernetics: Syst (2021) 52(7):4402–14. doi:10.1109/tsmc.
2021.3096967

27. Huang YB, Xie PW, Gao JB, Zhang QY. A robust chaotic map and its application
to speech encryption in dual frequency domain. Int J Bifurcation Chaos (2023) 33(08):
2350096. doi:10.1142/s0218127423500967

28. Vinko D, Miličević K, Vidović I, Zorić B. Chaos robustness and computation
complexity of piecewise linear and smooth chaotic chua’s system. Int J Bifurcation
Chaos (2023) 33(04):2350048. doi:10.1142/s0218127423500487

29. Patidar V, Sud KK. A comparative study on the co-existing attractors in the
Gaussian map and its q-deformed version. Commun Nonlinear Sci Numer Simulation
(2009) 14(3):827–38. doi:10.1016/j.cnsns.2007.10.015

30. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl
Acad Sci (1991) 88(6):2297–301. doi:10.1073/pnas.88.6.2297

31. Richman JS, Moorman JR. Physiological time-series analysis using approximate
entropy and sample entropy. Am J physiology-heart circulatory Physiol (2000) 278(6):
H2039–49. doi:10.1152/ajpheart.2000.278.6.h2039

32. Eckmann JP, Ruelle D. Ergodic theory of chaos and strange attractors. Rev Mod
Phys (1985) 57(3):617–56. doi:10.1103/revmodphys.57.617

Frontiers in Physics frontiersin.org13

Patidar 10.3389/fphy.2024.1328895

https://doi.org/10.1088/0951-7715/18/2/002
https://doi.org/10.1088/0951-7715/18/2/002
https://doi.org/10.1016/j.chaos.2009.03.196
https://doi.org/10.1016/j.chaos.2009.03.196
https://doi.org/10.1142/s0219525911003402
https://doi.org/10.1155/2016/1496329
https://doi.org/10.1140/epjst/e2017-70058-2
https://doi.org/10.1109/tie.2017.2736515
https://doi.org/10.1109/tie.2017.2736515
https://doi.org/10.1109/tcsi.2017.2717943
https://doi.org/10.1063/1.5050548
https://doi.org/10.3390/e20020136
https://doi.org/10.1109/tcyb.2016.2642166
https://doi.org/10.1142/s0218127419500500
https://doi.org/10.1142/s0218127419500500
https://doi.org/10.1016/j.sigpro.2018.03.010
https://doi.org/10.1109/access.2019.2902873
https://doi.org/10.1109/access.2019.2902873
https://doi.org/10.1109/access.2019.2947561
https://doi.org/10.1109/access.2019.2947561
https://doi.org/10.1109/tie.2018.2833049
https://doi.org/10.1109/access.2019.2893538
https://doi.org/10.1109/tsp.2020.2979596
https://doi.org/10.1109/tsp.2020.2979596
https://doi.org/10.1109/tii.2019.2923553
https://doi.org/10.1142/s0217979220500484
https://doi.org/10.1142/s0217979220500484
https://doi.org/10.1109/tsmc.2021.3096967
https://doi.org/10.1109/tsmc.2021.3096967
https://doi.org/10.1142/s0218127423500967
https://doi.org/10.1142/s0218127423500487
https://doi.org/10.1016/j.cnsns.2007.10.015
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1152/ajpheart.2000.278.6.h2039
https://doi.org/10.1103/revmodphys.57.617
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1328895

	A family of robust chaotic S-unimodal maps based on the Gaussian function
	Introduction
	The novel S-Unimodal map family
	Parameter space analysis
	Stability analysis
	Sample entropy analysis
	Invariant measures and ergodicity analysis
	The Lyapunov exponent analysis

	Comparison with other S-unimodal map families
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


