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Identifying key nodes in complex networks remains challenging. Whereas
previous studies focused on homogeneous networks, real-world systems
comprise multiple node and edge types. We propose a meta-path-based key
node identification (MKNI) method in heterogeneous networks to better capture
complex interconnectivity. Considering that existing studies ignore the
differences in propagation probabilities between nodes, MKNI leverages meta-
paths to extract semantics and perform node embeddings. Trust probabilities
reflecting propagation likelihoods are derived by calculating embedding
similarities. Node importance is calculated by using metrics incorporating
direct and indirect influence based on trust. The experimental results on three
real-world network datasets, DBLP, ACM and Yelp, show that the key nodes
identified by MKNI exhibit better information propagation in the Susceptible
Infected (SI) and susceptibility-influence model (SIR) model compared to
other methods. The proposed method provides a reliable tool for revealing
the topological structure and functional mechanisms of the network, which
can guide more effective regulation and utilization of the network.
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1 Introduction

In practical research, various entity interactions are usually modeled as complex
networks for convenience, such as relationship networks between individuals in social
networks, cooperation networks between scholars in academic networks, interaction
networks between particles in physics [1]. In the task of analyzing complex networks,
key nodes identification is an extremely important research topic [2]. Key nodes refer to
nodes with great influence in networks. Although they account for only a small fraction of
network nodes, they can exert rapid and widespread influence over most ordinary nodes [3].
For instance, in e-commerce networks, advertising recommendations from users with
extensive outreach can swiftly increase product sales; when an epidemic outbreak occurs, a
tiny fraction of people with powerful propagation capabilities act as the major driving forces
behind disease diffusion.

Therefore, accurate identification of key nodes can bring value in multiple aspects: In
e-commerce networks, influential users can be identified to make product
recommendations, thereby improving product exposure and increasing sales; In
epidemic networks, when an epidemic outbreak occurs, super-spreaders with powerful
propagation capabilities can be recognized for focused isolation and treatment, to contain
disease spreading; In power grids, identifying critical equipment nodes substations helps
optimize resource allocation and enact protection measures, aiming to avoid risks of partial
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or complete blackouts. Overall, identifying key nodes in complex
networks provides an important means to reveal the topological
structures and functional mechanisms of the networks, which can
guide more effective regulation and utilization of the networks.

Existing studies often simplify complex networks by constructing
homogeneous network models, which only contain a single type of
nodes and edges. However, real-world complex networks are
heterogeneous, comprising multiple types of nodes and diverse
edge relationships. Heterogeneous networks can capture the
complexity of real-world systems more comprehensively.
Therefore, approaches that analyze homogeneous network models
have limited effectiveness when applied to heterogeneous networks
directly. Given this, more and more researchers are turning to study
key nodes identification in heterogeneous networks. Some recent
work has tried hierarchical modeling [4] or extracting multiple
meta-path instances [5] in heterogeneous networks to measure
node importance. However, these methods overlook the varied
influence probabilities between different node pairs, leading to
unsatisfactory performance in identifying key nodes.

To address the above issues, this paper proposes a meta-path-
based key node identification (MKNI) method in heterogeneous
networks: A meta-path-based network embedding model is utilized
to learn and extract the complex structural information of the
heterogeneous network. Based on the vector similarities of the
embeddings, a trust probability measure between node pairs is
proposed to quantify the influence propagation probabilities. Two
metrics are constructed to measure each node’s direct and indirect
influence. By integrating the direct and indirect influence measures,
the importance ranking of nodes is obtained.

Our main contributions are as follows:

1) A meta-path-based key node identification approach is proposed
in heterogeneous networks. It extracts heterogeneous information
using meta-paths and incorporates network topological structure
to construct influence metrics. With these metrics, the node
importance ranking is obtained to identify the key nodes

2) A trust probability between nodes based on vector similarity is
proposed. The trust probability can effectively quantify the
likelihood of information propagating from a source node to a
target node, improving the accuracy of node importance
computation.

3) On three real-world heterogeneous network datasets, DBLP,
ACM, and Yelp, experimental results show that the key nodes
identified by MKNI have better information propagation
capabilities compared to those identified by other methods.

The remaining sections are organized as follows: the related works
about key nodes identification are presented in Section 2. Section 3
introduces the related definitions and problem description of key
nodes identification in heterogeneous networks; Section 4 explains
our proposed method. Section 5 mainly describes the experiments we
have done. Section 6 concludes this paper and discusses future work.

2 Related work

For complex network key node identification, existing studies
mainly focus on homogeneous networks and heterogeneous networks.

For homogeneous networks, many scholars have conducted in-
depth research and obtained considerable results. Kamal et al.
proposed a local centrality metric to identify key nodes by
considering their negative effect on the clustering coefficient and
the positive effect of the sum of neighbor clustering coefficients [6].
Kitsak et al. proposed the K-Shell method, quantifying the global
importance of nodes by iteratively decomposing the nodes with the
fewest neighbors from the outer shell towards the inner shell [7].
Yang et al. incorporated the K-Shell method to improve the gravity
model for combining local and global metrics of key nodes [8]. The
above methods have achieved good performance on homogeneous
networks. However, homogeneous networks only have one node
type and one edge type. The limited information contained cannot
fully leverage the complexity of real-world network data.

For heterogeneous networks, many studies have been done on
multi-relational networks containing one node type and multiple
edge types. Ding et al. combined biased random walks with
PageRank to iteratively solve node importance in multi-relational
networks [9]. Wu et al. eigenvector centrality to multi-relational
networks and proposed an eigenvector multicentrality [10]. Luo
et al. defined multi-relation networks local aggregation coefficient,
combined with degree centrality, extended the ClusterRank metric
to multi-relation networks [11]. They introduced the D-S evidence
theory to integrate both metrics and proposed a node multiple
evidence centrality metrics. While multi-relation networks consider
multiple types of relationships, they only account for a single node
type, which still differs from real-world networks.

Therefore, increasing attention has been paid to heterogeneous
networks with multiple node and edge types. Wan et al. first divided
the heterogeneous network into core layers and auxiliary layers,
calculated centrality scores and influence weights of nodes in each
layer, and obtained key nodes in the core layer [4]. Soheila et al.
proposed the Entropy Ranking Method by considering neighbors,
meta-path instances, and both combined, using their linear
combination as node importance [5].

Recently, node embeddingmethods have been used to learn low-
dimensional representations while preserving network
characteristics for downstream tasks. For homogeneous networks,
Yang et al. generated node embeddings by DeepWalk and used
embedding similarity as node distance combined with K-Shell for
node importance [12]. For heterogeneous networks, Li et al.
obtained node embeddings using varied meta-paths to capture
complex structures and heterogeneity. They compute the
similarity between nodes with a weighted mechanism, thereby
selecting nodes with high influence within the network [13].

The above studies provide various insights for heterogeneous
network key node identification. However, they do not well integrate
topological and heterogeneous information, leading to unreliable
results. Also, they overlook varied influence probabilities between
node pairs which should be differentiated when calculating node
importance. To address these issues, we propose the MKNI method,
extracting heterogeneous data via meta-paths and using node
embedding models to learn vector representations. Based on
vector similarities, we propose trust probabilities to measure
influence likelihoods between nodes, and apply them to two
topology-based influence metrics. By summing the two influences
and ranking, we obtain key nodes. Our method can effectively
combine topological and heterogeneous information, and
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differentiate importance calculation between nodes, achieving
network key node identification.

3 Related definitions and problem
descriptions

In this section, we introduce the related definitions and problem
descriptions of key nodes identification.

3.1 Related definition

3.1.1 Homogeneous/heterogeneous network
A network is defined as a graph G � (V, E, A, R), where V �

vi|i � 1, 2, 3, . . . , n{ } is a set of nodes, |V| � n represents the total
number of nodes, E � eij|i, j � 1, 2, 3, . . . , m; i ≠ j{ } is a set of edges,
and |E| � m represents the total number of edges [14]. Each node
vi ∈ V belongs to one particular type of node in the node type set A,
and each edge eij ∈ E belongs to one particular type of edge in the
edge type set R. As shown in Figure 1, the network A with |A| +
|R| � 2 is called a homogeneous network, as shown in Figure 1A, and
the network B with |A| + |R|> 2 is called a heterogeneous network,
as shown in Figure 1B.

3.1.2 Network schema
A network schema, denoted as TG � (A, R), abstracts node and

edge types from a heterogeneous network into a directed cyclic
graph [14]. It enables incorporating semantic information by semi-
structuring heterogeneous networks. Figure 1C shows a sample
schema obtained from the heterogeneous network in Figure 1B.

3.1.3 Meta-path
Ameta-path P is defined on a network schema TG � (A, R) and

is denoted in a form of P � A1 →R1 A2 →R2 /Ai →Ri /→Rl−1Al, 1< i< l,
which describes a composite edge R � R1+R2+/Rl between node
A1, A2, . . .Al+1, where + denotes the composition operator on
relations [14]. In Figure 1D, the first meta-path APA (Author-
Paper-Author) denotes authors connected by co-authored papers.
The second meta-path APCPA (Author-Paper-Conference-Paper-
Author) represents author connections through papers presented at
the same conference.

3.1.4 Meta-graph
A meta-graph is a directed acyclic graph derived from the

network model [14]. It integrates multiple meta-paths with
common nodes. Figure 1E shows a sample network schema with
twometa-paths APCPA and APAPA, which can form ameta-graph.

3.2 Problem descriptions

We focus on the key node identification problem of
heterogeneous networks. Given a heterogeneous network
G � (V, E, A, R), where |A| + |R|> 2.

The task aims to design a node importance evaluation method to
get each target type node’s importance in the network. The top k
nodes in importance are identified as key nodes.

The identified key nodes set S is described by Eqs 7, 8.

NI � Score Vt( ). (1)
S � Top NI, k( ). (2)

FIGURE 1
Examples of related definitions of heterogeneous networks. (A)
Homogeneous network. (B) Heterogeneous Network. (C) Network
schema. (D) Meta-path. (E) Meta-graph.
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whereVt denotes the set of nodes with target type t, Score(Vt) is the
node importance calculation function, Top(NI, k) denotes the
function that extracts the top k nodes from the importance
calculation results NI.

4 Proposed method

The framework of the proposed method is shown in Figure 2.
First, heterogeneous network node embeddings are learned to map

different nodes into a shared vector space. Next, the direct and
indirect influence of target nodes is computed. Finally, node
importance rankings are derived via weighted summation.

4.1 Heterogeneous network
node embedding

We adopt Metapath2Vec [15] for node embedding to
incorporate structural and heterogeneity information.

FIGURE 2
The framework of the proposed MKNI. (A) MKNI framework. (B) Heterogeneous network node embedding. (C) Node importance evaluation.
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Metapath2Vec comprises meta-path-based random walks and
Heterogeneous Skip-Gram.

1) Meta-path-based random walk: The method is based on a
given meta-path P to produce a corpus with rich semantics.
The transition probability of selecting the next node at time
step t is defined as:

p vt+1i+1
∣∣∣∣vti ,P( ) �

1

Nt+1 vti( )∣∣∣∣ ∣∣∣∣, vt+1i+1 , v
t
i( ) ∈ E

0, others

⎧⎪⎪⎨⎪⎪⎩ , (3)

where P is the selected meta-path, and Nt+1(vti ) denotes the
neighbor of node vti that satisfies the meta-path constraint at
time t + 1. Thus, the next node is chosen based on the meta-path
rules. Nodes without connecting edges or violating meta-path types
are excluded, denoted as others in Eq. 3.

2) Heterogeneous Skip-Gram: The generated corpus is used to
train node embeddings based on the Heterogeneous Skip-
Gram model, with the objective function denoted by Eq. 4:

argmaxθ∑v∈V
∑

t∈Av
∑

ct∈Nt v( )logp ct|v; θ( ), (4)

where Av is the node type of node v, p(ct|v; θ) � eHctHv∑u∈V
eHuHv

, Hv

denotes the vth row of the embedding vector matrix H, i.e., the
embedding vector of node v.

To incorporate heterogeneity, node embeddings are learned
using varied meta-paths for random walks. As longer meta-paths
can introduce noisy semantics [16], we restrict to meta-paths under
length 5, such as APCPA.

4.2 Node importance evaluation

Nodes exert direct influence through neighbors and indirect
influence via intermediate nodes. We adopt neighborhood
information to quantify direct influence. Homogeneous networks
based on meta-paths are constructed to estimate indirect influence
propagation.

4.2.1 Direct influence
Node embedding vectors enable computing node similarity via

cosine similarity. The value range is adjusted to [0, 1] using Eq. 5:

simij �
hi • hj
hi| || | hj| || | + 1

2
, (5)

where hi denotes the vector of node i, • indicates the dot product of
the vectors, and ‖hi‖ represents the length of the vector. Further,
node similarities are computed using different meta-paths. The
averaged similarity is taken as the final result.

Considering that the target node chooses whether to accept the
message, we propose the trust probability. It measures the likelihood of
information propagating from the information source node to the target
node based on neighborhood similarity. The trust probability of node j
accepting information from neighbor i can be computed by Eq. 6.

pij � simij∑
kϵNj,Ak�Ai

simjk
, (6)

where the restriction kϵNj, Ak � Ai is used to ensure that the trust
probability is calculated from the neighbor node j of the same type
as the target node i.

The information propagation capability of node i is obtained by
aggregating trust probabilities between node i and all its neighbor
nodes, formulated as Eq. 7:

DIi � ∑
jϵNi

simij∑
kϵNj,Ak�Ai

simjk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

4.2.2 Indirect influence
Different meta-paths in heterogeneous networks capture

distinct semantics. Nodes spread influence through these paths,
with longer paths imparting smaller gains per the small-world
phenomenon [17]. Kamal et al. discovered that in networks
exhibiting a rich club effect, local metrics proved significantly
more effective than global metrics in assessing nodes’ capability
to disseminate information [18]. Therefore, we employ a meta-path
of length 2 for indirect influence calculation.

The meta-path is employed to transform the heterogeneous network
into a homogeneous network. Figure 3 provides an example of the
academic network extracted using the APA meta-path. To
comprehensively consider the influence of intermediates, we adopt the
weighted network for calculation. The weights of the connected edges
correspond to the number of edges they formbased on the intermediate P.

We introduce the clustering coefficient [6], measuring neighbor
interconnectivity. Higher values indicate neighbors easily interact
without the node. Thus, high coefficient nodes with many neighbors
may not be critical. The clustering coefficient is described by Eq. 8:

ci � 2ti
Ni* Ni − 1( ), (8)

where ti is the number of triangles formed by node i and its
neighbor nodes.

In addition, indirect influence also incorporates a trust
probability between nodes, formulated as Eq. 9:

IIi � ∑
jϵNi

sim i, j( )∑
kϵNj

sim j, k( )*wij*e
1−ci( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

where wij represents the weight of edges between node pairs, and its
value is equal to the number of connected edges of node i and node j
existing in the heterogeneous network under the meta-path.

4.2.3 Node importance
Node importance is derived from direct and indirect metrics. To

normalize the different dimensions, Min-Max scaling shown in Eq.
10 is applied:

Fnorm � F − Fmin

Fmax − Fmin
, (10)

where Fnorm is the result of normalization, F is the value of the node, Fmin

andFmax are theminimumandmaximumvalues in themetrics sequence.
Finally, node importance is calculated using Eq. 11. And the top

K nodes by importance are identified as key nodes.

NIi � Snorm DIi( ) + Snorm IIi( ), (11)
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4.3 Algorithm description

The Algorithm 1 shows the complete identification process of
the key nodes.

Input:

G: a heterogeneous information network

P: using meta-paths

k: number of key nodes

Output:

NI: node importance set

S: key node set

1) Initialize S � null

2) Obtain the corpus based on the random walk of

meta-path P
3) Obtain the low dimensional vector H1, H2 based on

the Metapath2Vec model

4) For each node i do

5) Compute the direct influence DIi using Eq. 7

6) Extract homogeneous networks G′ � (V′,E′) using

meta-path P
7) For each node i do

8) Compute the indirect influence IIi using Eq. 9

9) Normalize the metrics using Eq. 10

10) For each node i do

11) Compute the node importance NIi using Eq. 11

12) S � Top(NI,k).
13) Return NI and S

Algorithm 1. Key node identification algorithm for nodes.

4.4 Time complexity

The time complexity of preprocessing the node sampling
probability based on the number of edges is described by Eq. 12

O m( ), (12)

where the number of edges is m.
The complexity of generating random walk sequences is

described by Eq. 13

O n*l*t( ), (13)
where the number of nodes in the graph is n, the length of random
walk is l and the number of walks is t.

The complexity of Skip-Gram training is described by Eq. 14

O n*l*t*c*b*e( ), (14)
where the context window size is c, the number of negative samples
is b, and the number of model iterations is e.

The complexity of direct influence calculation based on the
number and trust probability of neighbors is described by Eq. 15

O n*a2( ), (15)
where the mean of neighbors is a.

The complexity of extracting node relationships under the meta-
path of length 2 and indirect influence calculation is described by Eq. 16

O 2*n*a2( ), (16)

The complexity of weighted summation and ranking is
described by Eq. 17

O n( ) + O n* log n( ), (17)

The total time complexity is described by Eq. 18

O m + n*l*t + n*l*t*c*b*e + 3n*a2 + n + n* log n( ), (18)

Since l, t, c, b, e and a are usually small constants, the time
complexity can be simplified as Eq. 19

O m + n* log n( ), (19)

5 Experiments

5.1 Datasets

To evaluate the effectiveness of the proposed method, we
conducted experiments using three real-world datasets, DBLP

FIGURE 3
An example of Network transformation based on APA meta-path. (A) Author-Paper network. (B) Author-Author network.
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[19], ACM [19] and Yelp [19]. DBLP and ACM are academic
networks, Yelp is an e-commerce network. Tables 1, 2 present
the size and fundamental topology characteristics of these
networks. Specifically, the distance denotes the shortest path
length between nodes; the diameter represents the length of the
longest shortest path; network density indicates the ratio of actual
edges to the maximum possible, reflecting the level of
interconnectivity between nodes; the average degree signifies the
average number of neighbors for each node. In addition, Figure 4
shows the degree distributions of these three networks.

Tables 1, 2 showed the three heterogeneous networks had
differing scales and densities. The complex edge types led to
overall sparse edges and small densities, especially for DBLP.
Additionally, the three datasets exhibited contrasting diameter,
average distance, and average degree. Therefore, the three
datasets provided good diversity to verify the method’s effectiveness.

5.2 Evaluation criterion

5.2.1 Node propagation capability
The ability to disseminate information is a key factor to evaluate

the importance of node [8]. There are many information
propagation models like independent cascade model [20], linear
threshold model [21], and disease spreading models [5]. Among
them, the susceptibility-infection model (SI) [5] and susceptibility-
influence model (SIR) [12] are the most commonly used in key node
identification researches. Therefore, we used the SI and SIR models
to evaluate the effectiveness of the method [22]. The SI model
simulates the spread of an epidemic, where nodes can only change
their status from susceptible (S) to infectious (I). Infected nodes have
a probability β of infecting their susceptible neighbors each time

step, and once a node is infected, it will remain in that state [5]. In
SIR model, infected nodes have the probability γ to recover as
immune individuals and no longer participate in the infection [12].

To demonstrate the method’s effectiveness in identifying key
nodes, experiments set iteration times to 20, and used propagation
scope as the evaluation metric. 100 experiments were conducted to
reduce bias, with infectious scope calculated by averaging. In the SI
experiments, a large β would cause overspreading and rapid full
network infection. This prevents distinguishing key node importance.
Also, there are differences in the sparsity and actual propagation
probability in different networks. Thus, β was set to 0.05 for academic
networks and 0.01 for e-commerce networks. In the SIRmodel, γ is set
to the double of β. The propagation scope formula was as Eq. 20:

f t( ) � 1 − St| |
V| |, (20)

where the St is the set of susceptible nodes at time step t, f(t)
denotes the infection scope at time step t.

5.2.2 Average shortest path length
Rich club effect demonstrates that more decentralized seed

nodes enable faster information propagation [18]. Therefore, we
further select the average shortest path length between key nodes to
analyze the performance of different methods, which is defined as
Eq. 21 follows [23]:

Ls � 1
S| | S −1| ||( ) ∑

u,v∈S
u≠v

lu,v, (21)

where S is the key node set, |S| denotes the number of key nodes in S,
and lu,v denotes the length of the shortest path from node u to v.

TABLE 1 Network scale.

Networks Node types Number Total Edge types Number Total

DBLP Author 14,475 28,866 A-P 41,782 56,153

Paper 14,371 P-C 14,371

Conference 20

ACM Author 5,969 9,039 A-P 8,987 12,005

Paper 3,018 P-S 3,018

Subject 52

Yelp User 1,286 3,903 U-B 30,838 33,452

Business 2,614 B-C 2,614

Category 3

TABLE 2 Network structure characteristics.

Networks Average distance Diameter Density Average degree

DBLP 5.633 10 0.00013 3.891

ACM 5.766 16 0.00032 2.887

Yelp 3.172 6 0.00439 17.142
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5.2.3 Node ranking monotonicity
Ma et al. pointed out that good node influence rankings require

high resolution [24]. Higher resolution enables easier distinction
between nodes’ influence differences. Therefore, to quantitatively
measure resolution, ranking monotonicity was introduced as an
evaluation metric, calculated by Eq. 22:

Monotonicity M( ) � 1 − ∑c ∈ VNc Nc − 1( )
N N − 1( )[ ]2

, (22)

where Nc denotes the number of nodes with the same metric
evaluation score; N denotes the number of nodes in the network.

5.3 Method comparison experiment

5.3.1 Baseline methods
The baseline methods adopted for comparison are Adaptive

Degree (AD) [25], Collective Influence (CI) [26], K-Shell [7], KSGC
[8], NLC [12], ERM [5], andMAHE [13], as shown in Table 3. These

FIGURE 4
Degree distribution of the datasets: DBLP, ACM and Yelp. (A) Degree distribution of DBLP. (B) Degree distribution of ACM. (C) Degree distribution
of Yelp.
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methods were chosen to encompass single metric, multi-metric
combination, and embedding-based methods, allowing for a
comprehensive comparison of methods.

5.3.2 Information propagation capability
comparison

This section documents the experimental effects of different
methods. By fixing the infection probability, and selecting 20 key
nodes, we compare the capabilities of key nodes to propagate
information. In Figures 5, 6, we plot the evolutionary trend of
the propagation scope of the six methods over the propagation
iterations on three networks in the SI and SIR models. The X-axis is
the time step t and the Y-axis is the f(t) in the network.

Figures 5, 6 show the evolutionary trend of the percentage of
infected nodes with the number of iterations. As can be seen from
the figures, the total number of infected nodes increases over time
step. At each time step, our method outperforms all other methods.
This indicates that the top 20 key nodes identified by MKNI are at
more important locations in the network andmay bemore dispersed
throughout the network, thus being able to affect a larger area at the
same time step.

The experimental results show that the key nodes identified by
the MKNI method can achieve a better f(t) in SI and SIR

experiments. It indicates that the key nodes identified by the
MKNI method can achieve faster information propagation, to
achieve higher influence scope than other methods.

AD, CI, KSGC and ERM performed well by sufficiently
incorporating network topology, enabling key nodes to quickly
influence neighbors. MKNI surpassed them by better modeling
inter-node influence probabilities using trust probability, thereby
improving identification. K-Shell struggled due to the network’s
sparse connections and distinct topology, which hindered
distinguishing influence of heterogeneous nodes. Although
MAHE also used metapath2vec embeddings, it only considered
node similarity while neglecting topology’s impact, yielding poor
results. NLC combined DeepWalk and K-Shell but accumulated the
less effective K-Shell, worsening results and producing the worst
performance.

These experimental results show that MKNI has the best key
node identification performance. The comparisons validate MKNI’s
superiority in identifying key nodes for information diffusion in
heterogeneous networks.

Additionally, greedy algorithms [20] and random chosen
methods [20] are added for comparison, which serve as upper
and lower bounds for the performance, respectively. The
experimental results indicate that the MKNI method is slightly

TABLE 3 Baseline methods for comparison in experiments.

Methods Category Overview

AD Single metric It corrects for the degrees of the nodes at each iteration by removing the edges connected to the nodes chosen as key nodes in the
previous iterations

CI Single metric It is a node centrality metric that considers both the degree of an individual node and the degree of its neighbors

K-Shell Single metric It is a node centrality metric that recursively prunes nodes with a degree less than K

KSGC Multi-metric integration It is a centrality metric based on a gravity formula

ERM Multi-metric integration It is an entropy-based method considers neighbors, meta-path instances, and their combination

NLC Embedding-based It utilizes DeepWalk and K-shell to calculate node importance

MAHE Embedding-based It utilizes metapath2vec and selects key nodes based on the number of similar nodes

FIGURE 5
Comparing of proposed method with other methods using SI on datasets: DBLP, ACM and Yelp. (A) DBLP-SI. (B) ACM-SI. (C) Yelp-SI.
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inferior to the greedy algorithm. The time complexity of the greedy
algorithm can be expressed as O(k*n*t*r*e), where k is the number
of nodes to be selected, n is the number of nodes in the network, t is
the iteration times of the propagation model, r is the number of
rounds of simulations of the propagation experiment, and e is the
number of edge in the network. It is evident that the greedy
algorithm has a high time complexity. Therefore, although the
MKNI method is slightly weaker than the greedy algorithm,
MKNI still has advantages, especially in dealing with large-
scale network.

5.3.3 Average shortest path length comparison
According to the results of the experiments on the information

propagation capability comparison, AD, CI, KSGC, ERM, and
MKNI are more effective, while K-Shell, NLC, and MAHE are
less effective. To verify whether the key nodes identified by
MKNI are more dispersed within the entire network, we
compare different methods using the average shortest path length
between key nodes as a metric. Figure 7 shows the comparison of the
average shortest path length Ls obtained by the three methods. The
X-axis is the number of initially infected nodes, and the Y-axis is
the Ls.

From Figure 7, it is observed that the shortest average path
length between key nodes obtained by the MKNI method is larger
than that obtained by the CI, ERM and KSGC methods. This
proves the key nodes obtained by MKNI are more decentralized in
the network, making their information propagation capability
better. In the denser Yelp network, the MKNI method identifies
critical nodes with slightly shorter average shortest paths
compared to the AD method. This is due to the greater
neighborhood overlap between nodes in dense networks.
However, the wider propagation scope of MKNI indicates that
the nodes identified by MKNI are in more important locations. In
contrast, the key nodes identified by the NLC and MAHE methods
have large average shortest paths, but the information propagation
capability is inferior, indicating the key nodes identified by them
are not in important locations in the network. The results of this
experiment further illustrate the superiority of the MKNI method
in key node identification.

5.3.4 Node ranking monotonicity comparison
Next, we investigate the ability of AD, CI, K-Shell, KSGC, NLC,

ERM, MAHE and MKNI methods to differentiate the node
importance through monotonicity metrics. For a specific
measure, nodes in the network are ranked according to their
importance scores in descending order. Nodes with the same
importance score have the same rank. The monotonicity of
different key node identification methods is summarized in Table 4.

The experimental results demonstrate that the proposed MKNI
method achieves the best node ranking monotonicity equal to
1 across all test networks, surpassing other baseline methods.
This indicates that the MKNI method possesses a greater
resolution in determining node importance and effectively
distinguishes the influence of nodes within the network.

5.4 Validity verification experiment

5.4.1 Ranking validity verification
To visually verify the effectiveness of the importance ranking, we

selected the top, middle, and bottom20 nodes from the ranking list
as the message sources for information propagation. If the higher-
ranked nodes exhibit better message propagation rates compared to
the lower-ranked nodes, it indicates that nodes with higher
importance can propagate messages to more nodes faster, thus
validating the calculated node importance ranking by the method
in this paper. In Figures 8, 9, we plot the process of information
propagation in the SI and SIR models for the three types of source
nodes. The X-axis is the time step t and the Y-axis is the f(t) in
the network.

The results in Figures 8, 9 showed that the top20 nodes in the
node importance sequence obtained by MKNI have higher
information propagation scope than the middle20 nodes and the
last20 nodes when they are used as propagation sources. Specifically,
the difference between mid20 and last20 in DBLP and ACM
network is not significant due to the sparse network. This
network characteristic makes a larger number of nodes in
unimportant positions, and both the middle and the last nodes
in the ranking have inferior information propagation capabilities,

FIGURE 6
Comparing of proposed method with other methods using SIR on datasets: DBLP, ACM and Yelp. (A) DBLP-SIR. (B) ACM-SIR. (C) Yelp-SIR.
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but still maintains the law that mid20 nodes are larger than
last20 nodes. Therefore, the experimental results demonstrates
that the importance ranking obtained by MKNI accurately
describes the nodes’ impact on the information propagation
scope, confirming the effectiveness of the MKNI method.

5.4.2 Trust probability validity verification
MKNI utilizes meta-paths for node embedding and applies the

embedded vector to the trust probability. Trust probability validity

verification experiment aims to compare the results obtained by
considering node trust probability and those obtained without
considering it. In Figures 10, 11, we plot the process of
information propagation in the SI and SIR models for the two
models, where MKNI is the original method and MKNI--is the
method after removing the trust probability. The X-axis is the time
step t and the Y-axis is the f(t) in the network.

The experimental results show that on the sparse DBLP and
ACM datasets, at each time step, the performance of MKNI is

FIGURE 7
Comparing of proposed method with other methods using average shortest path length on datasets: DBLP, ACM and Yelp. (A) DBLP. (B) ACM.
(C) Yelp.

TABLE 4 The monotonicity of different methods.

Network AD CI K-shell KSGC NLC ERM MAHE MKNI

DBLP 0.519799 0.473564 0.372831 0.998563 0.999999 0.802700 0.886804 1.0

ACM 0.132746 0.213661 0.177356 0.979305 1.0 0.776712 0.905485 1.0

Yelp 0.892524 0.999981 0.773102 1.0 1.0 0.999895 0.904238 1.0

FIGURE 8
Ranking validation diagram using SI model on datasets: DBLP, ACM and Yelp. (A) DBLP-SI. (B) ACM-SI. (C) Yelp-SI.
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FIGURE 9
Ranking validation diagram using SIR model on datasets: DBLP, ACM and Yelp. (A) DBLP-SIR. (B) ACM-SIR. (C) Yelp-SIR.

FIGURE 10
Trust probability validation diagram using SI model on datasets: DBLP, ACM and Yelp. (A) DBLP-SI. (B) ACM-SI. (C) Yelp-SI.

FIGURE 11
Trust probability validation diagram using SIR model on datasets: DBLP, ACM and Yelp. (A) DBLP-SIR. (B) ACM-SIR. (C) Yelp-SIR.
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generally better than MKNI--; on the relatively denser Yelp dataset,
they are similar in the early stage, and later MKNI is slightly better
than MKNI--. This indicates the trust probability based on
embedding vectors effectively quantifies the likelihood of
information propagation from the source node to the target node
and improves the accuracy of node importance calculation.

6 Conclusion

In this paper, we propose the key node identification method
MKNI for heterogeneous networks. MKNI extracts heterogeneity
information using a meta-path-based node embedding model. It
introduces a trust probability based on vector similarity to model
inter-node influence. Direct and indirect influence indica-tors are
then constructed by integrating meta-paths and embeddings to
capture rich semantic information. Node importance rankings
are obtained via weighted summation. Experiments showed
MKNI identified nodes with higher infectious rates and better
propagation ability than K-Shell, KSGC, NLC, ERM, and MAHE.

A limitation isMKNI andmany existingmethods rely heavily on
manual meta-path customization to mine heterogeneous networks.
Future work will explore meta-path-free approaches to avoid pre-
design and enable fully automated heterogeneous network mining.
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