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Organic solar cells (OSCs) enjoy a huge market and public attention as an
emerging renewable and clean energy source due to their accessibility,
sustainability, translucency, good flexibility, non-toxicity, and low preparation
cost. However, the choice of an acceptor material is now the pivotal factor
restricting the development of OSCs. To continuously improve stability and
increase power conversion efficiency (PCE) for better performance, high-
performance acceptor materials are an important part of enabling OSCs. From
fullerenes and their derivatives and non-fullerenes, we sum up the latest research
progress on high-performance acceptor materials for OSCs and then introduce
the synthesis methods of non-fullerenes. The latest strategies to enhance the
performance of organic solar cells and the wide range of applications of non-
fullerene acceptors (NFAs) on different OSCs are also discussed. In addition,
challenges faced by OSCs in improving their performance and the prospects for
future development are revealed, providing new ideas for designing the next
generation of high-performance OSCs.
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1 Introduction

Solar energy has gradually become a widely used sustainable, renewable, and easily
accessible clean energy for resolving the issue of energy shortage shared by the whole world
[1]. Solar cells for generating electricity from solar energy have also been around for
decades, gradually deriving from the first generation into various forms, including dye-
sensitized solar cells, thin-film solar cells, and OSCs [2]. OSCs may turn into the most
inexpensive electric power form as the power conversion efficiency (PCE) of them continues
to rise [3]. The characteristics of OSCs include semitransparency, non-toxicity, good
flexibility, and low preparation cost, fit for roll-to-roll massive processing, so they have
received worldwide attention [4]. Based on these advantages, OSCs are also used in many
applications, including sensors, architecture, the Internet of Things (IoT), and some
wearable electronics, with considerable promise [5].

However, OSCs also have a number of issues and challenges that seriously affect the
commercialization and wider application of them, which include the complexity of the
synthesized materials, poor stability, low PCE, poor performance, great sensitivity to
processing conditions, and overall performance that can significantly be degraded by
changes in thickness [6]. Moreover, the progress of appropriate electron acceptors is highly
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concerned with improving PCE (B. [7,8]). Therefore, to boost the
performance of OSCs, the selection of acceptor materials is crucial,
and then, it can be said that the key to solving the OSC performance
problem lies in the selection of high-performance acceptor materials
[9]. Additionally, machine learning can play an auxiliary role in
identifying high-performance materials [10]. It is able to predict the
parameters that affect the performance of OSCs, so as to screen
high-performance small molecule acceptor materials [11]. In
addition, the choice of solvent can also affect the performance,
and machine learning can predict the solubility to select a more
suitable solvent [12].

High-performance acceptor materials can significantly advance
the stability and PCE of OSCs, which in turn improves the overall
performance and enables OSCs to be developed in the longer term
[13]. Therefore, research on high-performance acceptor materials
for OSCs is essential. We introduce the development and the
primary materials of OSCs and emphasize the progress of high-
performance acceptor materials for OSCs from the perspectives of
fullerenes and their derivatives and non-fullerenes in this mini-
review. In addition, we discuss in depth the typical applications of
high-performance acceptor materials in OSCs. Ultimately, we look

ahead to the foreground and challenges of high-performance
acceptor materials for OSCs.

2 Development of OSCs

OSCs (Figure 1A) have grown by leaps and bounds, with PCEs
of single-junction OSCs achieving almost 20%, and the important
reasons for this progress are device engineering and novel materials
since the 21st century [14]. In terms of novel materials, recent
research in organic solar energy includes single-component OSCs,
water- or alcohol-soluble interface materials, non-fused and fused
ring acceptors, and polymer acceptors [15]. The novel materials
include interlayers and active layer materials (Figure 2B), where
active layer materials include electron acceptor and electron donor
materials [16]. The donor materials mainly include symmetric
D–A–D (or A–D–A structure) and an asymmetric electron
push–pull molecule [17]. Acceptor materials mainly include
fullerene derivative acceptors and small molecule non-fullerene
acceptors (NFAs) (Figure 2A) [4]. Additionally, a variety of
OSCs can also be constituted by the combination of acceptor and

FIGURE 1
(A) Development, working principle, structure, and characteristics of organic solar cells, reproduced with permission from [28]. (B) Structure and
research of fullerenes and their derivatives, reproduced with permission from [20,21,25]. (C) Progress of A-DA’D-A-type non-fullerene small molecule
acceptors, reproduced with permission from [36]. (D) Solar cells based on non-fullerene acceptors andmethods for improving performance, reproduced
with permission from [9,47].
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donor materials, including polymer–small molecule,
polymer–fullerene, and all-polymer–all-small molecule [18]. The
efficient photovoltaic performance of OSCs depends on the active
layer morphology control, device engineering, and compatibility
between acceptor and donor materials [13].

3 High-performance acceptor
materials for OSCs

3.1 Fullerenes and derivatives

The era of fullerenes and derivatives (Figure 1B) in OPV
applications officially began in 1995; in 10 years, fullerene
derivatives were developed in fields such as molecular electronics
and perovskite solar cells, which are now in an urgent need for
fullerene derivatives with new properties; therefore, it is necessary to
carry out and study the brand new device engineering of fullerene
derivatives and design strategies (J [19]). Lithium-ion inner surface

fullerenes, doped with organic semi-conducting molecules and
carbon nanotubes (CNTs), can enhance stability and PCE [20].
Mumyatov et al. synthesized two new types of soluble
bis(pyrrolidino)[60]fullerenes, which have reduced electron
affinity compared to normal fullerenes. Therefore, they can
increase the open-circuit voltage by nearly 200 mV and have the
ability to suppress the photooxidation of conjugated polymers.
These properties can be useful for the research of time-proof and
high-efficiency organic photovoltaic devices [21]. In the same year,
the team also discovered that pyrrolidino [2,1-a]phthalazino[60]
fullerenes, which have tunable optoelectronic properties and are
easy to prepare, are very promising organic electronics and
photovoltaics, which can have a power conversion efficiency of
more than 14% if used as electron-transport materials, and the
reactions involved provide a completely new idea for the subsequent
preparation of a wider variety of fullerene derivatives [22].

In addition to the use in improving the efficacy of optical
devices, fullerenes and derivatives play a huge role in ternary
OSCs. Ternary OSCs are made from donor polymers blended

FIGURE 2
(A) Classification of NFAs and the development and working principle of OSCs, reproduced with permission from [28]. (B)Device structure of OSCs
and merits of conjugated materials used for the active layer, reproduced with permission from [7]. (C) Structures of polymer NFAs containing SMA
segments, reproduced with permission from [19].
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with different mixtures of fullerene acceptors, which have the best
light-absorbing and electron acceptor properties and, thus, can often
be used as materials for solar cells and photodetectors [23].
Fullerene-based acceptors in ternary blends with specially
designed structures can enhance the photostability of NFAs and
also conjugated polymers [24]. The stability of the cells can be
improved in large measures if two fullerene acceptors, namely,
PCBM and ET18, are used as the third component of OSCs,
which are based on the P-D:Y6 blends [25]. Fullerene derivatives,
as the third component of OSCs, can improve the power conversion
efficiency and tune the blend morphology, which is an ideal material
for efficient OSCs that can be realized by finely tuning the
morphology. The morphology of the active layer can be tuned
more accurately and the photovoltaic performance can be
improved as well, if IC60BA is brought in the PTZ1:IDIC hybrid
system as a kind of fullerene derivative [26].

3.2 Non-fullerene

NFAs are generally composed of electron-deficient and electron-
rich units. The effect between these units can modulate the energy
levels of acceptor materials, adjust the morphology of films, and
broaden the absorption of light. Meanwhile, the performance of
OSCs which are based on NFAs is continuously increasing [27]. As
they can improve the stability and the PCE of OSCs and broaden the
absorption range, NFAs have been widely considered for use by the
public [28]. Among them, Y6, as a non-fullerene acceptor molecule,
has gradually appeared in the public view and has already played a
great role in various aspects of OSCs, enabling single-junction OSCs
to achieve efficiencies of more than 15% (X [29]). However, Y-series
non-fullerenes still have many problems; for example, their relative
dissolvability in non-halogenated green solvents is poor. This
problem can be addressed by using non-chlorinated solvents to
dissolve large-heterojunction photoreactive layers which are based
on Y-series NFAs, as well as realizing environment-friendly
manufacturing [30].

There are many ways to synthesize NFAs, among which side-
chain engineering is a very promising method, which can be used to
improve the crystallinity and solubility of NFAs and then increase
the PCE of OSCs. Using side-chain engineering, a brand new
acceptor, IT-BnC6-4F, was developed, which has a higher
crystallinity and a broader absorption spectrum, and it has a
PCE of 13.36% [31]; Tian et al. investigated the application of
PSMA and SMA (Figure 2C) as Y-series NFAs in non-fullerene
OSCs and pointed out the challenges it may encounter in side chain
regulation for Y-series NFAs with possible strategies to deal with
them [32]. In addition to side-chain engineering, there is another
synthetic method capable of achieving highly efficient performance
of non-fullerene acceptors, which is replacing the beta position of
the thiophene unit on the Y6-based dithienothiophen[3,2-b]-
pyrrolobothiadiazole core by a branched alkyl chain. The whole
method is capable of radically changing the behavior of the molecule
stacking in the non-fullerene acceptors, and then, it improves the
charge transport and structural order of the films [33]. High-
performance synthesis strategies also include the construction of
NFAs in an asymmetric configuration with different heteroatoms
added to the bay position, and the asymmetric perylene diimide

(PDI)-based acceptor PDI2Se–FT, which is introduced with both Se
and S atoms, is able to exhibit excellent performance. Additionally,
its maximum PCE can reach 6.96% [34].

There are also many competitive non-fullerene acceptor
materials, among which the NFA PDI has high stability and low
material cost, and in these years, the performance of OSC devices has
taken a remarkable step forward, which are based on monomeric
PDI acceptors, with PCEs up to more than 12%, and current
research targeting monomeric PDI acceptors is working toward
addressing the barriers of fill-factor values and moderate–short
current density (J(sc)) [35]. There is also a non-fullerene
A-DA’D-A-type acceptor (Figure 1C), with an absorption
spectrum complementary to the donor and good transport
properties, mainly due to its fusion backbone centered on a
trapezoidal electron-deficient nucleus [36]. In addition, NFAs
sealed by a strong electron-deficient group and based on
indacenodithiophene (IDT) are also advantageous in many ways.
The advantages are strong absorbency and good energy level
arrangement in visible regions and near-infrared (NIR) regions
and so on [37]. UF-Qx-2Cl and UF-Qx-2F are two unfused non-
fullerene acceptors, which are centered on the electron-deficient
quinoxaline (Qx) unit. The synthesis of the unfused NFA is also of
great importance in advancing the stability of OSCs, reducing
preparation costs, and realizing their performance, and at the
same time, this has also broadened the prospect in the
commercial application of OSCs [38].

4 Applications

High-performance acceptor materials, especially NFAs, have
developed rapidly and are widely used in different forms in
different OSCs, which have become a major research hotspot.
Among them, small molecule NFAs are gradually incorporated
into the relevant research field, which can improve the
optoelectronic properties of polymer molecules and, thus, bring
OSCs into full commercialization [9]. NFAs NTIC-4Cl and NTIC-
4F for OSCs have the advantage of low preparation cost because they
contain naphtho[1,2-c:5,6-c ’]bis([1,2,5]thiadiazole) moieties. The
chlorinated and fluorinated dicyanomethylidene-indan-1-one units
are also used as the flanking end-groups [39]. In addition to
individual non-fullerene acceptors, multiple acceptors can be
integrated, such as the integration of NFAs L8BO and Y6 and
the wide-bandgap electron-donating polymer PTzBI-dF, and the
OSC can achieve 18.26% efficiency, based on its structure [40]. Non-
fullerene acceptors also play a very important role in the
photocurrent of dilute donor organic solar cells (DDOSCs). The
photocurrent of DDOSCs based on non-fullerene acceptors is more
affected compared to the photocurrent of DDOSCs based on
fullerene acceptors, mainly because non-fullerene acceptors are
more capable of modifying charge transport and generation,
which in turn affects the Jsc of DDOSCs [41].

With the rapid development of high-performance NFAs, non-
fullerene-based OSCs are no longer satisfied with small areas on a
laboratory scale, and increasing attention is gradually shifted to
large-area OSCs, which are based on NFAs. Xue et al. also proposed
a feasible design scheme in terms of related equipment development,
device component processing strategies, and manufacturing
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technologies [42]. However, this process will inevitably have the risk
of loss of efficiency, so for the purpose of enhancing the efficiency of
OSCs and better utilizing the high-efficiency photovoltaic
performance of OSCs, it is necessary to apply some new design
methods and strategies (Figure 1D). The appearance of cathode
interface engineering can improve the charge collection and transfer
within OSCs and, thus, boost its PCE (H [43]). The bimolecular
recombination rates and charge transfer of high-performance OSCs
based on NFAs can also be investigated by the drift diffusion
simulations of voltage–current peculiarities in light and steady-
state dark injection measurements, concluding that the inhibition
of bimolecular recombination has a strong impact on the
performance and high filling coefficient of OSCs [44]. In
addition, the structure of non-fullerene receptors can also be
analyzed and modified. The performance–structure relationship
of high-performance Y6-based non-fullerene acceptors from both
phase separation and crystal structure perspectives can be
constructed to morphologically optimize OSCs which are based
on Y6 NFAs to promote higher power conversion efficiencies [45].
Nowadays, there are many difficulties in the development of highly
efficient low-bandgap NFAs for high-performance OSCs; in order to
solve this problem, it has been attempted to modify the end caps of
the novel acceptor molecule (IDT-ED-4F), and the modified
molecule can effectively facilitate the application of high-
performance OSCs; finally, a new acceptor material JA1-JA4 can
be obtained [46]. In addition, 2D p-expansion strategies can be used
to fine-tune the crystalline behaviors and electronic structures of
NFAs to construct binary OSCs based on AQx-18, which can
improve J(sc), filling factor, and V-oc and enable OSCs to
perform better, with PCE reaching 18.2% [47].

5 Conclusion and outlook

The PCE of OSCs has continued to progress and develop in the
history of decades, and it can basically reach 18%. This has been
achieved due to high-performance acceptor materials for OSCs, in
which fullerenes and their derivatives have been used in many
optical devices, especially in ternary OSCs. Fullerenes and their
derivatives acting as a third component can increase their stability
and performance. The non-fullerene acceptor materials, represented
by the Y6 acceptor molecule in the Y series, are gradually taking the
place of fullerenes and their derivatives due to better properties.
Side-chain engineering is a very typical method for synthesizing
NFAs, and it can influence the degree of acceptor crystallinity and
the PCE of OSCs. OSCs that are based on NFAs are also developing
rapidly, and the performance can be improved by just changing the

internal mechanism of the cell or modifying the structure of the non-
fullerene acceptor. For a gradual breakthrough in PCE, improved
performance of OSCs, and design reference for next-generation
high-performance OSCs, more in-depth research is still needed to
create new types of acceptors with higher performance in terms of
materials or structures, and more profound research is needed to
study the internal operation mechanism of OSCs.
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