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Damped Burger’s equation describes the characteristics of one-dimensional
nonlinear shock waves in the presence of damping effects and is significant in
fluid dynamics, plasma physics, and other fields. Due to the potential applications
of this equation, thus the objective of this investigation is to solve and analyze the
time fractional form of this equation using methods with precise efficiency, high
accuracy, ease of application and calculation, and flexibility in dealing with more
complicated equations, which are called the Aboodh residual power series
method and the Aboodh transform iteration method (ATIM) within the Caputo
operator framework. Also, this study intends to further our understanding of the
dynamic characteristics of solutions to the Damped Burger’s equation and to
assess the effectiveness of the proposed methods in addressing nonlinear
fractional partial differential equations. The two proposed methods are highly
effective mathematical techniques for studying more complicated nonlinear
differential equations. They can produce precise approximate solutions for
intricate evolution equations beyond the specific examined equation. In
addition to the proposed methods, the fractional derivatives are processed
using the Caputo operator. The Caputo operator enhances the representation
of fractional derivatives by providing a more accurate portrayal of the underlying
physical processes. Based on the proposed two approaches, a set of
approximations to damped Burger’s equation are derived. These
approximations are discussed graphically and numerically by presenting a set
of two- and three-dimensional graphs. In addition, these approximations are
analyzed numerically in several tables, including the absolute error for each
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approximate solution compared to the exact solution for the integer case.
Furthermore, the effect of the fractional parameter on the behavior of the
derived approximations is examined and discussed.
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1 Introduction

There has been a growing interest in fractional differential
equations (FDEs) in recent years. The fractional approach is a
strong modeling paradigm in mechanics and materials, wave
propagation, anomalous diffusion, and turbulence. Natural
phenomena exhibit anomalous diffusion, in which the underlying
stochastic process does not follow Brownian motion. Compared to
the Gaussian process, the mean-square variance may rise more
quickly for superdiffusion or more slowly for subdiffusion. Due to
long-range correlations in dynamics or anomalously large particle
jumps, non-Gaussion diffusion models can be constructed utilizing
nonlocal-in-time or nonlocal in-space operators, such as Caputo or
Riemann–Liouville derivatives. The advantage of the fractional
model is that anomalous diffusion is well described [1–11]. The
singularity of the kernel poses a difficulty for the authors of
Caputo and Riemann derivatives. Considering the fact that the
kernel is utilized to clarify the memory impact of the physical
system, it is indisputable that this limitation restricts both
derivatives from accurately assessing the full effect of the
memory. Caputo and Fabrizio (CF) [12] introduced a novel
fractional operator with an exponential kernel during the mid-
1990s as part of their effort to do so. The utilization of the
nonsingular kernel of this derivative produces more logical
outcomes when compared to the conventional method. A
compilation of CF operator implementations has been
expanded around in Ref. [13–15]. The research articles cited
encompass a diverse range of topics within the field of control
systems, vibration isolation, and neural network approximation.
Guo et al. delve into fixed-time safe tracking control and non-
singular fixed-time tracking control of uncertain nonlinear
systems [16, 17] 3. Lu et al. focus on nonlinear vibration
isolation systems with high-static-low-dynamic stiffness [18,
19]. Additionally, Luo et al. explore adaptive optimal control of
affine nonlinear systems using identifier-critic neural network
approximation [20]. These studies contribute valuable insights
and advancements to their respective areas, showcasing the
ongoing innovation and research efforts in control theory and
engineering applications.

Determining an exact solution to partial differential equations
(PDEs) of fractional order is exceedingly challenging. The ability to
precisely and numerically solve such equations is critical in applied
mathematics. As a result, innovative approaches have been
developed to obtain analytical solutions that demonstrate a
significant level of accuracy compared to the precise solutions
[21–23]. The resolution of differential equations often involves
the utilization of integral transformations. Employing integral
transformations makes resolving IVPs and BVPs in differential
and integral equations possible efficiently. An extensive array of

scholars examined the consequences of various integral transforms
applied to distinct classes of differential equations [24–26]. The
Laplace transform is the integral transform that is most commonly
utilized [27]. In 1998, Watugala [28] introduced the Sumudu
transform, which proved to be an efficient approach to
addressing control engineering and differential equations
challenges. In 2011, T. Elzaki and S. Elzaki proposed the “Elzaki
Transform” as an innovative integral transform; its utilization in the
resolution of partial differential equations has since become
widespread [29]. In 2013, Aboodh additionally presented the
“Aboodh Transform (AT)” and applied it to the resolution of
PDEs [30]. A variety of transformations are documented in the
literature.

Omar Abu Arqub created the RPSM in 2013 [31]. The RPSM
combines the residual error function with Taylor’s series. After that,
this approach was used to find convergence series approximations
for both nonlinear and linear differential equations. The RPSM was
first introduced in 2013 to solve fuzzy differential equations. More
improvements were made to this technique. For instance, Arqub
et al. [32] developed a novel collection of RPSM algorithms to
promptly find power series solutions for ordinary DEs. Furthermore,
Arqub et al. [33] introduced a novel and appealing RPSM method
for fractional-order nonlinear boundary value problems. El-Ajou
et al. [34] introduced an innovative iterative approach utilizing
RPSM to approximate fractional-order solutions to the KdV-
burgers equations. A novel approach was introduced by Xu et al.
[35], which involved fractional power series solutions for Boussinesq
DEs of the second and fourth orders. Zhang et al. [36] synthesized
least square methods and RPSM to develop a robust numerical
technique. Consult [37–39] for additional readings on RPSM in
greater depth.

Scientists utilized two distinct methodologies to solve fractional-
order differential equations (FODEs). A sequence of solutions to the
new equation form is obtained by mapping the original equation
onto the space produced by the AT [40]. The solution to the original
equation is obtained by applying the inverse Aboodh transform.
Components of the Sumudu transform, and the homotopy
perturbation approach are combined in this novel method. As
power series expansions, the novel technique, which does not
require discretization, linearization, or perturbation, can solve
both linear and nonlinear PDEs. The determination of the
coefficients can be accomplished through a limited number of
calculations, in contrast to RPSM, which necessitates numerous
iterations of fractional derivative computations during the solution
phases. The proposed methodology has the potential to yield an
accurate and closed-form approximation by leveraging a rapid
convergence series.

For solving fractional differential equations, the Aboodh
transform iteration method (ATIM) [41–43] and the Aboodh
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residual power series method (ARPSM) [44, 45] are regarded as the
most straightforward techniques. These methods generate
numerical approximations for solutions to linear and nonlinear
differential equations without requiring discretization or
linearization and immediately and visibly display the symbolic
terms of analytical solutions. Comparing and contrasting the
effectiveness of ARPSM and ATIM in solving nonlinear PDEs,
specifically damped Burger’s equation, is the primary objective of
this study. It is worth mentioning that these two methods have been
employed to resolve many fractional differential problems, both
linear and nonlinear.

2 Fundamental concepts

Definition 2.1. [46] It is assumed that the function Θ(ζ, η) is of
exponential order and piecewise continuous.

For τ ≥ 0, the AT of Θ(ζ, η) is defined as follows:

A Θ ζ , η( )[ ] � Λ ζ , ϵ( ) � 1
ϵ∫

∞

0
Θ ζ , η( )e−ηϵdη, r1 ≤ ϵ≤ r2.

Below is a description of the inverse of AT:

A−1 Λ ζ , ϵ( )[ ] � Θ ζ , η( ) � 1
2πi

∫u+i∞

u−i∞
Λ ζ , η( )ϵeηϵdη

Where ζ � (ζ1, ζ2, . . . , ζp) ∈ R and p ∈ N.

Lemma 2.1. [47, 48] Two functions of exponential order, Θ1(ζ, η)
and Θ2(ζ, η), are defined. They are piecewise continuous on
[0,∞]. Let us assume that A[Θ1(ζ, η)] = Λ1(ζ, η), A[Θ2(ζ, η)] =
Λ2(ζ, η) and λ1, λ2 are real constants. Thus, the following features
are valid:

1. A [λ1Θ1 (ζ, η) + λ2Θ2 (ζ, η)] = λ1Λ1 (ζ, ϵ) + λ2Λ2 (ζ, η),
2. A−1 [λ1Λ1 (ζ, η) + λ2Λ2 (ζ, η)] = λ1Θ1 (ζ, ϵ) + λ2Θ2 (ζ, η),
3. A[JpηΘ(ζ , η)] � Λ(ζ ,ϵ)

ϵp ,
4. A[Dp

ηΘ(ζ , η)] � ϵpΛ(ζ , ϵ) − ∑r−1
K�0

ΘK(ζ ,0)
ϵK−p+2 , r − 1<p≤ r, r ∈ N.

Definition 2.2. [49] The Caputo defines the fractional derivative of
the function Θ(ζ, η) in terms of order p.

Dp
ηΘ ζ , η( ) � Jm−p

η Θ m( ) ζ , η( ), r≥ 0, m − 1<p≤m,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and m, p ∈ R, Jm−p
η is the R-L

integral of Θ(ζ, η).

Definition 2.3. [50] The power series has the following form.

∑∞
r�0

Zr ζ( ) η − η0( )rp � Z0 η − η0( )0 + Z1 η − η0( )p + Z2 η − η0( )2p+/,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. This kind of series is
called a multiple fractional power series (MFPS) for η0, where the
variable is η and the series coefficients are Zr(ζ)′s.

Lemma 2.2. Let us assume that Θ(ζ, η) is the exponential order
function. In this case, A[Θ(ζ, η)] = Λ(ζ, ϵ) is the definition of the
AT. Therefore,

A Drp
η Θ ζ , η( )[ ] � ϵrpΛ ζ , ϵ( ) −∑r−1

j�0
ϵp r−j( )−2Djp

η Θ ζ , 0( ), 0<p≤ 1,

(1)
where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N and Drp

η �
Dp

η .D
p
η ./ .Dp

η (r − times)
Proof. We can demonstrate Eq. 2 via induction. The following

outcomes arise from selecting r = 1 in Eq. 2:

A D2p
η Θ ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Θ ζ , 0( ) − ϵp−2Dp

ηΘ ζ , 0( )

For r = 1, Lemma 2.1, part (4), asserts that Eq. 2 is valid. By
changing r = 2 in Eq. 2, we get

A D2p
r Θ ζ , η( )[ ] � ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Θ ζ , 0( ) − ϵp−2Dp

ηΘ ζ , 0( ). (2)

In light of Eq. 2’s left-hand side, we can conclude

L.H.S � A D2p
η Θ ζ , η( )[ ]. (3)

Eq. 3 may be expressed in the following way:

L.H.S � A Dp
ηΘ ζ , η( )[ ]. (4)

Let us assume

z ζ , η( ) � Dp
ηΘ ζ , η( ). (5)

Thus, Eq. 4 becomes as

L.H.S � A Dp
ηz ζ , η( )[ ]. (6)

The use of the Caputo type fractional derivative results in a
modification of Eq. 6.

L.H.S � A J1−pz′ ζ , η( )[ ]. (7)

The R-L integral for the AT is found in Eq. 7, which makes it
possible to derive the following:

L.H.S � A z′ ζ , η( )[ ]
ϵ1−p . (8)

Equation 8 is transformed into the following form by using the
differential characteristic of the AT:

L.H.S � ϵpZ ζ , ϵ( ) − z ζ , 0( )
ϵ2−p , (9)

From Eq. 5, we obtain:

Z ζ , ϵ( ) � ϵpΛ ζ , ϵ( ) − Θ ζ , 0( )
ϵ2−p ,

where A [z (ζ, η)] = Z (ζ, ϵ). Therefore, Eq. 9 is converted to

L.H.S � ϵ2pΛ ζ , ϵ( ) − Θ ζ , 0( )
ϵ2−2p − Dp

ηΘ ζ , 0( )
ϵ2−p , (10)

According to Eq. 2, then Eq. 10 is compatible. Let us assume the
validity of Eq. 2 for r = K. This allows us to change r = K in Eq. 2:

A DKp
η Θ ζ , η( )[ ] � ϵKpΛ ζ , ϵ( )

− ∑K−1
j�0

ϵp K−j( )−2Djp
η Djp

η Θ ζ , 0( ), 0<p≤ 1. (11)
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Proving Eq. 2 for the value of r = K + 1 is the next step. Based on
Eq. 2, we may write

A D K+1( )p
η Θ ζ , η( )[ ] � ϵ K+1( )pΛ ζ , ϵ( ) −∑K

j�0
ϵp K+1( )−j( )−2Djp

η Θ ζ , 0( ).

(12)
After analysis of the LHS of Eq. 12, we get

L.H.S � A DKp
η DKp

η( )[ ]. (13)

Suppose that

DKp
η � g ζ , η( ).

Equation 13 yields

L.H.S � A Dp
ηg ζ , η( )[ ]. (14)

By using the R-L integral formula and the Caputo fractional
derivative, we may convert Eq. 14 into the following expression.

L.H.S � ϵpA DKp
η Θ ζ , η( )[ ] − g ζ , 0( )

ϵ2−p . (15)

Equation 11 is unitized to provide Eq. 15.

L.H.S � ϵrpΛ ζ , ϵ( ) −∑r−1
j�0

ϵp r−j( )−2Djp
η Θ ζ , 0( ), (16)

Moreover, Eq. 16 yields the following result.

L.H.S � A Drp
η Θ ζ , 0( )[ ].

Therefore, Eq. 2 holds for r = K + 1. Thus, we used the
mathematical induction approach and shows that Eq. 2 holds
true for all positive integers.

Extending the concept of multiple fractional A lemma
demonstrating Taylor’s formula is shown below. The ARPSM,
which will be covered in more detail later on, will benefit from
this formula.

Lemma 2.3. Assume that the function Θ(ζ, η) behaves
exponentially order. The statement A[Θ(ζ, η)] = Λ(ζ, ϵ)
represents the AT of Θ(ζ, η), and it is multiple fractional Taylor’s
series expressed as:

Λ ζ , ϵ( ) � ∑∞
r�0

Zr ζ( )
ϵrp+2 , ϵ> 0, (17)

where, ζ � (s1, ζ2, . . . , ζp) ∈ Rp, p ∈ N.
Proof. Now we examine the fractional order of Taylor’s series as

Θ ζ , η( ) � Z0 ζ( ) + Z1 ζ( ) ηp

Γ p + 1[ ] + +Z2 ζ( ) η2p

Γ 2p + 1[ ] +/ . (18)

Equation 18 may be transformed using the AT to get the
following equality:

A Θ ζ , η( )[ ] � A Z0 ζ( )[ ] + A Z1 ζ( ) ηp

Γ p + 1[ ][ ]
+ A Z1 ζ( ) η2p

Γ 2p + 1[ ][ ] +/

For this, we use the AT’s characteristics.

A Θ ζ , η( )[ ] � Z0 ζ( ) 1ϵ2 + Z1 ζ( ) Γ p + 1[ ]
Γ p + 1[ ] 1

ϵp+2

+ Z2 ζ( ) Γ 2p + 1[ ]
Γ 2p + 1[ ] 1

ϵ2p+2/

Hence, in the AT, we obtains (17), a new version of
Taylor’s series.

Lemma 2.4. Define the MFPS representation of the function
expressed in the new form of Taylor’s series (17) as A[Θ(ζ, η)] =
Λ(ζ, ϵ). Next, we have

Z0 ζ( ) � lim
ϵ→∞

ϵ2Λ ζ , ϵ( ) � Θ ζ , 0( ). (19)

Proof. The subsequent is derived from the new form of
Taylor’s series:

Z0 ζ( ) � ϵ2Λ ζ , ϵ( ) − Z1 ζ( )
ϵp − Z2 ζ( )

ϵ2p −/ (20)

The required result, denoted by Eq. 20, is obtained by applying
limϵ→∞ to Eq. 19 and performing a brief computation.

Theorem 2.5. Let us suppose that the function A[Θ(ζ, η)] = Λ(ζ, ϵ)
has MFPS form given by

Λ ζ , ϵ( ) � ∑∞
0

Zr ζ( )
ϵrp+2 , ϵ> 0,

where ζ � (ζ1, ζ2, . . . , ζp) ∈ Rp and p ∈ N. Then we have

Zr ζ( ) � Drp
r Θ ζ , 0( ),

where, Drp
η � Dp

η .D
p
η ./ .Dp

η(r − times).
Proof. This is the revised version of the Taylor’s series that

we have.

Z1 ζ( ) � ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( ) − Z2 ζ( )
ϵp − Z3 ζ( )

ϵ2p −/ (21)

Using Eq. 21 and the limϵ→∞, we are able to get

Z1 ζ( ) � lim
ϵ→∞

ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ) − lim
ϵ→∞

Z2 ζ( )
ϵp − lim

ϵ→∞
Z3 ζ( )
ϵ2p −/

Taking limit, we arrive at the equality that follows:

Z1 ζ( ) � lim
ϵ→∞

ϵp+2Λ ζ , ϵ( ) − ϵpZ0 ζ( )( ). (22)

Following is the result that is obtained by applying Lemma (2.2)
to Eq. 22:

Z1 ζ( ) � lim
ϵ→∞

ϵ2A Dp
ηΘ ζ , η( )[ ] ϵ( )( ). (23)

Through the use of Lemma (2.3) to Eq. 23, the equation is
changed into

Z1 ζ( ) � Dp
ηΘ ζ , 0( ).

Once again, by taking into consideration the new
implementation of Taylor’s series and assuming limit ϵ → ∞, we
have arrived at the result that
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Z2 ζ( ) � ϵ2p+2Λ ζ , ϵ( ) − ϵ2pZ0 ζ( ) − ϵpZ1 ζ( ) − Z3 ζ( )
ϵp −/

Lemma (2.3) leads us to get the following:

Z2 ζ( ) � lim
ϵ→∞

ϵ2 ϵ2pΛ ζ , ϵ( ) − ϵ2p−2Z0 ζ( ) − ϵp−2Z1 ζ( )( ). (24)

With the help of Lemmas (2.2) and (2.4), Eq. 24 is
transformed into

Z2 ζ( ) � D2p
η Θ ζ , 0( ).

When we apply the same method to the subsequent Taylor’s
series, we obtain the following results:

Z3 ζ( ) � lim
ϵ→∞

ϵ2 A D2p
η Θ ζ , p( )[ ] ϵ( )( ).

The final equation can be found by applying Lemma (2.4).

Z3 ζ( ) � D3p
η Θ ζ , 0( ).

So, in general

Zr ζ( ) � Drp
η Θ ζ , 0( ).

Thus, the proof comes to an end.
In the succeeding theorem, the conditions that determine the

convergence of the new version of Taylor’s formula are established
and detailed in further depth.

Theorem 2.6. The revised formula for multiple fractional
Taylor’s, given in Lemma (2.3), is denoted by the expression
A[Θ(ζ, η)] = Λ(ζ, ϵ). The new version of multiple fractional
Taylor’s formula’s residual RK(ζ, ϵ) satisfies the following
inequality if |ϵaA[D(K+1)p

η Θ(ζ , η)]|≤T, on 0 < ϵ ≤ s is
associated with
0 < p ≤ 1:

|RK ζ , ϵ( )|≤ T

ϵ K�1( )p+2, 0< ϵ≤ s.

Proof. To start the proof, Let assume: For r = 0, 1, 2, . . . , K + 1,
A[Drp

η Θ(ζ , η)](ϵ) is defined on 0 < ϵ ≤ s. Let,
|ϵ2A[DηK+1Θ(ζ , tau)]|≤T, on 0< ϵ≤ s. Based on the revised
version of Taylor’s series, determine the following relationship:

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Zr ζ( )
ϵrp+2 . (25)

Applying Theorem (2.5) allows for the transformation of Eq. 25.

RK ζ , ϵ( ) � Λ ζ , ϵ( ) −∑K
r�0

Drp
η Θ ζ , 0( )
ϵrp+2 . (26)

It is necessary to multiply ϵ(K+1)a+2 on both sides of Eq. 26 which
leads to

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2 ϵ K+1( )pΛ ζ , ϵ( ) −∑K
r�0

ϵ K+1−r( )p−2Drp
η Θ ζ , 0( )⎛⎝ ⎞⎠.

(27)

The use of Lemma (2.2) to Eq. 27 results in

ϵ K+1( )p+2RK ζ , ϵ( ) � ϵ2A D K+1( )p
η Θ ζ , η( )[ ]. (28)

Equation 28 is obtained by applying the absolute sign to
the equation.

|ϵ K+1( )p+2RK ζ , ϵ( )| � |ϵ2A D K+1( )p
η Θ ζ , η( )[ ]|. (29)

By applied the condition given in Eq. 29, we can arrive at the
result as will be given below.

−T
ϵ K+1( )p+2 ≤RK ζ , ϵ( )≤ T

ϵ K+1( )p+2. (30)

Equation 30 yields the required result.

|RK ζ , ϵ( )|≤ T

ϵ K+1( )p+2.

Hence, a novel criterion for series convergence is established.

3 A route map describing the methods

3.1 Solving time-fractional PDEs with
variable coefficients by use of the
ARPSM process

We detail the ARPSM rules that was used to resolve our
underlying model.

Step 1: Finding the general equation’s simplified form yields

Dqp
η Θ ζ , η( ) + ϑ ζ( )N Θ( ) − ζ ζ ,Θ( ) � 0, (31)

Step 2: The AT is applied on both sides of Eq. 31 in order to get

A Dqp
η Θ ζ , η( ) + ϑ ζ( )N Θ( ) − ζ ζ ,Θ( )[ ] � 0, (32)

The use of Lemma (2.2) transforms Eq. 32 into.

Λ ζ , s( ) � ∑q−1
j�0

Dj
ηΘ ζ , 0( )
sqp+2

− ϑ ζ( )Y s( )
sqp

+ F ζ , s( )
sqp

, (33)

where, A [ζ(ζ, Θ)] = F (ζ, s), A [N(Θ)] = Y(s).

Step 3: You should take into consideration the form that the
solution to Eq. 33 takes:

Λ ζ , s( ) � ∑∞
r�0

Zr ζ( )
srp+2

, s> 0,

Step 4: In order to proceed further, you will need to follow
these steps:

Z0 ζ( ) � lim
s→∞

s2Λ ζ , s( ) � Θ ζ , 0( ),

Through the use of Theorem 2.6, the following results
are derived.
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Z1 ζ( ) � Dp
ηΘ ζ , 0( ),

Z2 ζ( ) � D2p
η Θ ζ , 0( ),
..
.

Zw ζ( ) � Dwp
η Θ ζ , 0( ),

Step 5: After Kth truncation, get the Λ(ζ, s) series in the
following way:

ΛK ζ , s( ) � ∑K
r�0

Zr ζ( )
srp+2

, s> 0,

ΛK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

,

Step 6: Consider both the Aboodh residual function (ARF) from
equation Eq. 33 and the Kth-truncated ARF separately to get

ARes ζ , s( ) � Λ ζ , s( ) −∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

,

and

AResK ζ , s( ) � ΛK ζ , s( ) −∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

.

(34)

Step 7: Instead of its expansion form, put ΛK(ζ, s) into Eq. 34.

AResK ζ , s( ) � Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝ ⎞⎠
−∑q−1

j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

. (35)

Step 8: To solve Eq. 35, multiply both sides of the equation by sKp+2.

sKp+2AResK ζ , s( ) � sKp+2
Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

+ ∑K
r�w+1

Zr ζ( )
srp+2

⎛⎝
−∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠.

(36)

Step 9: With respect to lims→∞, evaluating both sides of Eq. 36.

lim
s→∞ sKp+2AResK ζ , s( ) � lim

s→∞ sKp+2
Z0 ζ( )
s2

+ Z1 ζ( )
sp+2

+/ + Zw ζ( )
swp+2

(
+ ∑K

r�w+1

Zr ζ( )
srp+2

−∑q−1
j�0

Dj
ηΘ ζ , 0( )
sjp+2

+ ϑ ζ( )Y s( )
sjp

− F ζ , s( )
sjp

⎞⎠.

Step 10: By solving the provided equation, determine the value
of ZK(ζ).

lim
s→∞ sKp+2AResK ζ , s( )( ) � 0,

where K = w + 1, w + 2, /.

Step 11: Replace the values of ZK(ζ) with aK-truncated series ofΛ(ζ,
s) to get the K-approximate solution of Eq. 33.

Step 12: The K-approximate solution ΘK(ζ, η) may be obtained by
solving ΛK(ζ, s) with the inverse of AT.

3.2 Problem 1

Let us consider the following time fractional PDE [51]:

Dp
ηΘ ζ ,η( )+Θ ζ ,η( )∂3Θ ζ ,η( )

∂ζ3
− ∂Θ ζ ,η( )

∂ζ

∂2Θ ζ ,η( )
∂ζ2

− ∂2Θ ζ ,η( )
∂ζ2

� 0,

where 0<p≤1
(37)

with the following IC’s:

Θ ζ , 0( ) � eζ/4

4
. (38)

and the following exact solution

Θ ζ , η( ) � 1
4
e
1
4

η
4+ζ( ). (39)

Equation 38 is used, and AT is applied to Eq. 37 to get

Θ ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂3A−1
η Θ ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θ ζ , s( )
∂ζ

∂2A−1
η Θ ζ , s( )
∂ζ2

⎡⎣ ⎤⎦ − 1
sp

∂2Θ ζ , s( )
∂ζ2

[ ] � 0, (40)

Thus, the kth-truncated term series are

Θ ζs( ) �
eζ/4

4
s2

+∑k
r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ (41)

The ARFs read

AηRes ζ , s( ) � Θ ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂3A−1
η Θ ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θ ζ , s( )
∂ζ

∂2A−1
η Θ ζ , s( )
∂ζ2

⎡⎣ ⎤⎦
− 1
sp

∂2Θ ζ , s( )
∂ζ2

[ ] � 0, (42)

and the kth-LRFs as:

AηResk ζ , s( ) � Θk ζ , s( ) −
eζ/4

4
s2

+ 1
sp
Aη A−1

η Θk ζ , s( ) × ∂3A−1
η Θk ζ , s( )
∂ζ3

⎡⎣ ⎤⎦
− 1
sp
Aη

∂A−1
η Θk ζ , s( )
∂ζ

∂2A−1
η Θk ζ , s( )
∂ζ2

⎡⎣ ⎤⎦
− 1
sp

∂2Θk ζ , s( )
∂ζ2

[ ] � 0, (43)

Frontiers in Physics frontiersin.org06

Noor et al. 10.3389/fphy.2024.1374481

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1374481


To find fr (ζ, s). We solve the relation lims→∞(srp+1) repeatedly,
multiply the resulting equation by srp+1, and substitute the rth-
truncated series Eq. 41 into the rth-ARF Eq. 43 where r = 1, 2, 3,
/, and AηResΘ,r(ζ , s)) � 0. The first few terms read

f1 ζ , s( ) � eζ/4

64
, (44)

f2 ζ , s( ) � exζ/4

1024
, (45)

f3 ζ , s( ) � eζ/4

16384
, (46)

f4 ζ , s( ) � eζ/4

262144
, (47)

and so on.
After putting fr (ζ, s), for r = 1, 2, 3, . . . , in Eq. 41, we obtain

Θ ζ , s( ) � eζ/4

64sp+1
+ eζ/4

1024s2p+1
+ eζ/4

16384s3p+1
+ eζ/4

262144s4p+1
+ eζ/4

4s
+/

(48)
By applying the inverse of AF, the following approximation to

problem 1 is obtained

Θ ζ , η( ) � eζ/4

4
+ eζ/4η2p

1024Γ 2p + 1( ) + eζ/4η3p

16384Γ 3p + 1( )
+ eζ/4η4p

262144Γ 4p + 1( ) + eζ/4ηp

64Γ p + 1( ) +/ (49)

3.3 Problem 2

Let us considered the following fractional damped Burger’s
equation [51]

Dp
ηΘ ζ , η( ) + ∂2Θ ζ , η( )

∂x2 + Θ ζ , η( ) ∂Θ ζ , η( )
∂x

+ 1
5
Θ ζ , η( )

� 0, where 0<p≤ 1 (50)
with the following IC’s:

Θ ζ , 0( ) � 1
5
ζ . (51)

and the following exact solution

Θ ζ , η( ) � ζ

5 2e
η
5 − 1( ). (52)

Using Eq. 51 along with the application of AT to Eq. 50 results in
the following:

Θ ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θ ζ , s( )
∂x2[ ] + 1

sp
Aη A−1

η Θ ζ , s( ) × ∂A−1
η Θ ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θ ζ , s( )[ ] � 0, (53)

Therefore, the term series that are kth truncated are as follows:

Θ ζ , s( ) �
1
5
ζ

s2
+∑k

r�1

fr ζ , s( )
srp+1

, r � 1, 2, 3, 4/ . (54)

The ARFs read

AηRes ζ , s( ) � Θ ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θ ζ , s( )
∂x2[ ]

+ 1
sp
Aη A−1

η Θ ζ , s( ) × ∂A−1
η Θ ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θ ζ , s( )[ ] � 0, (55)

and the kth-LRFs as:

AηResk ζ , s( ) � Θk ζ , s( ) −
1
5
ζ

s2
+ 1
sp

∂2Θk ζ , s( )
∂x2[ ]

+ 1
sp
Aη A−1

η Θk ζ , s( ) × ∂A−1
η Θk ζ , s( )
∂x

⎡⎣ ⎤⎦
+ 1
5sp

Θk ζ , s( )[ ] � 0, (56)

To find fr (ζ, s). We solve the relation lims→∞(srp+1) repeatedly,
multiply the resulting equation by srp+1, and substitute the rth-
truncated series Eq. 54 into the rth-ARF Eq. 56. r = 1, 2, 3, /,
and AηResΘ,r(ζ , s)) � 0. The first few terms are as follows:

f1 ζ , s( ) � − 1
25

2ζ( ), (57)

f2 ζ , s( ) � 6ζ
125

, (58)

f3 ζ , s( ) � 2
625

ζ −2Γ 2p + 1( )
Γ p + 1( )2 − 9( ), (59)

and so on.
Equation 54 is used to get the values of fr (ζ, s) for r = 1, 2, 3, . . . ,.

Θ ζ , s( ) � 6ζ

125s2p+1
− 2ζ

25sp+1
+
2ζ −2Γ 2p + 1( )

Γ p + 1( )2 − 9( )
625s3p+1

+ ζ

5s
+/ .

(60)
Applying Aboodh’s inverse transform, we finally get the

following approximation to problem 2:

Θ ζ , η( ) � ζ

5
+ 6ζη2p

125Γ 2p + 1( ) − 18ζη3p

625Γ 3p + 1( )
− 4ζη3pΓ 2p + 1( )
625Γ p + 1( )2Γ 3p + 1( ) − 2ζηp

25Γ p + 1( ) +/ .

(61)
The approximation (49) is graphically evaluated, as depicted

in Figure 1. This figure illustrates how the fractional parameter p
influences the behavior of the wave described by this
approximation. It is found that the increase of the fractional
parameter leads to the enhancement of the amplitude of the wave
described by this approximation. Additionally, approximation
(49) is graphically compared with the exact solution (39) to the
integer case, as shown in Figure 2. Moreover, we conducted a
numerical analysis to compare the absolute error of the
approximation (49) with the exact solution (39) for the integer
case to confirm the inferred approximation’s accuracy, as shown
in Figure 3; Table 1. Moreover, the analytical results indicate that
the derived approximations are consistently stable across the
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study domain. This is one of the most essential features of
ARPSM, which gives more accurate and stable approximations
throughout the study domain. The investigation shows that this
improves the effectiveness of ARPSM in evaluating problem
1 and other strong nonlinear and more complicated fractional
evolution equations.The approximation (61) is analyzed
graphically against the fractional parameter p and for different
values of η as evident in Figures 4, 5. It is shown that the
amplitude of the wave, which is described by approximation
(61), increases with increasing the fractional parameter p. To
make sure that the approximation (61) is highly accurate, we

calculated its absolute error compared to the exact solution (52),
which can be seen in Figure 6; Table 2. Furthermore, the
numerical results indicate that the derived approximations are
consistently stable across the study domain. This is one of the
most essential features of ARPSM, which gives more accurate and
stable approximations throughout the study domain. These
results also enhance the efficiency of ARPSM in analyzing
many nonlinear and most complicated evolution equations,
such as various evolution equations used in plasma physics to
study the properties of nonlinear structures that arise in this
fertile medium for many researchers.

FIGURE 1
The approximation (49) to problem 1 using ARPSM is considered against the fractional parameter p: (A) The approximation (49) is plotted in (ζ, η)-
plane and (B) The approximation (49) is plotted against η at (ζ = 5).

FIGURE 2
The approximation (49) to problem 1 using ARPSM at p = 1 is compared with the exact solution (39) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 5).
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3.4 Concept of the Aboodh transform
iterative method (ATIM)

Let us consider a general PDE of fractional order in
space-time.

Dp
ηΘ ζ , η( ) � Φ Θ ζ , η( ), Dη

ζΘ ζ , η( ), D2η
ζ Θ ζ , η( ), D3η

ζ Θ ζ , η( )( ), 0<p, η≤ 1,

(62)

Initial conditions

Θ k( ) ζ , 0( ) � hk, k � 0, 1, 2, . . . , m − 1, (63)
Assuming Θ(ζ, η) as the unknown function, while
Φ(Θ(ζ , η), Dη

ζΘ(ζ , η), D2η
ζ Θ(ζ , η) D3η

ζ Θ(ζ , η)) may be a nonlinear
or linear operator of Θ(ζ , η), Dη

ζΘ(ζ , η), D2η
ζ Θ(ζ , η) andD3η

ζ Θ(ζ , η).
Applying the AT to both sides of Eq. 62 yields the following
equation; Θ(ζ, η) is represented by Θ for simplicity.

A Θ ζ , η( )[ ]
� 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A Φ Θ ζ , η( ), Dη
ζΘ ζ , η( ), D2η

ζ Θ ζ , η( ), D3η
ζ Θ ζ , η( )( )[ ]⎛⎝ ⎞⎠,

(64)

The problem may be solved by using the inverse of AT, which
results in:

Θ ζ ,η( )
�A−1⎡⎣ 1

sp
∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A Φ Θ ζ ,η( ),Dη
ζΘ ζ ,η( ),D2η

ζ Θ ζ ,η( ),D3η
ζ Θ ζ ,η( )( )[ ]⎛⎝ ⎞⎠⎤⎦.

(65)

An infinite series is used to represent the solution that is
achieved by the iterative processing of the AT technique.

Θ ζ , η( ) � ∑∞
i�0

Θi. (66)

FIGURE 3
Here, we considered the absolute error of the approximation (49)
as compared to the exact solution (39) for the integer case, i.e., p = 1.

TABLE 1 The approximation (49) to problem 1 using ARPSM is considered against the fractional parameter p = 1.

η ζ ARPSMP=0.5 ARPSMp=0.7 ARPSMP=1.0 Exact $Error_{p = 1.0}$

1 0 0.268655 0.268011 0.266124 0.266124 2.007703 × 10−9

0.4 0.29691 0.296198 0.294112 0.294112 2.218855 × 10−9

0.8 0.328136 0.327349 0.325044 0.325044 2.452214 × 10−9

1.2 0.362647 0.361777 0.359229 0.359229 2.710116 × 10−9

1.6 0.400787 0.399825 0.39701 0.39701 2.995142 × 10−9

2 0.442938 0.441875 0.438764 0.438764 3.310143 × 10−9

0.5 0 0.262972 0.26089 0.257936 0.257936 6.241301 × 10−11

0.4 0.290629 0.288328 0.285063 0.285063 6.897699 × 10−11

0.8 0.321195 0.318652 0.315044 0.315044 7.623141 × 10−11

1.2 0.354975 0.352165 0.348177 0.348177 8.424871 × 10−11

1.6 0.392308 0.389202 0.384795 0.384795 9.310924 × 10−11

2 0.433567 0.430135 0.425264 0.425264 1.029016 × 10−10

0.1 0 0.255675 0.253463 0.251567 0.251567 1.987299 × 10−14

0.4 0.282564 0.280119 0.278025 0.278025 2.198241 × 10−14

0.8 0.312282 0.30958 0.307265 0.307265 2.431388 × 10−14

1.2 0.345124 0.342139 0.33958 0.33958 2.681188 × 10−14

1.6 0.381422 0.378122 0.375294 0.375294 2.964295 × 10−14

2 0.421536 0.417889 0.414765 0.414765 3.275157 × 10−14
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Since Φ(Θ, Dη
ζΘ, D

2η
ζ Θ, D3η

ζ Θ) is either a nonlinear or linear
operator which can be decomposed as follows:

Φ Θ, Dη
ζΘ, D

2η
ζ Θ, D

3η
ζ Θ( ) � Φ Θ0, D

η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )

+∑∞
i�0

Φ ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎛⎝

−Φ ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎞⎠.

(67)

In order to derive the succeeding equation, it is necessary to
substitute Eqs 67 and (66) into Eq. 65 to yield

∑∞
i�0

Θi ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A Φ Θ0, D
η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A−1 1
sp

A Φ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(68)

FIGURE 4
The approximation (61) to problem 2 using ARPSM is considered against the fractional parameter p: (A) The approximation (61) is plotted in (ζ, η)-
plane and (B) The approximation (61) is plotted against η at (ζ = 0.1).

FIGURE 5
The approximation (61) to problem 2 using ARPSM at p = 1 is compared with the exact solution (52) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 0.1).
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Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,Θ1 ζ , η( )
� A−1 1

sp
A Φ Θ0, D

η
ζΘ0, D

2η
ζ Θ0, D

3η
ζ Θ0( )[ ]( )[ ], ...Θm+1 ζ , η( )

� A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A−1 1
sp

A Φ∑i−1
k�1

Θk, D
η
ζΘk, D

2η
ζ Θk, D

3η
ζ Θk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

m � 1, 2,/ . (69)

Equation 62 may be stated in the following manner, which
provides the analytically approximate solution for the m-term
expression:

Θ ζ , η( ) � ∑m−1

i�0
Θi. (70)

3.4.1 Anatomy Problem (1) using ATIM
Let us consider the following time fractional PDE [51]:

Dp
ηΘ ζ , η( ) � −Θ ζ , η( ) ∂3Θ ζ , η( )

∂ζ3
+ ∂Θ ζ , η( )

∂ζ

∂2Θ ζ , η( )
∂ζ2

+ ∂2Θ ζ , η( )
∂ζ2

, where 0<p≤ 1 (71)

with the following IC’s:

Θ ζ , 0( ) � eζ/4

4
, (72)

and the following exact solution

Θ ζ , η( ) � 1
4
e
1
4

η
4+ζ( ). (73)

By using AT on both sides of Eq. 71, we get the
following outcome:

A Dp
ηΘ ζ ,η( )[ ]

� 1
sp

∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A −Θ ζ ,η( )∂3Θ ζ ,η( )
∂ζ3

+ ∂Θ ζ ,η( )
∂ζ

∂2Θ ζ ,η( )
∂ζ2

+ ∂2Θ ζ ,η( )
∂ζ2

[ ]⎛⎝ ⎞⎠,

(74)

In order to produce the following, we apply the inverse of AT on
both sides of Eq. 74.

Θ ζ ,η( )
�A−1 1

sp
∑m−1

k�0

Θ k( ) ζ ,0( )
s2−p+k

+A −Θ ζ ,η( )∂3Θ ζ ,η( )
∂ζ3

+ ∂Θ ζ ,η( )
∂ζ

∂2Θ ζ ,η( )
∂ζ2

+ ∂2Θ ζ ,η( )
∂ζ2

[ ⎤⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎦.
(75)

The equation that we get by applying the AT in an iterative
manner can be described as follows:

Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 Θ ζ , 0( )

s2
[ ]

� eζ/4

4
,

Through the application of the RL integral to Eq. 71, we are able
to get the equivalent form.

FIGURE 6
Here, we considered the absolute error of the approximation (61)
as compared to the exact solution (52) for the integer case, i.e., p = 1.

TABLE 2 The approximation (61) to problem 2 using ARPSM is considered against the fractional parameter.

η ζ ARPSMP=0.5 ARPSMp=0.7 ARPSMP=1.0 Exact $Error_{p = 1.0}$

0.1 0.4 0.07015 0.073533 0.0768932 0.0768933 7.775646 × 10−8

0.8 0.1403 0.147066 0.153786 0.153787 1.555129 × 10−7

1.2 0.21045 0.220599 0.23068 0.23068 2.332694 × 10−7

1.6 0.2806 0.294132 0.307573 0.307573 3.110258 × 10−7

2 0.35075 0.367665 0.384466 0.384467 3.887823 × 10−7

0.01 0.4 0.0765701 0.078622 0.079681 0.079681 7.976980 × 10−12

0.8 0.15314 0.157244 0.159362 0.159362 1.595396 × 10−11

1.2 0.22971 0.235866 0.239043 0.239043 2.393094 × 10−11

1.6 0.30628 0.314488 0.318724 0.318724 3.190792 × 10−11

2 0.38285 0.39311 0.398405 0.398405 3.988487 × 10−11
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Θ ζ , η( ) � eζ/4

4
− A −Θ ζ , η( ) ∂3Θ ζ , η( )

∂ζ3
+ ∂Θ ζ , η( )

∂ζ

∂2Θ ζ , η( )
∂ζ2

+ ∂2Θ ζ , η( )
∂ζ2

[ ].
(76)

Utilizing the ATIM, the following are some of the terms that
may be obtained:

Θ0 ζ , η( ) � eζ/4

4
,

Θ1 ζ , η( ) � eζ/4ηp

64Γ p + 1( ),
Θ2 ζ , η( ) � ��

π
√

4−p−5eζ/4η2p

Γ p + 1
2

( )Γ p + 1( ),
Θ3 ζ , η( ) � eζ/4η3p

16384Γ 3p + 1( ),
Θ4 ζ , η( ) � eζ/4η4p

262144pΓ p( )Γ 3p + 1( ),

(77)

The final approximation is obtained as follows:

Θ ζ , η( ) � Θ0 ζ , η( ) + Θ1 ζ , η( ) + Θ2 ζ , η( ) + Θ3 ζ , η( ) +/ . (78)

Θ ζ , η( ) � eζ/4ηp

64Γ p + 1( ) +
��
π

√
4−p−5eζ/4η2p

Γ p + 1
2

( )Γ p + 1( ) +
eζ/4η3p

16384Γ 3p + 1( )
+ eζ/4η4p

262144pΓ p( )Γ 3p + 1( ) +/ .

(79)

3.4.2 Anatomy Problem (2) using ATIM
Let us considered the following time fractional damped

nonlinear Burger’s equation [51]:

Dp
ηΘ ζ , η( ) � −∂

2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x

− 1
5
Θ ζ , η( ), where 0<p≤ 1 (80)

with the following IC’s:

Θ ζ , 0( ) � 1
5
ζ , (81)

and the following exact solution

Θ ζ , η( ) � ζ

5 2e
η
5 − 1( ). (82)

The application of AT to either side of Eq. 80, we are able to get
the following equation:

A Dp
ηΘ ζ , η( )[ ] � 1

sp
∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A −∂
2Θ ζ , η( )
∂x2[⎛⎝

−Θ ζ , η( ) ∂Θ ζ , η( )
∂x

− 1
5
Θ ζ , η( )⎤⎦⎞⎠,

(83)
Applying the inverse of AT to Eq. 83 yields

Θ ζ , η( )
� A−1 1

sp
∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

+ A −∂
2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x
− 1
5
Θ ζ , η( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(84)

Using the iterative procedure of AT, we get

Θ0 ζ , η( ) � A−1 1
sp

∑m−1

k�0

Θ k( ) ζ , 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 Θ ζ , 0( )

s2
[ ]

� 1
5
ζ ,

Using the RL integral results in the equivalent form being
obtained from Eq. 50.

Θ ζ , η( ) � 1
5
ζ − A −∂

2Θ ζ , η( )
∂x2 − Θ ζ , η( ) ∂Θ ζ , η( )

∂x
− 1
5
Θ ζ , η( )[ ].

(85)

FIGURE 7
The approximation (79) to problem 1 using ATIM is considered against the fractional parameter p: (A) The approximation (79) is plotted in (ζ, η)-plane
and (B) The approximation (79) is plotted against η for (ζ = 5).
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The ATIM resulted in the following few terms being produced.

Θ0 ζ , η( ) � 1
5
ζ , Θ1 ζ , η( ) � − 2ζηp

25Γ p + 1( ),Θ2 ζ , η( )

�
2ζη2p 15 − 2ηpΓ 2p + 1( )2

Γ p + 1( )2Γ 3p + 1( )( )
625Γ 2p + 1( ) ,Θ3 ζη( )

� 2ζη3p

390625
2ηp − 4η3pΓ 2p + 1( )2Γ 6p + 1( )

Γ p + 1( )4Γ 3p + 1( )2Γ 7p + 1( )((

+

60η2pΓ 5p + 1( )
Γ 3p + 1( )Γ 6p + 1( ) + 125

��
π

√
2−4p

Γ 2p + 1
2

( )
Γ p + 1( )2

− 225ηpΓ 4p + 1( )
Γ 2p + 1( )2Γ 5p + 1( )

− 100ηpΓ 2p + 1( )Γ 4p + 1( )
Γ p + 1( )3Γ 3p + 1( )Γ 5p + 1( )

+ 750Γ 3p + 1( )
Γ p + 1( )Γ 2p + 1( )Γ 4p + 1( ))

− 1875
Γ 3p + 1( ) ), (86)

We finally get

Θ ζ , η( ) � Θ0 ζ , η( ) + Θ1 ζ , η( ) + Θ2 ζ , η( ) + Θ3 ζ , η( ) +/ (87)

Θ ζ , η( ) � 1
5
ζ − 2ζηp

25Γ p + 1( ) +
2ζη2p 15 − 2ηpΓ 2p + 1( )2

Γ p + 1( )2Γ 3p + 1( )( )
625Γ 2p + 1( )

+ 2ζη3p

390625
2ηp − 4η3pΓ 2p + 1( )2Γ 6p + 1( )

Γ p + 1( )4Γ 3p + 1( )2Γ 7p + 1( )((

+

60η2pΓ 5p + 1( )
Γ 3p + 1( )Γ 6p + 1( ) + 125

��
π

√
2−4p

Γ 2p + 1
2

( )
Γ p + 1( )2

− 225ηpΓ 4p + 1( )
Γ 2p + 1( )2Γ 5p + 1( ) − 100ηpΓ 2p + 1( )Γ 4p + 1( )

Γ p + 1( )3Γ 3p + 1( )Γ 5p + 1( )
+ 750Γ 3p + 1( )
Γ p + 1( )Γ 2p + 1( )Γ 4p + 1( ) ) − 1875

Γ 3p + 1( )). (88)

Here, we graphically and numerically analyzed the derived
approximations (79) and (88) using AITM for problems 1 and 2,
respectively, as illustrated in Figures 7–12; Tables 3, 4. These
figures demonstrate the impact of the fractional parameter p on
the behavior of the wave described by this approximation and the
absolute errors for these approximations as compared to the exact
solutions for the integer case. We can observe the effect of the
fractional parameter on the behavior of the deduced
approximations and the accuracy and stability of these
approximations along the study domain. This is one of the

FIGURE 9
Here, we considered the absolute error of the approximation (79)
as compared to the exact solution (73) for the integer case, i.e., p = 1.

FIGURE 8
The approximation (79) to problem 1 using ATIM at p = 1 is compared with the exact solution (73) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 5).
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most essential features of AITM, which gives more accurate and
stable approximations throughout the study domain. In the last
part, we discussed comparing the approximations derived by
ARPSM and those derived by AITM, as evident in Tables 5, 6.
It is observed from the comparison results that both approaches
give more accurate and stable approximations throughout the
study domain, but ARPSM differs somewhat in its accuracy
from AITM, i.e., the derived approximations using ARPSM are
more accurate than AITM.

4 Conclusion

The damped Burger’s equation and many other associated
equations with the dissipative term arise in plasma physics due to
taking the viscosity force in the fluid equations that govern a
plasma model. On the other side, the damped effect occurs due to
considering the collisional effect between the charged plasma
particles. Motivated by these applications, thus, this study
analyzed this equation by employing advanced mathematical

FIGURE 11
The approximation (88) to problem 2 using ATIM at p = 1 is compared with the exact solution (83) for the integer case: (A) The two solutions are
plotted in (ζ, η)-plane and (B) The two solutions are plotted against η at (ζ = 0.1).

FIGURE 10
The approximation (88) to problem 2 using ATIM is considered against the fractional parameter p: (A) The approximation (88) is plotted in (ζ, η)-plane
and (B) The approximation (88) is plotted against η at (ζ = 0.1).
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techniques known as the Aboodh residual power series method
(ARPSM) and the Aboodh transform iteration method (ATIM).
The fractional derivatives were processed using the Caputo
operator. The use of this operator is due to its ability to enrich
modeling by considering fractional derivatives, which contributes
to a more accurate representation of the fundamental dynamics of
the equations under study. We have derived a set of precise highly
approximations using the suggested strategies. The derived
approximations have been analyzed and examined graphically
and numerically by plotting some two- and three-dimensional
graphics. Moreover, we discussed the obtained approximations
numerically in some suitable tables and estimated the absolute
errors compared to the exact solutions for the integer cases.
The suggested methods proved effective for getting highly
accurate and more stable approximations of more complicated
fractional differential equations. Moreover, the obtained
results demonstrated the high accuracy, efficiency, and rapid
calculations of the suggested methods in analyzing damped
Burger’s equation. The comparison results between the
obtained approximations using ARPSM and AITM
demonstrated that the derived approximations using ARPSM
are more accurate than AITM.

The study offers valuable insights into the dynamic behavior of
solutions toDamped Burger’s equation, demonstrating the effectiveness
of the suggested strategies in dealing with the difficulties presented by
nonlinear fractional partial differential equations. This inquiry enhances
mathematical modeling and numerical analysis by highlighting the
effectiveness of ARPSM and ATIM in solving intricate equations in
different scientific fields. Therefore, it is expected that the results of this
study will serve many physics researchers interested in the field of
plasma physics, fluids, electronics, and optical fibers to study the
characteristics of nonlinear phenomena that arise and propagate in
these physical systems.

5 Future work

The suggested approaches can be used in analyzing many
strong nonlinear and more complicated evolution equations that

TABLE 3 The approximation (79) of problem 1 using AITM is considered
against the fractional parameter.

η ζ ATIMP=0.5 ATIMp=0.7 ATIMP=1.0 Exact $Error_
{p = 1.0}$

1 0 0.268012 0.268012 0.266124 0.266124 4.748294 ×
10−7

0.4 0.296199 0.296199 0.294113 0.294112 5.247677 ×
10−7

0.8 0.32735 0.32735 0.325045 0.325044 5.799580 ×
10−7

1.2 0.361778 0.361778 0.35923 0.359229 6.409527 ×
10−7

1.6 0.399827 0.399827 0.39701 0.39701 7.083623 ×
10−7

2 0.441877 0.441877 0.438764 0.438764 7.828614 ×
10−7

0.5 0 0.26089 0.26089 0.257936 0.257936 2.973990 ×
10−8

0.4 0.288328 0.288328 0.285063 0.285063 3.286768 ×
10−8

0.8 0.318652 0.318652 0.315044 0.315044 3.632440 ×
10−8

1.2 0.352165 0.352165 0.348177 0.348177 4.014467 ×
10−8

1.6 0.389202 0.389202 0.384795 0.384795 4.436673 ×
10−8

2 0.430135 0.430135 0.425264 0.425264 4.903282 ×
10−8

0.1 0 0.253463 0.253463 0.251567 0.251567 4.766387 ×
10−11

0.4 0.280119 0.280119 0.278025 0.278025 5.267669 ×
10−11

0.8 0.30958 0.30958 0.307265 0.307265 5.821670 ×
10−11

1.2 0.342139 0.342139 0.33958 0.33958 6.433947 ×
10−11

1.6 0.378122 0.378122 0.375294 0.375294 7.110606 ×
10−11

2 0.417889 0.417889 0.414765 0.414765 7.858441 ×
10−11

FIGURE 12
Here, we considered the absolute error of the approximation (88)
as compared to the exact solution (83) for the integer case, i.e., p = 1.

TABLE 4 The approximation (88) of problem 2 using ATIM is numerically
against the fractional parameter p.

η ζ NITMP=0.5 NITMp=0.7 NITMP=1.0 Exact $Error_
{p = 1.0}$

0.4 0.0703566 0.0735629 0.0768945 0.0768933 1.244183 × 10−6

0.8 0.140713 0.147126 0.153789 0.153787 2.488366 × 10−6

0.1 1.2 0.21107 0.220689 0.230684 0.23068 3.732549 × 10−6

1.6 0.281426 0.294252 0.307578 0.307573 4.976732 × 10−6

2 0.351783 0.367814 0.384473 0.384467 6.220915 × 10−6

0.4 0.0765761 0.0786222 0.079681 0.079681 1.276282 × 10−9

0.8 0.153152 0.157244 0.159362 0.159362 2.552564 × 10−9

0.01 1.2 0.229728 0.235867 0.239043 0.239043 3.828847 × 10−9

1.6 0.306304 0.314489 0.318724 0.318724 5.105129 × 10−9

2 0.382881 0.393111 0.398405 0.398405 6.381411 × 10−9
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are derived from the fluid equations to some plasma models,
such as KdV-type equations with third-order dispersion
[52–54], Burger’s-type equations [55–57], Kawahara-type
equations with fifth-order dispersion [58–60], nonlinear
Schrödinger-type equations [61, 62], and many other

evolution equations. Therefore, the characteristics of the
many nonlinear phenomena that can be generated and
propagated in various plasma systems can be accurately
described and examined by studying the effect of the
fractional parameters on the behavior of these phenomena,

TABLE 5 The absolute error between the derived approximations and the exact solutions for the integer cases (p= 1) is compared for both NITM and APRSM,
for problem 1.

η ζ EXACT ATIMP=1.0 ARPSMp=1.0 $ATIM Error$ $ARPSM Error$

1 0 0.266124 0.266124 0.266124 4.748294 × 10−7 2.007703 × 10−9

0.4 0.294112 0.294113 0.294112 5.247677 × 10−7 2.218855 × 10−9

0.8 0.325044 0.325045 0.325044 5.799580 × 10−7 2.452214 × 10−9

1.2 0.359229 0.35923 0.359229 6.409527 × 10−7 2.710116 × 10−9

1.6 0.39701 0.39701 0.39701 7.083623 × 10−7 2.995142 × 10−9

2 0.438764 0.438764 0.438764 7.828614 × 10−7 3.310143 × 10−9

0.5 0 0.257936 0.257936 0.257936 2.973990 × 10−8 6.241301 × 10−11

0.4 0.285063 0.285063 0.285063 3.286768 × 10−8 6.897699 × 10−11

0.8 0.315044 0.315044 0.315044 3.632440 × 10−8 7.623141 × 10−11

1.2 0.348177 0.348177 0.348177 4.014467 × 10−8 8.424871 × 10−11

1.6 0.384795 0.384795 0.384795 4.436673 × 10−8 9.310924 × 10−11

2 0.425264 0.425264 0.425264 4.903282 × 10−8 1.029016 × 10−10

0.1 0 0.251567 0.251567 0.251567 4.766381 × 10−11 1.987299 × 10−14

0.4 0.278025 0.278025 0.278025 5.267669 × 10−11 2.192690 × 10−14

0.8 0.307265 0.307265 0.307265 5.821670 × 10−11 2.431388 × 10−14

1.2 0.33958 0.33958 0.33958 6.433942 × 10−11 2.681188 × 10−14

1.6 0.375294 0.375294 0.375294 7.110606 × 10−11 2.964295 × 10−14

2 0.414765 0.414765 0.414765 7.858441 × 10−11 3.269606 × 10−14

TABLE 6 The absolute error between the derived approximations and the exact solutions for the integer cases (p= 1) is compared for bothNITM and APRSM,
for problem 2.

η ζ EXACT ATIMP=1.0 ARPSMp=1.0 $ATIM Error$ $ARPSM Error$

0.1 0.4 0.0768933 0.0768945 0.0768932 1.244183 × 10−6 7.775646 × 10−8

0.8 0.153787 0.153789 0.153786 2.488366 × 10−6 1.555129 × 10−7

1.2 0.23068 0.230684 0.23068 3.732549 × 10−6 2.332694 × 10−7

1.6 0.307573 0.307578 0.307573 4.976732 × 10−6 3.110258 × 10−7

2 0.384467 0.384473 0.384466 6.220915 × 10−6 3.887823 × 10−7

0.01 0.4 0.079681 0.079681 0.079681 1.276282 × 10−9 7.976985 × 10−12

0.8 0.159362 0.159362 0.159362 2.552564 × 10−9 1.595397 × 10−11

1.2 0.239043 0.239043 0.239043 3.828847 × 10−9 2.393095 × 10−11

1.6 0.318724 0.318724 0.318724 5.105129 × 10−9 3.190794 × 10−11

2 0.398405 0.398405 0.398405 6.381411 × 10−9 3.988492 × 10−11
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such as solitons, dissipative solitons, shocks, dissipative shocks,
rogue waves, dissipative rogue waves, periodic waves, dissipative
periodic waves, etc., which are among the most famous
phenomena that spread in multicomponent plasmas.
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