& frontiers | Frontiers in Physics

’ @ Check for updates

OPEN ACCESS

EDITED BY
Jitendra Bahadur Maurya,
National Institute of Technology Patna, India

REVIEWED BY
Satyendra Kumar Mishra,

Centre Tecnologic De Telecomunicacions De
Catalunya, Spain

Sushank Chaudhary,

Chulalongkorn University, Thailand

*CORRESPONDENCE
Zhuo Wang,
zhuowang@bnu.edu.cn

RECEIVED 18 November 2023
ACCEPTED 26 January 2024
PUBLISHED 09 February 2024

CITATION

Simovi¢ A, Savovi¢ S, Wang Z, Drljaca B,
Kovacevi¢ MS, Kuzmanovic L, Djordjevich A,
Aidinis K and Chen C (2024), Wavelength
dependent transmission in multimode graded-
index microstructured polymer optical fibers.
Front. Phys. 12:1340505.

doi: 10.3389/fphy.2024.1340505

COPYRIGHT

© 2024 Simovi¢, Savovi¢, Wang, Drljaca,
Kovacevi¢, Kuzmanovic¢, Djordjevich, Aidinis
and Chen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics

TvpPE Original Research
PUBLISHED 09 February 2024
Dol 10.3389/fphy.2024.1340505

Wavelength dependent
transmission in multimode
graded-index microstructured
polymer optical fibers

Ana Simovic?, Svetislav Savovi¢'?, Zhuo Wang?*, Branko Drlja¢a®,
Milan S. Kovacevi¢?, Ljubica Kuzmanovié¢?,
Alexandar Djordjevich? Konstantinos Aidinis>® and Chen Chen’

'Faculty of Science, University of Kragujevac, Kragujevac, Serbia, 2Department of Mechanial Enginering,
City University of Hong Kong, Hong Kong, China, *Center for Cognition and Neuroergonomics, State Key
Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, China,
“Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Kosovska Mitrovica,
Serbia, “Department of Electrical Engineering, Ajman University, Aiman, United Arab Emirates, °Center of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates,

’School of Microelectronics and Communication Engineering, Chongging University, Chongqing, China

Up to now, there have been no commercial simulation tools accessible for
researching the transmission properties of multimode microstructured optical
fibers (MOFs). In order to avoid this problem, this study uses the time-
independent power flow equation (TI PFE) numerical solution to examine the
wavelength dependency of the equilibrium mode distribution (EMD) and steady
state distribution (SSD) in multimode graded-index microstructured polymer
optical fibers (GI mPOF) with a solid core. We showed that the lengths z at
which an SSD is obtained in GI mPOF and the coupling length L. necessary to
create an EMD are shorter at A = 568 nm than they are found to be at A = 633 nm.
The lengths L. and z; stay constant when the wavelength decreases further from
A = 568 to 522 and then to 476 nm. As a result, it is anticipated that a faster
bandwidth enhancement in the tested GI mPOF will take place at wavelengths
around A = 568 nm as opposed to A = 633 nm. Such a bandwidth improvement is
not brought about by additional wavelength reduction. The study’s findings can
be used in communication and sensory systems that use multimode Gl mPOFs at
different wavelengths.
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1 Introduction

Recent years have seen a significant increase in research interest in high-speed short-
range signal transmission across polymer optical fibers (POFs) [1-3]. The assets of POFs,
such as a large core and simple connection, may offer a cost-effective solution for the in-
home network. Polymethyl methacrylate (PMMA) [4, 5], polydimethylsiloxane (PDMS) [6,
7], polystyrene (PS) [8, 9], polycarbonate (PC) [10, 11], perfluorinated polymer (CYTOP®)
[12, 13], cycloolefin polymer (ZEONEX®) [14, 15], and cycloolefin copolymer (TOPAS®)
[16, 17] are just a few of the materials used to fabricate POFs. Due to the flexibility of POF
material, it is feasible to produce POFs that meet the requirements of various applications by
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(A) The cross-section of the multimode GI MOF. The pitch A determines the position of air holes in a triangular lattice. The air holes that make the
four rings of the core have the following diameters: dy, d>, ds, and d4. Two rings of air holes of the same diameter as those in the outermost core ring form
the cladding (d4 = ds = dg). (B) The dashed blue line shows the referent multimode GI MOF's Rl distribution. The solid black line represents the RI

distribution in the core based on Eq. 1, when g = 2.0, and at A = 633 nm.

using alternative specifications or materials. PMMA is the material
that has been used to make POFs the most frequently up until this
time [18-22].

The RI distribution of GI multimode POF gradually decreases
from the core axis to the cladding. The POF’s bandwidth and
transmission distance can both be increased using this type of RI
distribution. To create GI POF, however, advanced doping
techniques are required. MOF, often referred to as photonic
crystal fiber, was successfully proposed in the 1990s [23]. The
flexibility of the optical fiber is considerably increased by the
microstructure of MOFs. Numerous relevant MOF features have
been investigated by changing the microstructure [24-27].
Eijkelenborg and associates created the first PMMA mPOF in
2001 [28]. The various applications of mPOF then attracted
scientific attention [29, 30]. The core and/or cladding layer of a
typical mPOF design can be changed by altering the placement and/
or size (d) of air holes within a concentric ring-like region, as shown
in Figure 1. In Figure 1, an mPOF that mimics a GI optical fiber
features a core with different-sized air holes. GI mPOF offers more
latitude in changing the air-hole diameters and pitch than typical GI
POF, which calls for complex doping methods. Additionally, for
communication purposes, it has been found that GI mPOF has a
wider bandwidth and less loss than traditional GI POF [31].

Mode coupling is primarily caused by light scattering, which
takes place when transient abnormalities in multimode optical fibers
transmit power from one mode to another. Modal dispersion can be
decreased and transmission bandwidth increased by using mode
coupling [30]. Mode coupling prevents measurements of an optical
fiber’s fundamental optical characteristics, such as attenuation and
bandwidth, from being made until the steady state distribution
(SSD) has not yet been fully obtained at length z,. Thus, it is
essential to comprehend the fiber lengths at which an
equilibrium mode distribution (EMD) and SSD are established
(EMD is achieved at length L,). It is of particular interest to
explore how wavelength affects GI mPOF’s structural and
physical parameters and therefore power flow at different
fiber lengths.
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Up to now, there have been no commercial simulation tools
available for studying the transmission characteristics of multimode
MOFs. To circumvent this problem, the time-independent power
flow equation (TI PFE) is numerically solved in this study to
investigate the wavelength dependent light transmission in GI
mPOF. We calculated the lengths for achieving the EMD and
SSD for multimode GI mPOF with a solid core using launch
beam distributions with different radial offsets Ar at different
wavelengths A (the low attenuation windows of POFs). As shown
in Figure 1, we proposed that the air holes in the core and cladding
be arranged in a grid of triangles with regular pitch A. The shorter
the GI mPOF’s length at which EMD is attained, the sooner the
functional dependency of bandwidth changes from of 1/z to of 1/z'?
(slower bandwidth decline) [16]. This study is the first to examine
how wavelength affects power flow in GI mPOF to the best of our
knowledge. The numerical results reported in this work are very
useful in communication and sensory systems that use multimode
GI mPOFs at different wavelengths.

2 Gl mPOF design

The GI mPOF that was examined in this study is depicted in
Figure 1. This GI mPOF is made up of six air-hole rings, numbered
1, 2, ..., 6, respectively.

A triangular lattice with pitch A holds the air holes in the
studied polymer fiber. The parabolic RI distribution in the core is a
result of the appropriate choice of the air-hole diameters in the
four inner air-hole rings. The air-hole diameters in rings 5 and
6 are equal to those in ring 4 (dy = ds = ds). This system was
simulated using the TI PFE.

3 Time-independent power
flow equation

The GI optical fibers have the following RI profile:
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TABLE 1 Refractive index n0, n1, n2, n3, n4, n5, and né6, the relative index
difference A, the core index exponent g, and the maximum principal mode
number M at different wavelengths.

A [nml 633 568 522 476
Ny 1.5220 1.5240 1.5260 1.5280
ny 1.5201 1.5232 1.5253 1.5274
Ny 1.5145 1.5231 1.5252 1.5273
ns 1.5050 1.5223 1.5246 1.5268
Ny 1.4920 1.5099 1.5140 1.5178
ns 1.4920 1.5099 1.5140 1.5178
g 1.4920 1.5099 1.5140 1.5178
A 0.0197 0.0093 0.0079 0.0067
g 2.0 4.5 4.7 5.0
M 24 22 22 22

9712
ey () [1 —2A(A)(—> ] (0O<r<a)
n(r,A) = a (1)

Moo (M) (1=28AN)"2 =g (A)  (r>a)

Here n.,(\) is the core’s highest index (measured at the fiber
axis), ng(A) is the cladding’s index, A = [n¢, (A) — 1 (A)]/1¢0 () s
the relative index difference, g is the core index exponent, and a is
the core radius.

The TI PFE for GI optical fiber is [32]:

OP(m,A,z) D OP(m,\z) P2 (m, A, z)
=— +D
0z m om om?

)

where P(m, A, z) is power in the m-th principal mode (modal
group), z is the coordinate along the fiber axis, and D is a
constant mode coupling coefficient. The maximum principal
mode number M(\) can be calculated as [32]:

_ lgA ()
M((A) = 79 ") akng, (1) (3)
where k = 27/).

The principal mode m excited at the input fiber end is [32]:

e (CORE™

where Ar is the radial offset of the launch beam and 6 is the launch

(9+2)/29
] (4)

beam angle. In this work, Equation 2 is solved using the explicit finite
difference method [32].

4 Numerical simulation results

Light transmission was examined in a multimode GI mPOF with
a solid core (Figure 1). The effective V parameter for such a fiber is

21
V= Taeff\/ng -, (5)

given as:
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where a.;= A/ \/3 [33, 34], and N 18 the effective RI for various
core and cladding layers, as determined by combining the Equation
5 with the effective V parameter [33, 34]:

Ad\ A,
V(K’ X) A4 exp (AsA/A) (©)

The fitting parameters A; (i = 1-4) are given as:

bit bi bis
d d d
A = ap +ap (X) + ai2<X> +a; (X) 7

The coefficients a; to a;; and b;; to b;; (i = 1-4) are given in our
previous work [34].

We employed our approach Eq. 2 on the GI mPOF with the
core radius a = 4A = 16 um, where A = 4 pm, and the diameter of
the fiber b =1 mm. Table 1 displays the core’s refractive index n,, at
different wavelengths when measured along the fiber axis. For A =
4 um and air-hole diameters of the four air-hole rings in the core
dy = 0.6um, d, = 0.7pum, d; = 1.3 um, and dy = 3.1 um, the
refractive indices 1y, 1, 13, and ny, respectively, calculated using
Eqs 6, 7 for different wavelengths, are given in Table 1. Parabolic RI
distribution Eq. 1 in the core with g = 2.0, 4.5, 4.7, and 5.0 is
achieved at X = 633, 568, 522, and 476 nm, respectively. The air-
hole diameter in the cladding rings 5 and 6 is dy = ds = ds, and
therefore the refractive index of the cladding is ny = ns = ng = n,.
Table 1, for the GI mPOF under investigation, at various
wavelengths, provides the maximum principal mode number M
(Eq. 3). The coupling coefficient is D = 1482 1/m [29]. The typical
values of D that define a standard GI POF can be used when
modeling the GI mPOF due to the fact that the intensity of mode
coupling in all types of POFs is correlated with the polymer core
material. An analogous foundation was used to model a
silica MOF [31].

As an illustration, for X = 568 nm, Figure 2 shows the
development of the normalized output modal power
distribution P (m,\,z), which depends on the length of the fiber.
Eq. 2 assumes a Gaussian beam P (0,z) launched with {6 = 0° for
numerical calculations. Results are displayed for radial offsets of
Ar =0, 4, 8, and 12 um. It can be seen from Figure 2A that at short
fiber lengths, due to mode coupling, only lower-order modes shift
their midpoints of the power distributions to zero (m = 0). With
increasing fiber length, higher order modes start to couple, shifting
their distributions to m = 0 (Figure 2B). The EMD is obtained by
shifting the midpoints of the power distributions of all modes to
m = 0 at the coupling length of L, = 6 m (Figure 2C). Figure 2D
shows that SSD is established at z=z; = 30 m. The lengths L, and z,
at various wavelengths are displayed in Table 2. It can be seen that
the maximum principal mode number M drops with decreasing
wavelength from A = 633 to 568 nm, which causes the lengths L.
and z; to decrease. Shorter lengths are required to accomplish
EMD and SSD due to the smaller wavelength and fewer
propagating modes. The maximum principal mode number
22 with subsequent
wavelength reduction from A = 568 to 522 and finally to

maintains the constant value M =

476 nm, leading to the same lengths L. = 6 m and z; = 30 m. It

is also worth noting that increasing the parameter g with
decreasing the wavelength A, i.e., modification of the GI
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FIGURE 2

Normalized output modal power distribution P (m,\,z) acquired by numerically solving the Tl PFE (2) over a range of radial offsets Ar = 0, 4, 8, and
12 um at different fiber lengths (A) z = 02m, (B)z=1m, (C) z= 6 m, and (D) z = 30 m at A = 568 nm.

TABLE 2 Lengths L. (for achieving emd) and Zs (for achieving ssd) at
different wavelengths.

A [nm] 633 568 522 476
L. 18 6 6 6
Z 60 30 30 30

distribution toward a step-index distribution, does not lead to
longer lengths L. and z,. This is a consequence of the larger
influence of wavelength A and maximum principal number M
on these two characteristic fiber lengths.

It is important to notice that mode coupling behavior controls
how the GI MOF bandwidth varies with length. A length less than
the coupling length L. has an inversely linear effect on the
bandwidth. Beyond this equilibrium length L, it has a 7?2
dependence, though. As a result, a shorter LC would lead to a
more rapid transition to a slower bandwidth drop phase [30, 35, 36].
The investigated GI mPOF is predicted to experience a faster
bandwidth enhancement at a wavelength of A = 568 nm than at
A = 633 nm. Such an improvement in bandwidth is not achieved by
568 to 522 and

further reducing the wavelength from A =
subsequently to 476 nm.

In contrast to the GI mPOF that we focused on in this
investigation, silica MOFs have much weaker mode coupling,
resulting in a length L. between 1.45 and 1.65km at which an
EMD is achieved, and a length z, between 3.30 and 3.80 km for the

establishment of an SSD [34].
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5 Conclusion

In this study, the power flow along a GI mPOF at various
wavelengths is examined using the TI PFE. We have demonstrated
that the lengths L, and z, needed to achieve an EMD and an SSD,
respectively, in GI mPOF are shorter at A = 568 nm than they are at A =
633 nm. The lengths L, and z, stay constant when the wavelength
decreases further from A = 568 to 522 and then to 476 nm. Therefore, the
shorter L, causes a quicker changeover to the slower bandwidth decrease
regime. As a result, a faster bandwidth enhancement in the tested GI
mPOF is only anticipated to take place at wavelengths A = 568 nm as
opposed to that at A = 633 nm. Such a bandwidth improvement is not
brought about by additional wavelength reduction. The study’s findings
can be used in communication and sensory systems that use multimode
GI mPOFs at different wavelengths, ie., at different low attenuation
windows. Calculating the modal distribution of the GI mPOF used as a
component of the optical fiber sensory system at a specific length at
different wavelengths is also important. The future research on this type
of optical fiber should be calculations of bandwidth at different
wavelengths, which can be realized by numerically solving the time-
dependent power flow equation.
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