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In underwater environments, the accurate estimation of state features for passive
object is a critical aspect of various applications, including underwater robotics,
surveillance, and environmental monitoring. This study presents an innovative neuro
computing approach for instantaneous state features reckoning of passive marine
object following dynamic Markov chains. This paper introduces the potential of
intelligent Bayesian regularization backpropagation neuro computing (IBRBNC) for
the precise estimation of state features of underwater passive object. The proposed
paradigm combines the power of artificial neural network with Bayesian
regularization technique to address the challenges associated with noisy and
limited underwater sensor data. The IBRBNC paradigm leverages deep neural
networks with a focus on backpropagation to model complex relationships in the
underwater environment. Furthermore, Bayesian regularization is introduced to
incorporate prior knowledge and mitigate overfitting, enhancing the model’s
robustness and generalization capabilities. This dual approach results in a highly
adaptive and intelligent system capable of accurately estimating the state features of
passive object in real-time. To evaluate the efficacy of this intelligent computing
approach, a controlled supervised maneuvering trajectory for underwater passive
object is constructed. Real-time estimations of location, velocity, and turn rate for
dynamic target are scrutinized across five distinct scenarios by varying the Gaussian
observed noise’s standard deviation, aiming to minimize mean square errors (MSEs)
between real and estimated values. The effectiveness of the proposed IBRBNC
paradigm is demonstrated through extensive simulations and experimental trials.
Results showcase its superiority over traditional nonlinear filtering methods like
interacting multiple model extended Kalman filter (IMMEKF) and interacting
multiple model unscented Kalman filter (IMMUKF), especially in the presence of
noise, incomplete measurements and sparse data.
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1 Introduction

The estimation of state elements for passive vehicles in aquatic
environments poses a significant challenge and is of utmost
importance for a wide range of applications [1]. The usages of
these technologies incorporate several fields, including underwater
robotics, where accurate knowledge of a vehicle’s trajectory and
orientation is essential. As well as surveillance, which requires the
tracking of targets of interest, and atmosphere monitoring, where
identifying the complexities of marine ecosystems is of extreme
importance [2, 3]. Accurately forecasting the state characteristics of
passive object is a crucial factor in various circumstances, as it
directly impacts its efficiency and safety of operations [4]. One of the
main challenges in estimating the state features of submerged object
is the inherent noise and limited availability of sensor data in aquatic
scenarios [5]. In the domain of underwater sensing, many types of
sensors, including sonar, acoustic, and optical sensors, frequently
encounter a wide range of noise sources arising from phenomena
such as water turbulence, ambient noise, and signal compression [6].
These elements have a tendency to provide measurement errors,
hence posing challenges in the extraction of useful information for
the state estimation mechanism. In addition, underwater processes
often face situations in which there may be a lack of sensor coverage,
demanding the development of creative approaches to address data
deficiencies [7]. State estimation is a crucial aspect within the field of
underwater robotics as it facilitates the ability of autonomous
underwater vehicles (AUVs) to navigate, execute tasks, and
successfully engage with their surrounding water [8]. Precise
assessments of a vehicle’s physical coordinates, speed, and
angular orientation are crucial for various activities, including
subaquatic mapping, investigation, and even archaeological
research. The capability of accurately evaluating these state
characteristics in real-time and adapt to varying underwater
conditions is a vital requirement for the effective execution of
underwater robotic activities [9].

Researchers have been actively investigating novel methods for
estimating state features in order to address the challenges presented
by complex underwater mediums [10]. The utilization of well-
known Kalman filtering and its nonlinear versions holds
considerable importance for estimating the current state of
underwater objects [11]. The employing of filtering techniques is
vital in the process of modeling and estimating the state features of
passive targets within underwater environments. The Kalman filter
(KF), along with its derivative methods such as the extended Kalman
filter (EKF) and unscented Kalman filter (UKF) demonstrates
exceptional proficiency in state estimation through effective
handling of measurements affected by noise. These filtering
algorithms deploy probabilistic models in order to make
estimations about the condition of submerged targets, thereby
mitigating the impact of noise and yielding more precise
estimations [12]. Most state feature estimation problems in
underwater environments consist of non-linear correlations
among state parameters and measurements [13]. In instances of
this nature, conventional linear KFs are not properly viable. The
EKF and UKF are algorithms that have been developed with the
explicit purpose of mitigating the effects of nonlinearity in system
models [14]. This is achieved by approximating the nonlinear
system dynamics through linearization at each discrete time

step. The aforementioned capacity enables them to effectively
manage a diverse set of underwater target motion models and
measurement expressions, hence improving the accuracy of state
feature estimation [15]. Underwater circumstances exhibit dynamic
behaviors, characterized by the presence of quickly fluctuating
conditions, including underwater currents, tides, and object
maneuverings. In this situation, the adaptable nature of KF and
its nonlinear versions is essential [16]. One of the primary
constraints associated with the EKF and UKF methodologies is
their underlying assumption of linearity. There are a lot of
underwater target tracking circumstances where state variables
and measurements have nonlinear associations. In cases, where
the system exhibits substantial nonlinearity, the application of
these filters for linearization purposes may result in inaccuracies,
resulting in imprecise state feature estimations. Accurately
simulating these processes can be challenging in underwater
environments, where the dynamics can be complicated and
unpredictable [17].

The utilization of interacting multiple model (IMM) Kalman
filtering is of great importance in the assessment of the state of
underwater targets, especially in situations where the dynamics of
the target or the underwater environment are prone to frequent
alterations or uncertainty [18]. This modified filtering strategy
aims to mitigate certain drawbacks inherent in conventional
Kalman filtering approaches, hence providing numerous
benefits [19]. The IMM Kalman filtering technique enables the
representation of numerous motion models or modes, each
characterizing a distinct target behavior. IMM Kalman filtering
demonstrates exceptional performance in tracking dynamic
behaviors shown by underwater targets that exhibit motion
pattern variations, such as dodging maneuvers or alterations in
depth [20]. The technique has the capability to smoothly transition
between various motion models in order to uphold precise state
estimation. The selection of motion models in the context of IMM
Kalman filtering is often a complex decision-making process [21].
The task of choosing an appropriate combination of models and
their associated transition probabilities might present difficulties,
as it relies on the particular behavior of the undersea target, which
may not always be fully known or readily described [22]. The
selection of inappropriate models can result in poor results, filter
divergence, and overfitting. Moreover, the inclusion of a large
number of models may lead to the formation of a system that is
overly complicated without necessarily enhancing the accuracy of
state features estimation [23]. When dealing with instances where
the undersea target exhibits extreme, sudden, or erratic
fluctuations in behavior, IMM Kalman filtering may encounter
challenges in fast transitioning between models or precisely
adjusting to these changes [24]. The integration of neural
networks and deep learning has demonstrated potential for
improving the precision and flexibility of state estimation
mechanisms in the underwater domain [25]. The use of deep
learning techniques in state feature estimation of underwater
objects has experienced a significant rise, bringing about an
evolutionary effect. This is primarily attributed to deep
learning’s capacity to effectively process complicated data,
dynamically adjust to varying underwater conditions, and
deliver precise estimations [26]. Deep learning models,
specifically convolutional neural networks (CNNs) and
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recurrent neural networks (RNNs), have exceptional proficiency in
independently extracting relevant information from raw sensor
input, including acoustic sonar, and visualizing data [27, 28]. The
collection of these learned parameters is crucial in the description
of the submerged surroundings and the movement of objects,
hence enhancing the precision of state feature estimates. Often, in
underwater environments, the relationships between sensor
readings and target states are highly nonlinear. Deep learning
models possess a built-in capacity to effectively capture and
represent nonlinearities, hence enabling more precise state
feature estimation in comparison to conventional nonlinear
variants of KF [29]. Due to several reasons such as obstacles,
noise, or constraints in the sensors, underwater data may be sparse
and unstable. Deep learning models have the ability to efficiently
address the challenges posed by missing data points and
inconsistent measurements through the utilization of time series
and historical data [30]. These methods provide the capability to
dynamically adjust the new data in real-time, enabling them to
effectively handle unknown variations in the undersea
environment or the behavior of the target [31]. This
adaptability is of great significance in order to ensure precise
state estimations while circumstances undergo changes.

Intelligent Bayesian regularization backpropagation neuro
computing (IBRBNC) is a category of artificial neural networks
(ANNs) that integrate Bayesian methods for regularization [32]. It
has proven useful in a wide range of situations, especially when
working with sparse data or in a noisy environment. The IBRBNC
method offers a probabilistic structure that allows the modeling of
uncertainties in predictions made by neural network [33]. These
systems possess the ability to adapt their complexity according to the
quantity of accessible data, making them highly suitable for various
applications that exhibit dynamic data features. The effectiveness of
IBRBNC has been found in various financial applications, including
but not limited to stock price forecasting, risk evaluation, and
portfolio optimization [34]. This innovation has the potential to
facilitate disease diagnosis, evaluate patient risk levels, and provide
recommendations for therapy treatments. The capacity to offer
estimations of uncertainty can aid medical professionals in
making well-informed judgments [35]. The IBRBNC extends
across many domains, encompassing cybersecurity, network
surveillance, and manufacturing quality control [36]. This soft
computing has been employed in several natural language
processing applications, including sentiment detection, text
sorting, and machine translation [37]. It also works well for
image analysis tasks like medical image analysis, object
recognition, and picture segmentation. Probabilistic estimations
of object locations and properties can be provided by this
methodology [38, 39]. In addition, it has applications in
meteorology [40], air quality forecasting [41], climate change
[42], astronomy [43], and astrophysics [44]. Furthermore, it plays
a significant role in the field of robotics, including many applications
such as autonomous navigation, routing, and the supervision of
robots [45, 46].

Motivated by the aforementioned applications, the current
study aims to explore a robust neuro computing methodology
with the objective of improving the real-time estimates of state
features for underwater passive maneuvering object. In order to
evaluate the ability of this computing, we developed a regulated

and monitored itinerary for underwater target. The real-time
approximation of the key features, including the position,
velocity, and rate of change in path for a moving target are
thoroughly examined in five different scenarios. Statistical
variants of observed Gaussian noise are applied to generate
various underwater configurations for the purpose of
comparing the proposed paradigm with conventional Kalman
filtering methods. Figure 1 presents a comprehensive and brief
visual representation of the designed research approach. The
subsequent points outline the key findings of the
performed study.

• The work discusses the fundamental demand for precise
estimate of state features of passive dynamic object in
underwater scenarios.

• The study presents a novel neuro computing methodology
designed for estimating state features, such as position,
velocity, and rotation rate, across the x and y-axes.

• The IBRBNC paradigm utilizes deep neural systems,
emphasizing backpropagation to effectively represent
complex connections within the undersea surroundings.

• The integration of prior data and the mitigation of overfitting
are achieved by the introduction of Bayesian regularization,
that acts as a fundamental element of IBRBNC.

• The IBRBNC based dual approach is utilized to create a highly
adaptable and smart system that can correctly guess the state
features of passive object in real time.

• This study performs an in-depth review of the IBRBNC
paradigm through a comparative analysis with conventional
nonlinear filtering techniques, IMMEKF and IMMUKF.

• The findings demonstrate the exceptional performance of
IBRBNC, particularly in challenging underwater
environments.

The subsequent portions of the paper are organized in the
following manner: Section 2 of this paper outlines the
methodology for developing a maneuvering state features
estimation model in 2-dimensional rectangular coordinates. This
section further elaborates on the comprehensive mathematical
modeling of continuous routing object. Section 3 provides a
comprehensive overview of the establishment and behavior of the
IBRBNC network, containing a detailed examination of the training,
testing, and validation processes. In Section 4, we address the
estimation results and the least mean squared error of the
mentioned techniques. The final portion of the proposed work
explains the notable achievements and outlines further research
directions.

2 System modeling of passive
underwater object

In this portion of the study, the modeling of Markov chain
moving object is designed using a bilateral state feature estimation
approach in angular dimensions. This methodology incorporates
the state space-based bearings only tracking (BOT) technique to
precisely estimate the state features of a constantly rotating object in
a complex and difficult marine atmosphere.In order to gather the
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collation of passive measurements, a total of eight monitoring bases
are strategically positioned at equal intervals. The term passive
measurements of the moving object refer to the nonlinear and
intricate data obtained by hydrophones. It is assumed that the
positions of the observers are known beforehand. The sole
approach to get the bearings of the dynamic vehicle by passive
acquisition from surveillance units. These bearings are relying on the
angular position and placement of each individual sensor module.
The proposed state feature estimation structure aims to observe
target mobility in the far field zone. This observation is based on the
prediction of a consistent turning course, which is tracked through
the adoption of nonlinear multi model Kalman filters and neuro
computing techniques. Figure 2 illustrates the maneuvering trends

of a navigational target and its mechanism for estimating state
features. Several systems in real life exhibit dynamic modeling
variables. The description of these diverse system variables is
unlikely to be addressed by a singular model. In the context of
real-time state feature estimating applications, it is probable for the
modeling values to experience variations during the estimation
phase. These mechanisms are commonly referred to as Markov
chains or multi models. In these situations, the whole design could
diverge if one particular system model is selected. Consequently, the
development of a generic movement model for dynamic object that
will regulate numerous system models is critical. Coordinated Turn
(CT) and Wiener process velocity (WPV) models are applied in this
study to explain the underwater navigation object’s kinematics.

FIGURE 1
Graphical description of proposed paradigm.
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2.1 Wiener process velocity (WPV)
dynamic modeling

The state vector Hm
τ given in Eq. 1 illustrates the real-time

features of a maneuvering object at a given time interval τ, by using

bidirectional angular axes to represent its position
xτ

yτ
( ) and

velocity
xτ′
yτ′

( ) as:

Hm
τ �

xm
τ

ym
τ

x′mτ
y′mτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Concurrently, the state vector at the monitoring unit in angular axes
can be represented in Eq. 2 as follows:

Hn
τ �

xn
τ

yn
τ

x′nτ
y′nτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

The state formulation that relates the moving object and the
observation station is listed in Eq. 3 below:

Hτ � Hm
τ −Hn

τ �
xτ

yτ

xτ′
yτ′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

The discrete-time WPV approach is applied to construct the
momentum of the maneuvering object under the framework of
state-space science. This design is implemented to define the state
expression in the following way:

Hτ+1 � XτHτ + ατ . (4)
The state model illustrated above defines the dynamic shifting
matrix Xτ, which consists of elements ι × ι. The dynamic shifting
matrix reflects the response of the WPV model in the context of
state-space strategy. It is assumed that process noise ατ in this model
follows a Gaussian spectrum having its mean near zero. The

calculation for spread of the dynamic shifting matrix Xτ with
respect to the sampling interval is described in Eq. 5 as:

Xτ �
1 0 ∂τ 0
0 1 0 ∂τ
0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

while the sampling interval ∂τ is given in Eq. 6 as:

∂τ � τ + 1( ) − τ[ ]. (6)
To ensure precise estimation of state features through the IBRBNC
paradigm, it is necessary to transform the state space model outlined
in Eq. 4 into discrete time notation. The discrete-time regressive
model is adopted because of its potential to achieve more precise
assessment of the system’s behavior at time instances τ that are
combination of the sampling interval ∂τ. The discrete time state
computation has been transformed with its required elements in
Eq. 7, resulting in the following form:

Hτ+1 �
1 0 ∂τ 0
0 1 0 ∂τ
0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸������︷︷������︸

Xτ

xτ

yτ

xτ′
yτ′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸��︷︷��︸
Hτ

+ατ . (7)

The process noise ατ in the Gaussian spectrum is characterized by its
covariance ℓτ in the following way:

ατ ≈ N(0, ℓτ). (8)
In experimental tests, the Gaussian noise variance is typically
assigned an integer value of 0.05 in order to generate target
trajectory with minimal curves. In contrast,

ℓτ � E ατα
T
τ[ ]. (9)

In order to achieve a discrete-time state expression, it is necessary to
distinguish the process Gaussian noise in the WPV mathematical
design. It can be adopted to accurately incorporate the model’s
parameters over time intervals that are successive integers of ∂τ.
Following this methodology, the aforementioned Eq. 9 is modified to
represent a covariance matrix as:

ℓτ �
0.3∂τ3 0 0.5∂τ2 0

0 0.3∂τ3 0 0.5∂τ2

0.5∂τ2 0 ∂τ 0
0 0.5∂τ2 0 ∂τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ω, (10)

meanwhile the constant ω in Eq. 10 defines the spectral magnitude
of the Gaussian noise.

2.2 Coordinated turn (CT) modeling

The CT design is a commonly used approach for modeling the
kinetic properties of a passive target that undergoes continuous axial
motion. In this kinetic system modeling, rotation rate is an
additional feature in the state vector. Here, the location, velocity,
and spin rate of the maneuvering vehicle are represented by its state
features vector in angular dimensions. Through the CTmodel, it can
be defined in Eq. 11 as:

FIGURE 2
State feature estimation architecture.
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Hm
τ �

xm
τ

ym
τ

x′mτ
y′mτ
ωm
τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

As well as, the formulation of the state feature vector at the
observation point can be done in Eq. 12 in the following manner:

Hn
τ �

xn
τ

yn
τ

x′nτ
y′nτ
ωn
τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

The corresponding state vector is presented to explain the relationship
across the monitoring unit and the maneuvering object as:

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

The governing state formulation of the CT framework is presented
in Eq. 14 as:

Hτ+1 � XτHτ + ϒατ . (14)
The state formulation in the CT framework closely resembles the
configuration described in Eq. 4 of the Wiener process model with a
supplementary variable ϒ, that determines the spatial pattern of
Gaussian noise ατ. The discrete-time sequence of state equation for
the aforementioned framework is derived from an approach
identical to the WPV modeling in Eq. 15 as:

Hτ+1 �

1 0 sin ωτ ℓτ( )
ωτ

cos ωτ ℓτ( )−1
ωτ

0

0 1 1−cos ωτ ℓτ( )
ωτ

sin ωτ ℓτ( )
ωτ

0

0 0 cos ωτℓτ( ) −sin ωτℓτ( ) 0

0 0 sin ωτℓτ( ) cos ωτℓτ( ) 0

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸��������������︷︷��������������︸

Xτ

Hτ +

0
0
0
0
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸�︷︷�︸
ϒ

ατ . (15)

The CT paradigm additionally incorporates Gaussian dynamical
noise given in Eq. 16, consisting of a zero-valued mean and a
covariance equivalent to that specified in Eq. 8.

ατ ≈ N(0, ℓτ). (16)
The computational analysis of the CT model is displayed in matrix
format earlier, even though it has nonlinear dynamics. Consequently,
the CT system can be formulated by employing Eqs 17-21 as:

xτ+1 � xτ + sin ωτℓτ( )
ωτ

xτ′ + cos ωτℓτ( ) − ℓτ

ωτ
yτ′, (17)

yτ+1 � yτ + 1 − cos ωτℓτ( )
ωτ

xτ′ + sin ωτℓτ( )
ωτ

yτ′, (18)
xτ+1′ � cos ωτℓτ( )xτ′ − sin ωτℓτ( )yτ′, (19)
yτ+1′ � sin ωτℓτ( )xτ′ + cos ωτℓτ( )yτ′, (20)

ωτ+1 � ωτ + ατ . (21)
In the context of experiments, when anticipating significant
maneuverability of underwater object, the Gaussian dynamical

noise covariance for the rotational feature is set at a particular
integer value of 0.15.

2.3 Measurement modeling

In state feature estimation mathematical strategy, each WPV
and CT framework corresponds to the same measurement modeling
that is developed as well, utilizing the concept of state-space
approach. The computational representation of the measurement
modeling can be termed as:

Yτ+1 � R Hτ+1, βτ+1( ). (22)
Throughout the time intervals τ, the simultaneous passive
bearings obtained from maneuvering object are compiled in a
matrix R (.), which is commonly known as measurement matrix.
It integrates complex passive bearings that are produced using
the point-slope tangent interaction algebraic technique. The
parameter β in the aforementioned measurement formula
represents the detected noise at time interval τ, which follows
a distinct Gaussian spectrum. The subsequent computation is
carried out to develop passive bearings, which are observed
acoustically based on the actual movement of the moving
object and the placement of monitoring units.

R Hτ+1( ) � atan
yτ −Φi

y

xτ −Φi
x

[ ]︸������︷︷������︸
Passive Bearings

. (23)

The given measurement equation represents the instantaneous
motion of the moving object (yτ, xτ) through bilateral angular
axes. As well as the placement of hearing observers, symbolized
as (Φi

y,Φi
x), can be seen in this computation. For the monitoring

unit i at time interval τ, the measurement framework Y, as specified
in Eq. 22, can be formulated in revised form as:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (24)

In the above-mentioned expression, the observed noise βiτ possesses
a zero mean. Whereas the calculation of its covariance ℵτ is as
follows in Eq. 25.

βiτ � N 0,ℵτ( ), (25)
ℵτ � diag(σ2Y). (26)

The observed noise standard deviation given in Eq. 26, denoted by
the sign σ, is represented in the above equation. It plays an important
role in analyzing the performance of state feature estimation
methodologies in the context of underwater object navigation.
The dynamics of the subaquatic environment are characterized
by the unpredictable nature of the observed standard deviation of
acoustic noise. Different metrics for the observed noise standard
deviation are adopted in our investigation in order to analyze the
robustness and accuracy of the neuro computing and traditional
Bayesian approaches. By adhering to the prescribed sequence of
maneuvers, a synchronized rotational track can be established for
the underwater object.
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• The dynamic object commences its motion at a position of

xτ

yτ
[ ] � 0

0
[ ] and maintaining a constant velocity

xτ′
yτ′

[ ] �
1
0

[ ] across the x-axis, sets up its moves from the point

of origin.
• Following a time interval of 4 s, the object undergoes a right
twist having a rotation rate specified as ωτ = −1.

• After completing a duration of 9 s, the object ceases its
rightward rotation and proceeds to move along normal
trajectory, maintaining a consistent velocity of 1 unit.

• The aquatic object exhibits leftward movement with a
rotational parameter ωτ = 1, which occurs at the 11 s
interval over the entire period.

• Around 16 s, the vehicle discontinues its leftward turn and
proceeds to travel straight ahead at a constant velocity for the
duration of 4 s.

3 Neuro computing designing

In this portion of the study, a mathematical framework using
smart neuro computing is developed for state feature estimation of
underwater moving object. The link between Bayesian
normalization deep learning, and underwater localization is their
mutual reliance on Bayesian theories for the purpose of managing
uncertainties. The primary objective of target localization is to
estimate the motion features of a dynamic object. In contrast,
Bayesian regularization neuro computing is primarily concerned
with modeling the ambiguity that arises from neural network
variables. The performance of the estimation approach in state
feature applications is significantly influenced by the presence of
noisy bearings. Therefore, the basic knowledge of complicated noisy
bearings or prior information can be employed for the purpose of
modeling IBRBNC in order to obtain the ideal performance of
state features.

3.1 Intelligent Bayesian regularization
backpropagation neuro
computing (IBRBNC)

The IBRBNC is a particular form of neural network model that
implements Bayesian concept to make its training operation
smoother. The basic objective of Bayesian regularization is to
establish a statistical structure for representing the
unpredictability associated with the key variables of a network,
namely, the weights and biases.

3.1.1 Mathematical modeling of IBRBNC
The IBRBNC framework employs Bayesian approaches, namely,

weight priors and posterior variations, in order to incorporate
regularization into the system. Regularization plays a crucial role
in mitigating overfitting, hence enhancing the effectiveness of
IBRBNC in scenarios such as limited access to data or noisy
training samples. Taking advantage of the Bayesian approach in
the context of IBRBNC enables better management of noisy data.

The ability to distinguish actual features from erratic noise enhances
the overall robustness of the algorithm. IBRBNC possesses the
ability to effectively adjust to different degrees of complexity in
the network. The proposed deep learning framework successfully
integrates historical information in order to forecast the future
outcomes of state features associated with submerged passive
navigating object. Within the nonlinear environment of the
IBRBNC paradigm, external input and consequent output are
employed to forecast the future trends of state features. In this
regard, IBRBNC adopts an extremely efficient multi-layer design
consisting of an input layer, an embedded layer, a hold layer, and an
outcome layer, as depicted in Figure 3. In this particular
configuration, the measurement function Y(τ) given in Eq. 24 is
applied to the IBRBNC network as input to create estimations
regarding the passive object state vector H(τ) given in Eq. 13.

The most difficult aspect of applying the Bayesian regularization
approach is determining the appropriate setting for the desired
function coefficients. The Bayesian theory implemented in neural
systems is founded upon the likelihood analysis of variables inside
the network. In comparison with the standard procedure for
network training, which selects the best combination of weights
by reducing divergence, the Bayesian strategy incorporates a
probabilistic spectrum of network weights. Consequently, the
outputs of the network can be characterized by spectrum of
likelihoods. Let us suppose a Bayesian neuro computing
architecture that uses a learning data set S, which comprises z
numbers of input and target matrix pairs. These pairings are
used to train the neural model.

S � Y1,H1( ), Y2,H2( ), . . . , Yz,Hz( ){ }. (27)
During the training stage, it is preferred to determine a standard
evaluation metric for calculating the difference among actual and
estimated data. The aforementioned metric can be mathematically
represented in the following manner:

A � ES S|e, F( ) � 1
C

∑C
j�1

Ĥj −Hj( )2. (28)

In Eq. 28, ES represents the average sum of squares of the model
loss, it is also a measure for prior terminating, which is employed
in several computational methods as a means to prevent excessive
fitting. S denotes the learning data set, which consists of input-
target combos, as defined in Eq. 27. The F is neural network
layout, which is characterized by its configuration, that includes
the quantity of layers, the size of elements inside each layer, and
the particular trigger function employed by each element. In an
IBRBNC model, the process of normalization includes a
supplementary parameter in the desired function. This
parameter is used to minimize the presence of massive
weights, which can potentially result in more consistent
mapping. In the present scenario, it is appropriate to use the
gradient-based optimization method in order to effectively
minimize the objective function.

A � ηES S|e, F( ) + κEweight e|F( ). (29)

The term Eweight (e|F) in Eq. 29 represents the sum of squares of
model weights, described in Eq. 30 as:
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Eweight � 1
C

∑C
j�1

e2j . (30)

A pair of hyperparameters η and κ are needed to be computed as
coefficients of the desired function. The closing term denoted as
κEweight (e|F), is commonly referred to as weight decay, while κ is
alternatively recognized as the decay ratio. If the value of κ is
significantly smaller than η, the neuro computing network will
decrease mistakes. When κ is significantly larger than η, the
training process will prioritize reducing the size of the weights,
even if it leads to an increase in network mistakes. As a result, the
network’s outcome will become more convenient. Once the data has
been acquired, assuming Gaussian noise in the target samples, the
subsequent spectrum of the weights in the neural network can be
adjusted by applying Bayes’ rule.

P e|S, κ, η, F( ) � P S|e, η, F( ). P e|κ, F( )
P S|κ, η, F( ) . (31)

Hence, Bayesian regularization incorporates a likelihood
spectrum of network weights, defining the system architecture
as a stochastic platform. In Eq. 31, the variable S represents the
training sample, whereas the prior allocation of weights is
formalized in Eq. 32 as:

P e|κ, F( ) � κ

2π
( )u/2

exp −κ
2
ee′{ }. (32)

The neural network layer design is denoted as F, while the vector e
represents the weights associated with the architecture. The term
P(e|κ, F) denotes understanding of weights prior to the acquisition
of any dataset. The probability function, indicated as P(S|e, η, F),
represents the likelihood of the happening of dataset pairs,
specifically in relation to the design weights. Within the
constraints of this Bayesian scheme, the most desirable weights
are those that increase the subsequent likelihood, denoted as
P(e|S, κ, η, F). The process of improving the subsequent
probability of weights e can be regarded as similar to the process
of reducing the normalized desired function A = ηES + κEweight. Let
us assume the combined posterior density in Eq. 33 as:

P κ, η|S, F( ) � P S|κ, η, F( ). P κ, η|F( )
P S|F( ) . (33)

It can be observed in Eq. 34 as:

P S|κ, η, F( ) � P S|e, η, F( )P e|κ, F( )
P e|S, κ, η, F( ) , (34)

P S|κ, η, F( ) � ∇A κ, η( )
π/η( )v/2 π/κ( )u/2. (35)

Whereas v represents the sum of the findings and u indicates the entire
set of network coefficients. The Laplace approximation, represented in
Eq. 35, yields the subsequent mathematical expression:

∇A κ, η( )∝ 1������
XBAP
∣∣∣∣ ∣∣∣∣√ exp −A eBAP( )( ). (36)

The Hessian matrix of the desired function is denoted by XBAP in
Eq. 36, while BAP is an acronym that refers to best a posteriori.
The Hessian matrix may be estimated as:

X � JJ’. (37)
Here letter J in Eq. 37 represents the Jacobian matrix, which
comprises the partial derivatives of the network failures relative
to the network variables. While J can be defined in Eq. 38 as:

J �

∂μ1 e( )
∂e1

∂μ1 e( )
∂e2

/
∂μ1 e( )
∂eq

∂μ2 e( )
∂e1

∂μ2 e( )
∂e2

/
∂μ2 e( )
∂eq

..

. ..
.

1 ..
.

∂μQ e( )
∂e1

∂μQ e( )
∂e2

/
∂μQ e( )
∂eq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

The selection between the Gauss-Newton (GN) estimation
approach and the Hessian matrix is an essential factor when
implementing the Levenberg-Marquardt (LM) training method
for the optimization of the objective function A. In the context of
the LM algorithm, the variables at the rth loop are modified in
Eq. 39 as:

er+1 � er − 1

JTJ + εI
[ ]JTμ. (39)

Whereas ε represents the Levenberg attenuation coefficient. The
variable ε can be adjusted with every repetition, which improves the
process of optimization. It is widely adopted as an alternative to the
GN approach for the purpose of identifying the lowest value of the
given function.

3.1.2 Working principle of IBRBNC
The operation and work flow of the IBRBNC can be summarized

as follows: Begin.

1. Preliminary processing of data:
• Regularization of given data
• Dividing data into training set, validation set, and test set

2. Initialization phase:
• Layout of the network configured by choosing the number of
neurons, layers and delays

• Specify the weights and biases for the pre dispersion values
3. Training:

• Regarding every training instance:
• Feed forward cycle:
• Calculate the system outcome

• Determine Probability:
• Use training data alongside the network outcome to figure
out the probability value

• Figure out preceding:
• Using the previous dispersion variables, compute the
preceding value

• Calculate the posterior:
• Use Bayes’ formula to figure out the posterior dispersion

• Regularization:
• Apply regularization value to adjust weights

• Backpropagation:
• Determine weights and biases variations

• Modify variables:
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• Through gradient descent optimization approach,
improve weights and biases

4. Validation:
• Measure effectiveness of the network by
validation sample

• Examine for overestimation or convergence
• If required, modify the normalization constants

5. Testing:
• Utilize the test sample to generate estimations using the
trained IBRBNC

6. Possible Inference:
• If complete Bayesian inference is needed, then:

• To estimate the subsequent probability over network’s
variables, use Bayesian inference approach (Markov
Chain Monte Carlo)

7. Evaluation:
• Evaluate the IBRBNC success using test sample
• Calculate the estimation instability, if necessary

Finish.
The overall operational framework of the IBRBNC is depicted

in Figure 4.
The data that is fed to the IBRBNC design, as shown in Figure 5,

consists of the passive bearings Y(τ) acquired from eight acoustical
hydrophones. The bearings information provided to the IBRBNC
network for the purpose of computing the estimated state vector
H(τ) of five state features. This vector is also depicted as the outcome
of the neural system. The layout of the IBRBNC model consists of
three layers, namely, the input layer, hidden layer, and output layer,
as illustrated in Figure 5.

Eq. 13 in CT model represents real state vector that consists of
five different features: the position along the x-axis, the position
along the y-axis, the velocity along the x-axis, the velocity along the
y-axis, and a variable related to turning around. The state vector is
incorporated into the measurement framework, as depicted in Eq.
22, in order to calculate passive bearings. The passive bearings
obtained from multiple acoustic hydrophones are processed as
input for the IBRBNC infrastructure. This input serves to estimate
the state vector, which consists of five state features. In
experiments, a concealed layer comprising 25 neurons is
deployed, wherein the triggering of these neurons is assisted by
a sigmoid function. The process of training weights is achieved by
employing Bayesian regularization-based training methodology,
which incorporates the backpropagation through time (BPTT)
mechanism. Similarly, the application of the epoch format is
carried out throughout the training stage of the neuro
computing paradigm. Through the process of simulation
experiments using the IBRBNC paradigm, the data is divided
into three parts. Specifically, 70% of the complete dataset is
assigned to the training stage, while the remaining 30% is
evenly distributed among the testing and validating processes.
This allocation allows the evaluation of the outputs generated by
the neuro computing network.

3.2 Assessment metrics

The evaluation standard for the approach of deep neuro
computing refers to the development of a reduced MSE between
the actual and forecasted state features of maneuvering object at

FIGURE 3
Architecture of Bayesian regularization neural network.
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every single moment τ. This research provides an investigation of
the accuracy and robustness demonstrated by the neuro computing
paradigm. Consequently, the MSE metric to analyze the
performance of IBRBNC, IMMEKF, and IMMUKF is generated
independently during every Monte Carlo simulation as:

Error τ( ) � 1
j

∑j
τ � 1

HReal
τ −HEstimates

τ

        2. (40)

The moving object’s real state features in the described error Eq. 40
are represented by the variable HReal

τ . In contrast, HEstimates
τ

expresses the predicted state features of the object, which are
computed using IBRBNC and Bayesian filtering methodologies.
The entire quantity of data samples is represented by the variable j,
which has an amount of 200 in trials. Additionally, the initial data
sample is given by τ = 1. The calculation of deviations in state
features for the bending trajectory is performed on every
sample of time.

4 Discussion on simulation results

This segment of the paper presents a brief discussion of the
simulation outcomes for the proposed deep learning approach based
on IBRBNC. The findings comprise on estimates of state features in
real-time, errors in object’s position on the x and y-axes, divergence
in object’s velocity on the x and y-axes, estimates of its rotation, a
histogram of inaccuracies and analysis on regression. Five particular
circumstances are simulated, and the assessment metrics is standard
deviation of observed Gaussian noise. The level of this metrics is
consistently adjusted within a range of 0.01–1 radian. The observed
noise demonstrates a complicated maritime atmosphere when
magnitude reaches its maximum, which is 1 radian. The optimal
environment, on the other hand, is characterized by the lowest value,
specifically 0.01 radians. In experiments, it is crucial to accurately
manipulate the numerical factors of the state estimation model for
better state feature estimation and to obtain the required outcomes.
Table 1 presents the optimal setting of the parameters used in state
estimation modeling.

FIGURE 4
Flow chart of the IBRBNC paradigm.

FIGURE 5
Neural network toolbox flow diagram for IBRBNC.
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4.1 Assessment of navigating object state
features with different levels of observed
noise standard deviations

This part provides a comprehensive analysis of the simulation
findings and a detailed discussion on the real-time estimates of state
features for a dynamic object. The study implements Bayesian
estimation approaches, including IMMEKF, IMMUKF, and
IBRBNC. This investigation is aimed to compare the predictability
and resolution efficiency of the IBRBNC strategy with IMM Kalman
filters. The investigation mainly emphasizes on five distinct levels of
recorded noise standard deviation. The statistics from Figures 6–15
exhibit diverse findings obtained from the filtering algorithms and
IBRBNC paradigm. These findings represent state estimates, x-axis
position error, y-axis position error, x-axis velocity error, y-axis velocity
error, rotation forecasts, error histogram, and regression study. The
subsequent parts provide an assessment of five independent scenarios
associated with algebraic formulations and simulation outcomes.

4.1.1 Condition 1: The observed noise
standard deviation σ = 0.01 radians

Gaussian noise βiτ is quantified by 0.01 radians standard
deviation in the first condition. This level indicates a nearly ideal
oceanic atmosphere with consistently calm circumstances. In this
specific instance, the derivation of covariance which contains
standard deviation of observed noise is performed in Eq. 41 as:

ℵτ � diag(σ2Y). (41)
The modeling of the observed noise at particular time interval τ for i
sensor is established by employing covariance as:

βiτ � N 0,ℵτ( ). (42)
The above stated observed noise in Eq. 42 is adding in measurement
expression Y as defined for entire passive bearings in Eq. 43 as:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (43)

The IBRBNC paradigm takes the above stated measurement data as
its input. The true state vector, as explained in Eq. 44, is used in the
measurement model, as shown in Eq. 22, to find out expected
state features.

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (44)

The first scenario demonstrates real-time state approximations, real
and observed rotation rates, errors in x-axis and y-axis location,
divergences in x-axis and y-axis velocity, an error histogram, and a
regression study. All findings compare the true and estimated state
features for σ = 0.01 radians observed noise standard deviation. For
this scenario, we assume that the marine environment is steady by
setting a low integer level for the detected noise.

• In Figure 6A, a comparison is made between the ability of the
IBRBNC network and filtering techniques IMMEKF and
IMMUKF in the prediction of state features for a
navigating object throughout the identification of the
turning route. It is worth mentioning that IBRBNC
effectively tracks the exact trajectory of the maneuvering
object, hence demonstrating its superior precision when
compared to the other two approaches.

• Figure 6B depicts the rotational component estimates of the
IMMEKF, IMMUKF, and IBRBNC strategies. The better
results of the IBRBNC method compared to the IMM
predictors are consistently observed throughout the process,
as evidenced by the precise estimation of the turning feature
for all data points.

• The analysis of the x-axis position inaccuracy is presented in
Figure 6C using themean square approach. Notably, the IBRBNC
algorithm exhibits minimal average error when compared to
other approaches, except for a single conspicuous spike.

• The simulation results for the y-axis position error of the
IMMEKF, IMMUKF, and IBRBNC approaches are presented
in Figure 6D. It is obvious that IBRBNC displays occasional
spikes while also showcasing a higher average performance
when compared to the other approaches. This highlights the
effectiveness of IBRBNC in reducing errors in y-axis
positioning, demonstrating its technical superiority.

• Figure 6E illustrates the disparity between the true velocity and
the estimated velocity along the x-axis, which is measured inMSE
context. The deep learning mechanism developed by the
IBRBNC demonstrates significant computational efficiency in
estimating the velocity along the x-axis. It surpasses the
performance of nonlinear Kalman estimators when evaluated
using 200 samples. Nevertheless, IBRBNC exhibits small number
of spikes that occur during turns of trajectory.

• The simulation results for the y-axis velocity error of the
IMMEKF, IMMUKF, and IBRBNC approaches are depicted in
Figure 6F. It is worth noting that IBRBNC demonstrates
limited sharp climbs while consistently displaying

TABLE 1 Establishing various parameters of state features estimation
model.

Parameter Optimal setting

The object’s preliminary features H0 = [0 0 1 0 0]T

Localization function for acoustic observers (Φi
x,Φi

y)

Observer units i = 8

Distance among observer units 0.5

Variation in observed noise σ = 0.01 → 1 radians

Model noise variance for WPV design ℓτ = 0.05

Model noise variance for CT design ℓτ = 0.15

Segment space ∂τ = 0.1

Segments of trajectory 200

Neurons in network 25

Total instances in IBRBNC network 1,000
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commendable overall performance in comparison to
alternative methodologies.

• Figure 6G displays the deviation histogram that represents the
discrepancies among the target data HReal

τ , and the

approximated output HEstimates
τ of the IBRBNC network.

The deviation histogram consists of a set of divergence
points, encompassing both negative and positive samples.
The error values enable to quantify the discrepancy

FIGURE 6
The outcomes of IMMEKF, IMMUKF, and IBRBNC for σ = 0.01 radians.
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between the input dataset and the computed dataset. In this
experiment, the total error of the IBRBNC network is divided
into 20 bins, which are graphically depicted as perpendicular
segments. The histogram displays an obvious disparity in the
central box, as it demonstrates a discrepancy of 0.001122 with
samples of 600. This observation implies that several data
points display errors that lie within a specific zone. The zero-
error line is also located within this box, indicating the neural
network’s zero error.

• Figure 6H depicts the regression investigation of the IBRBNC
method over the training, validation, and testing phases. The
neuro computing platform employs a partitioning strategy to
divide the input samples into three distinct subsets: training,
validation, and testing. The aforementioned subsets are
assigned proportions of 70%, 15%, and 15% respectively.
This inspection utilizes probabilistic elements to illustrate
the relationship between the findings of state features
HEstimates

τ and the corresponding actual state features HReal
τ .

The regression modeling reveals a substantial level of
correlation between the actual and predicted state features.
A flat trend is observed in the data sets that reflect the degree of
robustness of the IBRBNC paradigm.

Furthermore, the total MSEs for both bidirectional locations and
velocities of the underwater object are computed by contrasting the
observed values with the predicted values. The results of this
condition suggest that the accuracy of the IBRBNC is superior
than IMM Kalman filters when considering the responses of
position and velocity errors. This illustrates the effectiveness of
employing neuro computing for the estimation of state features in
underwater maneuvering target scenarios. The graphs presented
below illustrate the bidirectional position and velocity errors
associated with the IMMEKF, IMMUKF, and IBRBNC techniques.

4.1.2 Condition 2: The observed noise
standard deviation σ = 0.05 radians

In condition 2, the standard deviation of observing noise is
chosen to be σ = 0.05 radians. The intent of this selection is to

deliberately apply a certain amount of observed noise to the
computational process. In this specific situation, the calculation
of covariance is obtained in Eq. 45 by utilizing the standard
deviation of observed noise as:

ℵτ � diag(σ2Y). (45)
The noise reported for time period τ at hydrophone i belongs to the
Gaussian spectrum, with its parameters given by the formerly
computed covariance in Eq. 46 as:

βiτ � N 0,ℵτ( ). (46)
The measurement mechanism of sensor i includes observed noise at
every point in time τ as:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (47)

Likewise, the neural paradigm integrates this designed measuring
model Yi

τ given in Eq. 47 as an input. The desired value of IBRBNC is
denoted by the subsequent vector of state features given in Eq. 48 as:

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (48)

The state elements used in the estimation process exploiting the
IBRBNC methodology consist of the instantaneous direction of
the moving object (xτ, yτ), its velocity (xτ′, yτ′), and its rotation
rate ωτ. The subsequent section showcases the simulation
outcomes, encompassing state estimations, rotational
approximations, errors in the position of the x and y-axes,
errors in the velocity of the x and y-axes, a histogram
illustrating divergence, and an analysis of regression for the
current condition.

• Figure 8A displays a comparative analysis of all three
techniques for state feature estimation by following the
turning route of the maneuvering target. It is important to
highlight that, in this particular case, the motion estimations

FIGURE 7
The IMMEKF, IMMUKF, and IBRBNC’s MSEs for estimating bidirectional position and velocity in condition 1.
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and accuracy of IBRBNC are superior to conventional
nonlinear filtering approaches.

• The estimated turn rates for the present condition of measurement
noise are depicted in Figure 8B. Yet again, the superior performance

of the IBRBNC method over standard filtering techniques is
achieved for effectively determining the rotation variable.

• The average MSE across actual and predicted x-axis positions
of the underwater navigation object is depicted in Figure 8C.

FIGURE 8
The outcomes of IMMEKF, IMMUKF, and IBRBNC for σ = 0.05 radians.
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Furthermore, this outcome illustrates the degree of accuracy
exhibited by the IBRBNC approach in comparison to the
IMMEKF and IMMUKF strategies.

• Likewise, y-axis MSE position error of all estimation
algorithms is shown in Figure 8D. In this simulation result,
IMMEKF and IMMUKF are facing large spikes between
120 and 140 samples. These large spikes are due to their
divergence at the left turn of the trajectory. In comparison,
IBRBNC is showing the minimum position MSE for all
200 samples of the turning trajectory.

• An analysis of a maneuvering vehicle’s actual and estimated
x-axis velocity, computed by IMM filtering techniques and the
IBRBNC network, is presented in Figure 8E. The findings
show that, in terms of competence, the neuro computing
technology executes better than the filtering strategies.

• Figure 8F displays a parallel view of the true and estimated
velocity along the y-axis, as computed by all techniques. The
results also endorse that the neural learning is estimating
better y-axis velocity.

• The error histogram in Figure 8G evaluates the network error
between the target dataset HReal

τ , and estimated dataset
HEstimates

τ of the target’s state features. The bar graph
exhibits an inclined bin positioned at its midpoint, which
signifies an error of −0.00505. This segment is associated with
the input samples and contains an elevation exceeding
200 events. In the given scenario, the zero error is
positioned underneath the middle vertical column.

• Figure 8Hdepicts the IBRBNC computed regression assessment
for neural learning. The regression approach demonstrates the
usefulness of the IBRBNC framework by illustrating the
correlation between the actual intake and the
estimated outcome.

The numerical values of average MSEs are also computed to
quantify the difference between the actual and predicted
bidirectional positions and velocities of the dynamic object in the
presence of σ = 0.05 radians noise. The position and velocity errors
provide more evidence that potency of the IBRBNC exceeds that of
IMM Kalman filters. This demonstrates the efficacy of neural
networks in forecasting state characteristics. Figure 9 lists the

position and velocity errors derived from IBRBNC and Bayesian
Kalman filters.

4.1.3 Condition 3: The observed noise
standard deviation σ = 0.1 radians

Under this condition, the observed noise standard deviation
increases to σ = 0.1 radians, suggesting that a significant amount of
interference has been added in the whole model. Considering
standard deviation of 0.1 radians for random detected noise, the
variance ℵ at time step τ is computed in Eq. 49 as follows:

ℵτ � diag(σ2Y). (49)
The mathematical description of the measured noise that is derived
from the above covariance for i sensor at time interval τ is given in
Eq. 50 as follows:

βiτ � N 0,ℵτ( ). (50)
The observational model is including the achieved Gaussian
measured noise as:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (51)

The above Eq. 51 represents the measurement model Y for
hydrophone i at time step τ. This model combines the passive
orientations observed by acoustic hydrophones, and correlates
them with the white Gaussian distributed measured noise. The
data set utilized for deep neuro computing is comprised on the
calculations of the measurement model. The neural network’s
output consists of state features following Eq. 52, which are
presented in state vector as:

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (52)

The following part provides the simulation results on this value of
measured noise in terms of trajectory predictions, turning rate

FIGURE 9
The IMMEKF, IMMUKF, and IBRBNC’s MSEs for estimating bidirectional position and velocity in condition 2.
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estimates, least bidirectional location errors, divergences in x and
y-axes velocities, network failure histogram, and a
regression study.

• The state features estimation performance for the
synchronized spin track is plotted in Figure 10A for all
techniques. It is evident that the deep learning model based

FIGURE 10
The outcomes of IMMEKF, IMMUKF, and IBRBNC for σ = 0.1 radians.
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on IBRBNC demonstrates superior accuracy when compared
to the conventional IMMEKF and IMMUKFmethodologies in
this particular scenario. The IBRBNC technique demonstrates
better capability for precisely determining the dynamics of
maneuvering object over bends of the route, in contrast to
conventional filters, which face larger hurdles in this regard.
This shows the effectiveness of the neural approach.

• Figure 10B illustrates the turn rate predictions based on all
methods. Neuro computing demonstrates far better
estimation outcomes and achieve turn rates that are close
to the actual values, surpassing the capabilities of
Kalman filters.

• The plot shown in Figure 10C depicts the real-time mean
square positioning inaccuracy along the x-axis for IMM and
IBRBNC estimation approaches. IBRBNC demonstrates high
precision compared to other techniques in all instances of
turning course.

• In Figure 10D, position error along the y-axis is represented
for all state feature estimation algorithms. IBRBNC is
experiencing some large spikes near 100 data points, while
between 120 and 180 samples, the performance of IMM filters
is poor. As a whole, the average mean square error of neural
learning is better than conventional techniques.

• Figure 10E illustrates the velocity inaccuracy along the x-axis,
calculated in meter per second, of the navigation vehicle for every
single sample over all methods. All estimation mechanisms are
facing decline in accuracy at the intersections of the turning path.
Yet, it is obvious that IBRBNC technique surpasses the IMM
filters in performance across all sample points.

• Mean square velocity error computed by all estimation
algorithms along y-axis of the underwater dynamic object is
shown in Figure 10F. In this result, the estimation accuracy of
IBRBNC method is steady for all data points while IMM
filtering methods are showing large fluctuations, especially at
turns of the target trajectory.

• Figure 10G displays a histogram comparing the error of
neural learning between target HReal

τ , and the expected
dynamic features HEstimates

τ of the turning object. The
histogram features a centrally positioned upward line,
that corresponds to an error value of 0.02482. The
maximum value of the vertical bin used for training is

nearly 350 points, and the testing samples likewise fall
within this limit. The investigation reveals that the zero
error is situated inside this upward box, such as an integer
of 0.02482.

• Figure 10H depicts the regression conditions that occur
throughout the learning process of IBRBNC. The graph
illustrates a slight discrepancy between the input and outcome
data, which can be indicated by increase in the observed noise.

The current circumstance entails calculating the MSEs for both
bidirectional orientations and velocities. The units used for these
calculations are meter and meter per second, respectively. The
recognition of position and velocity lapses helps to verify the
previously described results, providing evidence that the neural
system exhibits significantly higher convergence in comparison to
multi model filtering methods. The graph presented in Figure 11
illustrates the bidirectional position and velocity inaccuracies obtained
through the implementation of the IMMEKF, IMMUKF, and
IBRBNC algorithms.

4.1.4 Condition 4: The observed noise
standard deviation σ = 0.5 radians

The standard deviation of noise in passive observations is
increased to σ = 0.5 radians in this case, so adding a large level of
Gaussian disturbance into the state feature estimation mechanism.
Here is the formulation of variance in Eq. 53, which includes this
numerical value of the standard deviation of the observed noise as:

ℵτ � diag(σ2Y). (53)
As well as, the calculation of observed Gaussian noise is derived in
Eq. 54 from the covariance in the following way:

βiτ � N 0,ℵτ( ). (54)
The comprehensive framework’s measurement equation
incorporates the noise recorded at time step τ for each observer
element i in the subsequent form:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (55)

FIGURE 11
The IMMEKF, IMMUKF, and IBRBNC’s MSEs for estimating bidirectional position and velocity in condition 3.
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FIGURE 12
The outcomes of IMMEKF, IMMUKF, and IBRBNC for σ = 0.5 radians.
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The IBRBNC network is given the complete measurement model
formulation Yi

τ in Eq. 55 as input dataset. It includes passive
bearings and observed noise. The desired statistics correspond to
the actual state vector, as depicted in Eq. 56 here:

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (56)

The bidirectional positions, velocities, and rotations of underwater
moving vehicle are computed here in real-time for the precise
curving path. The motion features are obtained via IMM Kalman
filters and neural network leveraging IBRBNC. The actual state vector is
employed to estimate the desired characteristics of the underwater
object. The diagrams below illustrate simulation findings for path
predictions, rotational approximations, oversights in x and y-axes
locations, errors in x and y-axes velocities, a histogram of deviations,
and the description of regression.

• The state feature estimation capability of Bayesian filtering
and IBRBNC schemes is shown in Figure 12A, assuming a lot
of observation distortion. It is notable that each of these
strategies faces difficulties when attempting to precisely
identify the real route of the target. Nevertheless, despite
the existence of an adverse underwater environment, it can
be seen that the IBRBNC algorithm demonstrates a greater
level of coherence with the true trajectory in comparison to the
other methodologies under consideration.

• The rotation rate estimates in this specific scenario are
illustrated in Figure 12B. This demonstrates that neural
computation has more effective predictive approach than
IMM filtering methods.

• The schematic diagram denoted as 12c depicts the MSE
among the actual and estimated x-axis coordinates of the
moving target. The results show that filtration techniques have
a notable margin of error, whereas the IBRBNC method
provides better convergence with less average positional
inaccuracy.

• The underwater object’s mean square position error along the
y-axis is represented in Figure 12D. This outcome shows that

all algorithms are providing large peaks of error due to
enhance noise level. In comparison, the y-axis position
prediction performance of neural computing is better than
other two techniques.

• Figure 12E exhibits the discrepancy in velocity inaccuracy
along the x-axis, which arises from different methods, thereby
confirming the efficacy of the neural network model.

• The y-axis mean square velocity errors for all samples of
turning trajectory are shown in Figure 12F. In this finding, the
estimation accuracy of IBRBNC is far better than conventional
techniques for all data points.

• A divergence histogram shown in Figure 12G presents the
frequency of deviations across the target information HReal

τ ,
and the estimated target’s motion characteristics HEstimates

τ .
The difference of −0.00828 is observed in the massive frame
positioned in the middle of the chart. In the histogram, the
zero-error line is situated beneath the vertical bar with a
numerical value of −0.00828.

• The result of the regression in the given case is depicted in
Figure 12H, which suggests a substantial gap between the
input dataset and the expected outcome. The gap can be
identified as an increase in the standard deviation of the
observed noise.

To assess the difference between the actual and predicted
bidirectional velocity and location of the moving vehicle, the
MSE is derived here. The numerical position and velocity
divergences strengthen the prior outcomes that IBRBNC
demonstrates superior efficiency in comparison to Kalman filters.
The position and velocity fluctuations, as computed with the
IMMEKF, IMMUKF, and IBRBNC techniques, are depicted
in Figure 13.

4.1.5 Condition 5: The observed noise
standard deviation σ = 1 radian

In the concluding scenario of this research, a maximum
magnitude of σ = 1 radian is chosen to depict an environment
that contains an extreme amount of turbulence. Furthermore, the
measurement framework with a significant level of noise is

FIGURE 13
The IMMEKF, IMMUKF, and IBRBNC’s MSEs for estimating bidirectional position and velocity in condition 4.
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employed in the state feature estimation mechanism. The maximum
amount of σ relates to the term of covariance ℵτ, given in Eq. 57 as:

ℵτ � diag(σ2Y). (57)

The mathematical modeling of Gaussian distributed observed noise βiτ
for sensor i takes place at time τ through the covarianceℵτ in Eq. 58 as:

βiτ � N 0,ℵτ( ). (58)

FIGURE 14
The outcomes of IMMEKF, IMMUKF, and IBRBNC for σ = 1 radian.
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The measurement formulation in Eq. 59 reflects the presence of
excessive amount of distinct white Gaussian observation noise as:

Yi
τ � atan

yτ −Φi
y

xτ − Φi
x

[ ] + βiτ . (59)

The input set of data denoted as Yi
τ for the IBRBNC network,

comprises of passive measurements incorporating the highest level
of noise. The output of the neuro computing is represented by the
state vector, as indicated in Eq. 60 here:

Hτ � Hm
τ −Hn

τ �

xτ

yτ

xτ′
yτ′
ωτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (60)

The IBRBNC system combines observations and dynamic functions
in a particular order to precisely calculate the output dataset, which
includes the estimated vector of state features. The presented
information in the below part includes path tracking, rotation
predicts, bidirectional locations and velocities discrepancies, error
bar chart, and regression approach.

• Figure 14A shows the turning trajectory estimates of
IMMEKF, IMMUKF, and IBRBNC algorithms in this
specific scenario. The existence of considerable noise in
the underwater environment is the reason for the
dispersion of route tracking findings among all
approaches. Accurately determining the exact path of
object presents considerable difficulties across all
computational methods. Nevertheless, in this complex
circumstance, the intelligent technology referred to as
IBRBNC has superior accuracy in forecasting turning
path in contrast to conventional methodologies.

• In this high noise level condition, Figure 14B demonstrates the
investigation of rotation rate estimations, where the rotation
feature is more precisely approximated with IBRBNC.

• Figure 14C displays the MSE representing the average
disparity among the actual and anticipated x-axis
coordinates of the underwater moving vehicle. The findings
conclusively indicate that the IBRBNC paradigm reveals a

significantly smaller x-axis position error in comparison to the
IMMEKF and IMMUKF techniques.

• In Figures 14A, D comprehensive comparison between
IBRBNC and IMM Kalman filters is done for the
estimation of y-axis mean position error. In this
comparative analysis, neuro computing is showing far
better convergence rate and completely dominating IMM
filters for all data points of the turning trajectory.

• Figure 14E illustrates the results of the x-axis velocity deviation
for all methods. It shows that IBRBNC occasionally has spikes,
whereas as a whole it performs better than IMM
filtering methods.

• Y-axis velocity error analysis is done in Figure 14F for all
applied techniques. In this finding, IBRBNC is showing far
better performance in the start and end of the trajectory while
experiencing some difficulties in the middle phase of the
target’s trajectory. In contrast, the performance of IMM
filters is getting worse after 120 data points in the
trajectory. Again, IBRBNC is surpassing conventional
techniques in this analysis too.

• Figure 14G demonstrates the investigation of neural network
by executing the error statistic spectrum. This investigation
involves the specific target dataset HReal

τ , along with the
estimated output dataset HEstimates

τ . A disparity
of −0.07229 has been identified in an upward box with a
training dataset altitude near 170 steps, whereas the testing
dataset has heights within the range of 170–180 steps. In this
specific situation, the zero-divergence score is located beneath
the vertical box, whose center point is −0.07229.

• Figure 14H displays the regression graph of the IBRBNC
system, which demonstrates a statistical association between
the input dataset and the intended outcome in this condition.
The regression evaluation shows a significant difference
among the input values and the expected output, which is
due to the huge amount of uniformly dispersed noise in the
state feature computation architecture.

The average MSEs for the bidirectional location and velocity of
the maneuvering vehicle are also numerically calculated in meter
and meter per second correspondingly, within this cluttered
surrounding. These are determined through contrasting the

FIGURE 15
The IMMEKF, IMMUKF, and IBRBNC’s MSEs for estimating bidirectional position and velocity in condition 5.
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actual values of the state features with their respective approximate
values. The results of the bidirectional location and velocity
deviations confirm the prior findings that IBRBNC demonstrates
significantly greater precision than Kalman filters, particularly in
extremely noisy underwater environments. Figure 15 displays a
collection of bidirectional position and velocity mean square
errors that have been calculated using the IMMEKF, IMMUKF,
and IBRBNC techniques.

The statistics compiled from various conditions indicate that
when the standard deviation of observed noise σ is high, all state
feature estimation methods encounter difficulties in accurately
monitoring the true state of navigational target in marine
environment. After doing a thorough comparison of multiple
approaches, it is obvious that deep learning using IBRBNC
surpasses other strategies in terms of performance. This
exceptional results of IBRBNC highlights its capacity to
effectively forecast nonlinear real-time state features in
underwater problems.

5 Conclusion

The study introduces the ability of deep learning, specifically
exploiting the robust IBRBNC paradigm, to accurately estimate state
features in real-time for a Markov chain undersea object using just
bearing information. The investigation aims to accurately estimate
the instantaneous motion features of a kinematic turning target
within a two-dimensional x-y coordinate framework at each time
instant. The analysis begins by using a mathematical BOT approach
to create a model for estimating the state space of the target in both
the dynamic and measurement frameworks. Subsequently, a neural
computing technique based on IBRBNC is presented to predict the
state features of the Markov chain passive object. The performance
analysis of the IBRBNC network involves an extensive investigation
to find the exact trajectory of target movements using rotation
estimates, minimum mean square bidirectional location error, real-
time path tracking, bidirectional velocity difference, error histogram,
and linear regression. The assessment is conducted using a dataset
consisting of 200 samples. Further review involves challenging the
suggested method to different numerical values of Gaussian
distributed observed noise, leading to a better understanding of
its resilience. The outcomes of the simulation in the final section
highlight the neural network’s higher level of accuracy in
comparison to conventional nonlinear multi-model Bayesian
filtering techniques such as IMMEKF and IMMUKF. Recognizing
the rapid performance decline over all techniques for noisy
measurements, highlights the difficult task of obtaining accurate
state features in cluttered oceanic situations. This research
represents a significant advancement in enhancing the capacity of
underwater systems to estimate the features of moving object.
Ultimately leading to improved decision-making and safety in
aquatic missions. The establishment of the IBRBNC paradigm
presents a great opportunity for further progress in underwater
state estimation. It enables new possibilities for applications in
marine science, defense, and underwater exploration.

Future research endeavors could investigate the use of recurrent
and radial base neural techniques to improve the estimate of state

features for objects that are highly maneuverable, even when there is
non-Gaussian measurement noise. Exploring this field of research
has great potential in underwater atmospheres involving single or
many targets.
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