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The ability to encode different operations into a singleminiaturized optical device
is required to reduce the complexity and size of optical paths for light
manipulation, which usually employs dynamic optical components,
interferometric setups, and/or multiple bulky elements in cascade. A very
efficient solution is provided by metalenses, which are flat optical elements
able to generate and manipulate structured light beams in a compact and
efficient way, offering a powerful and attractive tool in many fields, such as
life science and telecommunications. In this work, we present the design and test
of transmission dielectric bi-functional metalenses that exploit both the dynamic
and the geometric phases, to enable the spin-controlled manipulation of
different focused orbital angular momentum (OAM) beams, depending on the
circularly polarized state in input. In detail, we provide numerical algorithms for
the design and simulation of the meta-optics in the telecom infrared, the
fabrication processes, and the optical characterization under different
impinging polarized optical vortices. This solution provides new integrated flat
optics for applications in imaging, optical tweezing and trapping, optical
computation, and high-capacity telecommunication and encryption.
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1 Introduction

Allen and co-workers’ seminal paper [1] paved the way for the research field of
structured light, leading to scientific milestones and innovative applications in many areas,
such as life science, information and communication technology, and quantum
technologies [2–4]. In particular, wavefields carrying orbital angular momentum
(OAM), so-called OAM beams or optical vortices (OVs), are endowed with peculiar
ring-like intensity distributions and twisted wavefronts which revealed powerful
applications in high-resolution microscopy [5], optical micro-manipulation [6–8],
security [9], and light-matter interaction [10], while offering a new degree of freedom
to encode information both in classical [11, 12] and single-photon regimes [13–15].

Spiral phase plates (SPPs) [16] represent one of the first stable, efficient, and compact
optical elements proposed to generate structured light carrying orbital angular momentum
from ordinary non-structured beams. These optics have 3D staircase profiles resembling the
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twisted wavefront imparted to the impinging beam [17]. It is
possible to generate high-purity and multi-ring OAM beams
using SPPs with both azimuthal and radial discontinuities, to
enable the excitation of higher-order modes by exploiting high-
resolution lithographic techniques [18–20]. Nevertheless, spiral
phase plates are limited to a single functionality. The advent of
metasurfaces promoted the evolution of SPPs into the so-called
q-plates [21] acting on the geometric phase to impart a polarization-
dependent beam shaping [21]. Rather than shaping the wavefront by
changing the local thickness of an isotropic material, i.e., the
dynamic phase, in q-plates the thickness is fixed while the phase
is manipulated by controlling the local anisotropy of the effective
material. In particular, the imparted phase is equal to twice the local
orientation of the extraordinary axis, and the sign is dependent on
the handedness of the circular polarization in input. The first
solutions relied on controlling the inherent anisotropy of liquid
crystals [21–23], then artificial anisotropy was introduced by using
properly oriented digital gratings [24, 25] or dielectric resonators
[26, 27], so-called metaunits, to induce an effective form of
birefringence. Metasurfaces represented a revolution in optics.
Moving from 3D sculptured optics to 2D flat digital meta-optics
exploiting silicon manufacturing has enabled the merging of optics
and silicon photonics [28, 29]. Furthermore, the metasurface
paradigm has included polarization as an additional degree of
freedom for light structuring, extending the optical functionalities
to enable the possibility of decoupling spin from phase reshaping
and building up spin-dependent optical elements [30] [31]. One
solution is offered by dual-functional metasurfaces [32–35], which
act locally on both the dynamic and the geometric phases. That is
achieved using anisotropic nanopillars, which have different tailored
shapes to act on the dynamic phase and control their local fast-axis
orientation to adjust the polarization-dependent geometric phase
contribution.

In this work, we present the fabrication and optical
characterization of dual-functional metalenses working in the
telecom infrared, specifically designed for the generation of two
distinct focused OAM beams, depending on the polarization state of
the impinging light. In particular, we show that by switching the
input polarization handedness, it is possible to select a spin-
dependent OAM shift of the desired optical vortex in input at a
specific position in space. This approach improves the functionality
and integration level of standard spiral phase plates and q-plates,
providing new advanced optical elements for applications to high-
resolution microscopy, optical micro-manipulation, and classical
and quantum information.

2 Material and methods

2.1 Dual-functional metalenses design

In this work, we propose a spin-dependent dielectric
metasurface made of a squared lattice (period of the lattice u =
600 nm) of birefringent metaunits (MUs), so-called metaatoms
(MAs), acting both on the geometric and dynamic phases. Each
metaunit is represented by a crystalline silicon (c-Si) nanofin on a
c-Si substrate. The cross-section of each metaunit is chosen within a
library of 13 different nanostructures with different shapes and/or

orientations but the same height. In detail, as reported in our
previous works [36], we find a set of rectangular-based, elliptical-
based and pairs of different bevelledrectangular-based nanofins. At
the same time, the height was optimized at 850 nm in order to cover
the 0-2π dynamic phase range that is mandatory to satisfy the dual-
functional paradigm. Since the metaunit size is below the diffraction
limit, input light experiences an effective uniaxial medium with
dynamic phase delays δx and δy on the two axes, referring to TM and
TE linear polarizations, respectively. All the nanostructures of the
library act as half-wave plates (HWP) in order to maximize the
polarization conversion and, therefore, the optical efficiency
[37–39]. Then, a rotation by an angle θ of the anisotropic
metaunit introduces a spin-dependent geometric phase equal to ±
2θ, depending on the handedness of the impinging circular
polarization state, while the local dynamic phase depends on the
metaunit cross-section. Thus, combining these two properties and
selecting judiciously the metaunits pixel-by-pixel on the whole
metasurface area, the metalens can behave differently depending
on whether the input beam is right-handed (RCP) or left-handed
circularly polarized (LCP).

The objective is that two circularly polarized beams with
opposite handedness (i.e., RCP and LCP) experience different
phase patterns ϕ+ and ϕ−, which are related to the dynamic and
geometric phase according to the constitutive relations Eqs (1)–(3):

δx � ϕ+ x, y( ) + ϕ− x, y( )
2

, (1)

δy � ϕ+ x, y( ) + ϕ− x, y( )
2

+ π, (2)

2θ � ϕ+ x, y( ) − ϕ− x, y( )
2

, (3)

While the dynamic phase imparts the same contribution to both
the RCP and LCP input beams, the geometric phase implies the
transfer of symmetrical (opposite) phase delays for the two circularly
polarized states, which combine to induce the desired spin-
dependent phase modulation, that is:

J L| 〉 � −iei δx+δy( )/2e+i2θ R| 〉 � eiϕ
+
R| 〉, (4)

J R| 〉 � −iei δx+δy( )/2e−i2θ L| 〉 � eiϕ
−
L| 〉. (5)

J is the Jones matrix of the anisotropic metaatom [40, 41].
As well known, it is possible to describe a linearly polarized

beam as the linear combination of a left-handed circularly polarized
state ( | L〉) and a right-handed circularly polarized one ( |R〉). Thus,
by illuminating the metasurface with a linearly polarized beam, it is
possible to activate simultaneously the two functionalities designed
for impinging circularly polarized light.

As we are interested in generating focused OAM beams, we need
to properly design the local phase delay imparted by each metaunit
in order to transfer the desired topological charge and focus the
optical vortex onto two distinct points in space. To this aim, we
encoded a converging lens profile ϕ:

ϕ r,φ( ) � φ − k
����������
f2 + r − p

∣∣∣∣ ∣∣∣∣2√
− f( ), (6)

being  the amount of OAM per photon (in units of -) (or
topological charge) transferred to the beam, k � 2π/λ the
wavevector, f the focal length, and p � (x0, y0) the focus
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coordinates on the focal plane perpendicular to the propagation axis
(z) and placed at a distance f [42–46].

To impart two different topological charges in two distinct
positions, we can rewrite Eq. (6) using the notations of Eqs 4, 5:

ϕ± r,φ( ) � ±φ − k
����������
f2
± + r − p

∣∣∣∣ ∣∣∣∣2√
− f±( ), (7)

where ± are the topological charges imparted to the impinging left-
handed and right-handed circularly polarized beams respectively,
while f± represent the corresponding positions of the focal planes.

2.2 FEM simulations

The library of metaatoms was extrapolated by performing
numerical simulations with Finite-Element Method (FEM) in the
wavelength domain (COMSOL Multiphysics®). Each subunit was
modelled as a silicon nanopillar (nSi = 3.5030) surrounded by air
(nAir = 1) designed on the top of a silicon substrate (nSi = 3.5030),
and all the materials were considered as non-absorbing [n = Re(n),
Im(n) = 0]. Among all the possible configurations, a set of 13 pillars
has been selected, covering the whole 2π range of dynamic phase and
satisfying the conditions of half-wave plate and equal transmissions
for TE and TM polarizations. Full details regarding metaunits shape
and corresponding phase delays are reported in [36]. In detail, to
ensure the HWP behaviour of each meta-unit, we selected
metaatoms having a maximum phase difference of 0.03 rad from
the HWP condition (δx − δy < π ± 0.03rad), concurrently, we fixed
|Tx,i − Ty,i|≤ 0.05, being Tx,i and Ty,i the transmittance of the ith
metaatom for TE and TM polarizations, respectively, to ensure the
validity of above Eqs 4, 5. Moreover, we imposed a maximum
difference of 0.1 in transmittance among the 13 different metaatoms
to guarantee a homogeneous transmittance over the whole metalens.
We used customMatLab scripts to transfer the maps of dynamic and
geometric phases into a GDSII file encoding the cross-sections of the
meta unit in each cell of the 2D metasurface lattice with period
600 nm in the x- and y-directions. Finally, the CAD file was
uploaded to the software of the electron-beam lithographic
system, and the design was materialized after exposure and
development on the resist layer.

2.3 Fabrication

The designed metaoptics was fabricated via a two-step
fabrication procedure. High-resolution electron beam lithography
(EBL) was employed to transfer the optimized computational
pattern onto a resist layer. In particular, a thin PMMA resist
layer, deposited on a 〈100〉 silicon substrate, was patterned using
an EBL system (Carl Zeiss Sigma 300, 30 keV beam voltage).
Subsequently, a lift-off process was executed exploiting a thin
mask of Al2O3. Finally, the pattern was transferred onto the
underlying silicon substrate through Inductively Coupled Plasma
Reactive Ion Etching (ICP-RIE). ICP-RIE was performed in a STS
Multiplex ASE using a mixture of SF6:C4F8:Ar (3:6:1). The plasma
conditions and etching time were optimized in order to reach the
optimal thickness and, thus, reduce the zero-order
contribution [47, 48].

2.4 Optical characterization setup

The beam illuminating the metasurface was produced employing a
Liquid Crystal on Silicon (LCoS) spatial light modulator (SLM)
(X13267-08, Hamamatsu, pixel pitch 12.5 μm) through a technique
involving both phase and amplitude modulation. Collimation of the
output from a DFB laser (λ = 1310 nm, 1310LD34 1-2-2-1 CCSI,
AeroDiode) at the termination of a singlemode fiberwas achieved using
an aspheric lens with a focal length of 7.5 mm (A375TM-C, Thorlabs).
The beam was then linearly polarized (LPIREA100-C, Thorlabs),
expanded by a first telescope (f1 = 3.5 cm, f2 = 10.0 cm), and
directed towards the display of the SLM for reshaping and/or optical
vortex generation (Figure 1).

A 50:50 beam-splitter was positioned before the SLM, directing
the reflected structured beam into the desired optical path and
enabling an additional optical path for interferometric analysis. A 4-f
system (f3 = 20.0 cm, f4 = 12.5 cm) was put in cascade with an
aperture in the Fourier plane to isolate the first-order encoded mode
and adjust the desired illuminating beam waist. In between, a
quarter-wave plate (QWP) (WPQ10M-1310, Thorlabs) or a half-
wave plate (HWP1) (WPH05M-1310, Thorlabs) were used to
generate circularly polarized states from the original horizontally
polarized one or rotate the polarization plane of the beam exiting the
SLM, respectively. The polarized beam illuminated the meta-optics,
mounted on a 6-axis kinematic mount (K6XS, Thorlabs). Finally, the
OAM-shifted beam was collected using a ×10 Objective (CFI E Plan
Achromat ×10, Nikon) positioned on a micrometric translator stage
(LX20/M, Thorlabs). The image was captured by a CCD camera
(WiDy SWIR 640U-S, pixel pitch 12.5 μm). It was possible to
generate an interferometric pattern using the additional optical
arm, opening the iris (D2). The microscope objective was
necessary to properly extract and magnify the generated beams
since the focal lengths were too short to collect the beam directly on
the CCD camera.

3 Results

Exploiting the dual-functional mechanism described in the
previous section, we designed a spin-decoupled metalens which
imparts two different topological charges + � 1 and − � 3 to left-
handed and right-handed circularly polarized light, and focuses the
output beams at a distance of f+ � 500μm and f− � 1000μm from
the optical element, respectively.

At first, we simulated the spin-decoupled behavior under the
illumination of a Gaussian beam with a waist of 175 µm. To test the
two different polarization-dependent responses simultaneously, we
chose a linearly polarized light in input.

Figure 2 depicts, as expected, the simultaneous generation of two
distinct OAM beams with the desired topological charges at 500 µm
and 1000 µm. It is clear how the beam generated from the right-
handed contribution has a larger waist and a lower intensity profile
because it carries a higher topological charge and is focused on a
plane placed at a larger distance.

Then, we simulated the behaviour of the metalens under the
illumination of beams that already carry a topological charge
(i.e., from −3 to 3). In particular, we modelled the impinging
structured beam as a perfect vortex (PV) having a ring radius (ρ)
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of 125 µm and a ring width (dρ) of 50 µm, as described by the
equation Eq (8):

PV r( ) � exp − r − ρ0
dρ0

( )2( ). (8)

Figure 3 presents the results we have obtained. In the first row
(in blue), the phase and intensity pattern of the impinging perfect

vortex are reported. The second (yellow) and third (orange) rows
report the generated structured beams under LCP and RCP
illumination, respectively. Due to the half-wave plate behaviour,
each metaatom reverses the handedness of the impinging light as
reported in Eqs 4, 5, so the OAM beam focused at 500 µm is right-
handed circularly polarized. Instead, the one generated at 1,000 µm
is left-handed circularly polarized. As expected, we can see that the
metalens acts as a dual-functional shifter of topological charge. In

FIGURE 1
Scheme of the optical setup. The output of a DFB laser at 1,310 nm is collimated (LF), polarized (P1), and resized (L1, L2) before illuminating a LCoS SLM
for phase manipulation and reshaping. A 50:50 beam-splitter (BS1) is used to separate the input beam and the reflected structured one, which is filtered
(D1) and resized (L3, L4) before illuminating the metalens. A quarter-wave plate (QWP) or a half-wave plate (HWP) are used for polarization control. The
output beam is expanded and collected on a CCD camera. A second arm can be activated (D2) and overlapped (BS2) to the output beam for
interferometric analysis. M, mirrors.

FIGURE 2
Metalenses schematization and bi-functionality simulation. (A) Schematization of some metaunits and whole optics features comprising the dual-
functionality mechanism. (B) Numerical output under linear polarization and null topological charge (standard Gaussian beam) in input: two optical
vortices with different topological charges are generated on two distinct focal planes: ℓ+ = 1 at z = 500 μm, ℓ− = 3 at z = 1000 μm.
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fact, the resulting generated beam carries a topological charge OUT

equal to the sum of the topological charge of the illuminating beam
IN with the spin-dependent topological charge ± imparted by the
metalens. Moreover, the generated beams increase their waist with
the resulting topological charge. As a matter of fact, in the far-field
we collect the Fourier transform of a perfect vortex, which is well
described by a Bessel-Gaussian beam. With respect to perfect
vortices, the intensity profile of those beams is not OAM-
independent, thus the radius of the inner intensity rings increases
with the carried topological charge.

Subsequently, we numerically estimated the purity of the
generated OAM modes by analyzing the OAM spectrum of the
generated beam U(ρ, θ) at the focal plane using the expression Eq
(9) [49]:

ηl �
Il
I
�

∫+∞
0

ul ρ( )∣∣∣∣ ∣∣∣∣2ρdρ
∑+∞

l�−∞
∫+∞
0

ul ρ( )∣∣∣∣ ∣∣∣∣2ρdρ, (9)

where ul(ρ) � 1
2π ∫+π

−π
U(ρ, θ) exp(−ilθ)dθ.

In Figure 4, we report the OAM spectrum analysis of the output
beams under the illumination conditions mentioned above. The
OAM shift of the output beams with respect to the input one
confirms what expected from the metalens design. The generated
OAMbeams show no significative presence of spurious terms for the
two outgoing circularly polarized beams. The spurious contributions
are lower than 0.05 for all the different impinging configurations,
proving that the conversion efficiency is very high.

Then, we fabricated the metasurface with a radius of 400 µm
using the procedure described in Section 2.3.

Figure 5 displays several SEM images of the fabricated silicon
metasurface.

Finally, we optically characterized the performances of the designed
metalens using the optical setup reported in Section 2.4. As expected,
the two output beams present an intensity pattern that varies depending

on the impinging perfect vortex, suggesting an increase of the output
orbital angular momentum, because of the interaction with the
metalens (Figure 6B). To confirm this, we measured the
interferogram pattern, which gave us information on the carried
phase. It is clearly visible that the number of arms of the spiral,
indicating the topological charge carried by the beam, are dictated
by the sum of the impinging OAM plus the charge imparted by the
metalens, which depends on the polarization state (Figure 6A).

4 Discussion and conclusion

This work presents the design, fabrication, and test of dual-
functional silicon metalenses for the polarization-controlled
manipulation of OAM beams. The optical element was designed
to properly generate different non-overlapping focused beams
carrying orbital angular momentum depending on the
polarization state of the illuminating light. This optical behaviour
is achieved by exploiting the dual-functional metalens capability to
act on the dynamic and geometric phases simultaneously in order to
introduce spin-dependent phase delays. The metaoptics has been
fabricated using a two-step process: lithography of a resist mask with
EBL and subsequent pattern transfer into the silicon substrate using
ICP-RIE. Finally, we have characterized the optical response of the
fabricated metalens to prove the effective polarization-dependent
device as a topological charge shifter. The experimental results agree
with the simulations, proving the design quality and the fabrication
protocols optimization.While in this paper we present the generation of
OAM beam, the method can be extended to the design of any
metaoptics aimed to impart given phase patterns with high
dimensionality or complex symmetry [50] to the different impinging
circularly polarized states of light. In particular, we generated a single
wavelength library, but by selectingmore complicated coupled resonant
metaunits, it is possible to achieve full achromaticity [51, 52]. Dual-
functionality represents a tool that boosts the optical operations of

FIGURE 3
Numerical simulation under circularly polarized optical vortices in input. Numerical simulations of the metalens output when illuminated with
circularly polarized perfect vortices of different topological charge in the range between ℓ = −3 and ℓ = +3. Depending on the handedness of the input
beam, the optical vortex experiences polarization conversion and an OAM-shift equal to +1 or +3.
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previous optical devices, such as diffractive elements or metasurfaces
acting only on geometric or dynamic phases. This attractive solution
can inspire advanced applications in imaging, microscopy, particle

manipulation, and quantum technologies, wherever tiny and
compact multi-functional optical devices, fabricated using silicon
technology manufacturing, are required.

FIGURE 4
Purity numerical analysis. OAM-spectrum of input (blue) and output (yellow, orange) optical vortices. As expected, the output beams experience a
polarization-dependent OAM shift. Input OAM equal to +3 (A), +2 (B), +1 (C), −3 (D), −2 (E), −1 (F).

FIGURE 5
Fabrication. SEM inspection of the silicon metalens at different magnifications. (A) Top view. (B) Tilted view at higher magnification.
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FIGURE 6
Experimental characterization and intensity radial profile. (A) Experimental analysis of the metalens output when illuminated with circularly-
polarized perfect vortices of different topological change in the range between ℓ = −3 and ℓ = +3. Depending on the handedness of the input beam, the
optical vortex experiences an OAM-shift equal to +1 or +3 and polarization conversion, as expected. Counting the number of spiral arms in the
interferograms it is possible to infer the carried OAM and prove the output OAM shift with respect to the input one. (B) Intensity radial profile for
right-handed (B1) and left-handed (B2) circularly polarized optical vortices as a function of the input OAM.
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