
Cost–benefit analysis of the
COVID-19 vaccination model
incorporating different infectivity
reductions

Raymond Fosu Appiah1, Zhen Jin1*, Junyuan Yang1* and
Joshua Kiddy K. Asamoah2,3

1Complex Systems Research Center, Shanxi University, Taiyuan, China, 2Department of Mathematics,
Saveetha School of Engineering SIMATS, Chennai, India, 3Department of Mathematics, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana

The spread and control of coronavirus disease 2019 (COVID-19) present a
worldwide economic and medical burden to public health. It is imperative to
probe the effect of vaccination and infectivity reductions in minimizing the
impact of COVID-19. Therefore, we analyze a mathematical model
incorporating different infectivity reductions. This work provides the most
economical and effective control methods for reducing the impact of COVID-19.
Using data from Ghana as a sample size, we study the sensitivity of the parameters
to estimate the contributions of the transmission routes to the effective
reproduction number Re. We also devise optimal interventions with
cost–benefit analysis that aim to maximize outcomes while minimizing COVID-19
incidences by deploying cost-effectiveness and optimization techniques. The
outcomes of this work contribute to a better understanding of COVID-19
epidemiology and provide insights into implementing interventions needed
to minimize the COVID-19 burden in similar settings worldwide.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is one of the infectious diseases that has
caused a global medical and financial burden. Due to its high transmission rate, the
World Health Organization (WHO) officially announced the prevalence of it as a
global pandemic on 8th March 2020. The coronavirus spreads directly or indirectly
from one infectious living host cell to another by replicating and causing infectious
disease in the host (humans and/or animals) [1]. Therefore, it is imperative to
investigate how the virus spreads in the community and devise strategies to halt
the disease’s transmission.

Globally, COVID-19 has caused over 6 million deaths, and by March 2022,
approximately 480 million incidences had been reported, according to [2]. However,
the COVID-19 reinfection scenario using the SIR model shows that transmission
dynamics could arise as a result of immunity waning, even in cases where the force of
reinfection is relatively weak [3]. As mentioned in [4], the COVID-19 model, which entails
infection through objects contaminated with SARS-CoV-2, is suggested to be made
public knowledge.
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COVID-19 spreads quickly, threatening global health and
igniting a pandemic. This pandemic has had a major effect on
other sectors, especially the socioeconomic sector [5]. As of 30 April
2022, there were 512,466,045 reported incidences and
6,257,512 COVID-19 fatalities worldwide, according to the
Worldometer. With 6,046,467 COVID-19 cases reported overall,
Indonesia ranks seventh in Asia and 18th globally [6].

These findings highlight the need to investigate the spread of
COVID-19 in order to minimize its transmission. Using a
deterministic model is one way that mathematics is crucial to
simulating the epidemic phenomenon of the disease’s spread.
The analysis of the COVID-19 model with declining immunity
has advanced significantly. For the latter, the natural immunity
period is defined by the vaccine efficacy level, which dictates when to
start the mass vaccination strategy based on models involving
symptomatic and asymptomatic infected populations, as
explained in [6].

Mathematical models have been an important tool in epidemiology
since the 18th century and can be used to determine the level of spread
of infectious disease, aside frommedical and biological research studies
and strategies for controlling diseases. A modified
susceptible–exposed–infectious–removed (SEIR) model with
vaccination, quarantine, and isolated SVEQIMR is used to analyze
the spread of COVID-19 disease in [7]. In this article, compartmental
models were used to demonstrate the pattern of vaccination and control
strategies for infectious diseases.

Furthermore, the compartmental model is used to study the
behavior of COVID-19 after the introduction of vaccines in [8]. In
this article, the population is divided into distinct compartments to
demonstrate the control efficacy of infectious diseases in India.
Again, a parameterized nonlinear SEIHR model to analyze the
transmission of coronavirus disease in Indonesia using the
compartmental model is analyzed in [9].

The transmission dynamics, basic reproduction number, and
control measures of COVID-19 are analyzed using the
compartmental model in [10]. In this article, effective public
health interventions were proposed to control the spread of the
disease inWuhan, China. The cost-effective analysis, global stability,
and control strategy for the spread of COVID-19 in Ghana are
analyzed using the compartmental model in [11]. In this article,
control measures were outlined by formulating the SEAIRV model
to investigate human–environment–human transmission. However,
these studies do not capture the effects of reducing the infectivity
rate on the disease’s transmission.

The aforementioned issues have driven this study to explore the
effects of vaccination and infectivity reductions on the spread of
COVID-19, devise optimal control interventions, and analyze the
cost–benefits of implementing the interventions. The subsequent
sections are as follows: in Section 2, we present the design of the
epidemiological model together with the definition of the
parameters and variables in the model. In Section 3, we analyze
the positivity of the model’s solutions, computation of the models’
reproduction numbers, and stability of the model. In Section 4, we
present the model parameter estimation and sensitivity analysis. In
Section 5, we present the numerical simulations and model analysis.
In Section 6, we present the optimal control strategies and analyze
the cost–benefit analysis. We finally present the concluding remarks
of this study in Section 7.

2 SVEQIMR model formulation

The flowchart below illustrates the mechanism of the model. We
denote N(t) as the total population divided into seven different
compartments: susceptible individuals at a given time S(t),
vaccinated individuals at a given time V(t), exposed individuals
at a given time E(t), individuals under quarantine at a given time
Q(t), infected individuals at a given time I(t), isolated individuals at
a given time M(t), and individuals recovered at a given time R(t).
We assume that the vaccinated individuals become susceptible again
due to the vaccine’s inefficacy. Again, a portion of susceptible
individuals undergo self-quarantine, while others enter the
exposed class. Some of the exposed individuals become infected
and then recover naturally without any special treatment. The
remaining proportion of individuals either go through quarantine
or become infected. It is also assumed that the individuals in the
susceptible and vaccinated compartments would come into direct or
indirect contact with the individuals in the exposed, quarantined,
and isolated compartments. Therefore, we introduce infectivity
reductions re, rq, and rm attributed to the exposed, quarantined,
and isolated compartments, respectively. The introduction of these
different infectivity reductions is to minimize transmission from the
potential carriers of the virus. Again, we assume that the quarantined
and isolated individuals are not part of the active population at the
time of incidence, so the total active population for the standard
incidence at any given time is N1 � N(t) − Q(t) −M(t). Therefore,
the forces for infection of susceptible and vaccinated classes are
given as ρ1 � βs(I+reE+rqQ+rmM)

N1
and ρ2 � βv(I+reE+rqQ+rmM)

N1
,

respectively. Recovered individuals become susceptible again once
they come into contact with the possible carriers of the COVID-19
virus. The description of the model’s parameters is given in Table 1.
The optimal control interventions κp(t), κv(t), and κi(t) are
explained in the subsequent section.

The total populationN(t) in Eq. (1) is defined based on Figure 1
as follows:

N t( ) � S t( ) + V t( ) + E t( ) + Q t( ) + I t( ) +M t( ) + R t( ). (1)

The following nonlinear ordinary differential equations
illustrate the model.

dS

dt
� Λ + σV + δ1Q + τR − ρ1S − ω1S,

dV

dt
� ϑS − ρ2V − ω2V,

dE

dt
� ρ1S + ρ2V − ω3E,

dQ

dt
� ŋS + φE − ω4Q,

dI

dt
� γE − ω5I,

dM

dt
� δ2Q + αI − ω6M,

dR

dt
� εeE + εiI + εmM − ω7R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where ρ1 �
βs(I + reE + rqQ + rmM)

N1
, ρ2 �

βv(I + reE + rqQ + rmM)
N1

,ω1 � μ +
ϑ + ŋ,ω2 � μ + σ, ω3 � μ + φ + γ + εe,ω4 � μ + δ1 + δ2,ω5 � μ + α + εi , ω6 � μ + εm ,

and ω7 � μ + τ.
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With initial conditions S(0)≥ 0, V(0)≥ 0, E(0)≥ 0, Q(0)
≥ 0, I(0)≥ 0,M(0)≥ 0, andR(0)≥ 0, all initial parameters of
model (2) are nonnegative.

3 SVEQIMR model
mathematical analysis

The detailed analysis of the model is conducted mathematically
to show the positivity of solutions and their boundedness within a
specific domain.

3.1 Positivity and boundedness of solutions

The variables and parameters of model (2) are nonnegative since
it is based on a population with COVID-19.

Theorem 1: Define W(t) � S(t), V(t), E(t), Q(t), I(t),
M(t), R(t); if W(0)≥ 0, then W(t)≥ 0, and its solutions and
initial values are nonnegative for t> 0 and bounded in the region R7

+.
Proof: Let us consider the following instance where there exists

an initial time ti such that
min W(ti){ }> 0 and min W(t){ }> 0 for all t ∈ [0, ti).
Here, W(t) � S(t), V(t), E(t), Q(t), I(t),M(t), R(t). Without

the loss of generalization, min W(ti){ } � S(ti).

Therefore, S(ti) � 0, V(ti)> 0, Q(ti)> 0, R(ti)> 0, and S(t)> 0,
for all t ∈ [0, ti). However,

dS ti( )
dt

� Λ + σV ti( ) + δ1Q ti( ) + τR ti( )> 0,Λ≥ 0, S ti( )> S 0( )≥ 0.

This contradicts the claim S(ti) � 0. Therefore, S(t)> 0 for all
t≥ 0. This shows that all the solutions are positive for t≥ 0 in all
other cases.

Theorem 2: To prove the boundedness of model (2),
define a positive invariant set as K �
(S0, V0, E0, Q0, I0,M0, R0) ∈ R7

+: N(t)≤ Λ
μ{ } and attract

positive solutions.
Proof: Considering Eq. 1.
The rate of change in the total population is given as

N′ t( ) � S′ t( ) + V′ t( ) + Q′ t( ) + I′ t( ) +M′ t( ) + R′ t( ),
N′ t( ) � Λ − μ S t( ) + V t( ) + E t( ) + Q t( ) + I t( ) +M t( ) + R t( )( ),

N′ � Λ–μN. (3)

From Eq. (3), it follows that,

N t( )≤ Λ
μ
+N 0( )e−μt.

Then, 0<N(t)≤ Λ
μ. Thus, N(t) is bounded, and all solutions

in the K approach enter or remain in K. If t → ∞, 0≤N(t)
shows that N(t) is a set of positive invariant and is in the region
R7+. This theorem proves the existence of COVID-19 at a given
time in an area that was not infected with COVID-19 disease,
and all the initial state variables are positive. This completes
the proof.

3.2 Disease-free equilibrium and effective
reproduction number

The disease equilibrium point, ξ0, of the model is achieved by
equating system (2) to 0. The result is defined as follows:

Λ + σV + δ1Q + τR − ρ1S − ω1S � 0,
ϑS − ρ2V − ω2V � 0,
ρ1S + ρ2V − ω3E � 0,
ŋS + φE − ω4Q � 0,
γE − ω5I � 0,
δ2Q + αI − ω6M � 0,
εeE + εiI + εmM − ω7R � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

At disease-free equilibrium (DFE), we set
E � Q � I � M � R � 0, and the following results are obtained
from Eq. (4):

Λ + σV − ω1S � 0,

ϑS � ω2V,

S0 � Λ μ + σ( )
μ + ϑ + ŋ( ) μ + σ( ) − σϑ,

V0 � Λϑ
μ + ϑ + ŋ( ) μ + σ( ) − σϑ.

TABLE 1 Definition of model parameters.

Parameter Definition

βs Transmission rate from S(t) to E(t)

βv Transmission rate from V(t) to E(t)

re Infectivity reduction of the exposed class

rq Infectivity reduction of the quarantined class

rm Infectivity reduction of the isolated class

Λ Recruitment rate

μ Natural death rate

σ Vaccine inefficacy

ϑ Vaccination rate

α Movement rate from I(t) to M(t)

ŋ Movement rate from S(t) to Q(t)

δ1 Movement rate from Q(t) to S(t)

δ2 Movement rate from Q(t) to M(t)

φ Movement rate from E(t) to Q(t)

γ Incubation (latent) period

εe Movement rate from E(t) to R(t)

εi Movement rate from I(t) to R(t)

εm Movement rate from M(t) to R(t)

τ Movement rate from R(t) to S(t)
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At disease-free equilibrium,

ξ0 � Λ μ + σ( )
μ + ϑ + ŋ( ) μ + σ( ) − σϑ,

Λϑ
μ + ϑ + ŋ( ) μ + σ( ) − σϑ, 0, 0, 0, 0, 0( ).

(5)
The corresponding Jacobian matrix of the system (2) evaluated

at ξ0 � (S0, V0, 0, 0, 0, 0, 0) (see, Eq. (5)) to obtain the disease-free
equilibrium Jacobian matrix Jξ0 is given as follows:

Jξ0 �

−ω1 σ −βsS0
N0

re δ1 − βsS0
N0

rq −βsS0
N0

−βsS0
N0

rm 0

ϑ −ω2 −βvV0

N0
re −βvV0

N0
rq −βvV0

N0
−βvV0

N0
rm 0

0 0
βsS0 + βvV0

N0
re − ω3

βsS0 + βvV0

N0
rq

βsS0 + βvV0

N0

βsS0 + βvV0

N0
rm 0

ŋ 0 φ −ω4 0 0 0

0 0 γ 0 −ω5 0 0

0 0 0 δ2 α −ω6 0

0 0 εe 0 εi εm −μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where N0 � N − Q −M using ξ0; hence, N0 � S0 + V0.
Using Jξ0, Eq. (6) the following matrices can be deduced to

evaluate the effective reproduction number Re. We define the next-
generation matrix G � FV−1 as the square matrix, which consists of
matrix F representing new infections and matrix V.

F �

βsS0 + βvV0

N0
re

βsS0 + βvV0

N0

βsS0 + βvV0

N0
rq

βsS0 + βvV0

N0
rm

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V �
ω3 0 0 0

−φ ω4 0 0

−γ 0 ω5 0

0 −δ2 −α ω6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V−1 �

1
ω3

0 0 0

φ

ω3ω4

1
ω4

0 0

γ

ω3ω5
0

1
ω5

0

αγω4 + φδ2ω5

ω3ω4ω5ω6

δ2
ω4ω6

α

ω5ω6

1
ω6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G � FV−1 �
g11 g12 g13 g14

0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

FIGURE 1
SVEQIMR model flowchart.

TABLE 2 Contribution of transmission routes to the effective reproduction number Re.

Total Exposed (ReE) Infected (ReI) Quarantined (ReQ) Isolated (ReM)
Re 0.85575 0.21686 0.41773 0.09027 0.13088

Rv
a 1.07268 0.27184 0.52362 0.11316 0.16406

Ri
a 4.20958 0.72285 0.41773 0.45137 2.61762

Rn
a 5.27683 0.90612 0.52364 0.56581 3.28126
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where g11 � βsS0 + βvV0

N0ω3
re + (βsS0 + βvV0)γ

N0ω3ω5
+ (βsS0 + βvV0)φ

N0ω3ω4
rq+

(βsS0 + βvV0)(ω4αγ + ω5φδ2)
N0ω3ω4ω5ω6

rm, g12 � βsS0 + βvV0

N0ω4
rq+ (βsS0 + βvV0)δ2

N0ω4ω6
rm, g13 �

βsS0 + βvV0

N0ω5
+ (βsS0 + βvV0)α

N0ω5ω6
rm, g14 � βsS0 + βvV0

N0ω6
rm .

The effective reproduction number, Re, of the model is evaluated
as the spectral radius of matrix G; that is, P(FV−1) given as

Re � ReE + ReI + ReQ + ReM,

where ReE � βsS0+βvV0

N0ω3
re, ReI � (βsS0+βvV0)γ

N0ω3ω5
, ReQ � (βsS0+βvV0)φ

N0ω3ω4
rq, and

ReM � (βsS0+βvV0)(ω4αγ+ω5φδ2)
N0ω3ω4ω5ω6

rm.
Substituting S0, V0, and N0 into Eq. (7), gives

Re � βs μ + σ( ) + βvϑ

μ + σ + ϑ( )( )
× re

ω3
+ γ

ω3ω5
+ φrq
ω3ω4

+ ω4αγ + ω5φδ2( )rm
ω3ω4ω5ω6

( ). (8)

Therefore, there is a unique equilibrium in the model, which
implies that Re in Eq. (8) is unique. The effective reproduction
number, Re, indicates the number of secondary infections that
one infected person can produce if they come into contact with
people living in a safe zone. Re can be summarized as follows: the
exposed class contributed to a significant secondary infection,
which is the first term of Re, where a proportion of γ

ω3
individuals

entered the infected class. The infected class generated a
significant secondary infection, which is the second term of
Re. The quarantined class contributed to a significant
secondary infection, which is the third term of Re. The
isolated class contributed to a significant secondary infection,
which is the last term of Re. We consider the dynamics of
vaccination and infectivity reductions on Re as follows in Eqs
9–11 respectively.

• In the absence of vaccination, the reproduction number, Rv
a,

is given as

Rv
a � βs

re
ω3

+ γ

ω3ω5
+ φrq
ω3ω4

+ ω4αγ + ω5φδ2( )rm
ω3ω4ω5ω6

( ). (9)

• In the absence of infectivity reductions, the reproduction
number, Ri

a, is given as

TABLE 3 Values of the sensitivity index of parameters in Re .

Parameter Value Reference Sensitivity index

βs 0.4531 [12] +0.8192

βv 0.3531 Fitted +0.7104

re 0.3 [13] +0.4754

rq 0.2 Fitted +0.0743

rm 0.05 Fitted +0.00035

φ 0.2 Fitted −0.4345

γ 0.1 Estimated −0.2012

μ 0.000043 Estimated −0.8784

α 0.15 Fitted −0.0674

εe 0.2 [14] −0.3605

εi 0.023 Fitted −0.1546

εm 0.015 Fitted −0.5721

σ 0.05 [15] −0.0814

ϑ 0.5482 [16] −0.2347

δ1 0.15 Assumed −0.1413

δ2 0.11 Fitted −0.1203

FIGURE 2
Partial rank correlation coefficient (PRCC) of effective reproduction number Re parameters.
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FIGURE 3
Effect of vaccination and infectivity reductions on the effective reproduction number Re. (A) a plot of σ and θ, (B) re and θ, (C) rq and θ, (D) rm and θ, (E)
re and σ, (F) rq and σ, (G) rm and σ, (H) rq and re (I) rm and re (J) rm and rq. The meaning of the respective parameters is in Table 1.
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Ri
a �

βs μ + σ( ) + βvϑ

μ + σ + ϑ( )( ) 1
ω3

+ γ

ω3ω5
+ φ

ω3ω4
+ ω4αγ + ω5φδ2( )

ω3ω4ω5ω6
( ).

(10)

• In the absence of vaccination and infectivity
reductions, the reproduction number, Rn

a, is given
as

Rn
a � βs

1
ω3

+ γ

ω3ω5
+ φ

ω3ω4
+ ω4αγ + ω5φδ2( )

ω3ω4ω5ω6
( ). (11)

3.3 Stability analysis

Next, since the system has unique equilibrium points, we check
its stability.

FIGURE 4
Plot of (A) the daily cases and (B) the total number of cases of the fitted model verses the real data from 1st January to 1st March 2022.

FIGURE 5
Plot of (A) the impact of vaccination rate ϑ on COVID-19 daily cases (B) and the impact of vaccine inefficacy σ, (C) infectivity reduction of exposed
individuals re , (D) infectivity reduction of quarantined individuals rq , and (E) infectivity reduction of isolated individuals rm on COVID-19 daily cases.
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3.4 Local stability of disease-free
equilibrium ξ0

The Jacobian matrix, Jξ0, is given in Equation 7. It can be seen
from (6) that λ1 � −ω1, λ2 � −ω2, and λ3 � −ω7 are the three
eigenvalues of Jξ0. The other eigenvalues are derived from the
reduced matrix in Eq. (12):

J1ξ0 − λI4( ) �
A − ω3 − λ A1 A2 A3

φ −ω4 − λ 0 0
γ 0 −ω5 − λ 0
0 δ2 α −ω6 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12)

where A � βsS0+βvV0

N0
re,A1 � βsS0+βvV0

N0
rq,A2 � βsS0+βvV0

N0
, and

A3 � βsS0+βvV0

N0
rm.

Therefore, the remaining eigenvalues are the roots of the
following characteristic polynomial:

Γ4 λ( ) � λ4 +H3λ
3 +H2λ

2 +H1λ +H0 � 0, (13)
where

H3 � ω3 + ω4 + ω5 + ω6 − A,

H2 � ω3 ω4 + ω5 + ω6( ) + ω4 ω5 + ω6( ) + ω5ω6 − A ω4 + ω5 + ω6( )
− A2γ,

H1 � ω3 ω4ω5 + ω4ω6 + ω5ω6( ) + ω4ω5ω6

− A ω4ω5 + ω4ω6 + ω5ω6( ) − Bδrt a3 + a4( ) − A1φ ω5 + ω6( )
− A2γ ω4 + ω6( ) − A3 αγ + φδ2( ),

H0 � ω3ω4ω5ω6 − Aω4ω5ω6 − A1φω5ω6 − A2γω4ω6

−A3 αγω4 + φδ2ω5( ),
H0 � 1 − A

ω3
+ A2γ

ω3ω5
+ A1φ

ω4ω5
+ A3 αγω4 + φδ2ω5( )

ω3ω4ω5ω6
[ ],

H0 � 1 − ReE + ReI + ReQ + ReM( ),
H0 � 1 − Re.

Therefore, using the Routh–Hurwitz stability conditions, the roots
of Γ4(λ) in Eq. (13) of the reduced matrix have negative real parts if the
following conditions hold:H3>0,H2>0,H1>0, andH0>0. It is obvious
that the condition holds if Re<1. This proves that in model (2), disease-
free equilibrium, ξ0, is locally stable if Re<1 and unstable if Re>1 .

FIGURE 6
Optimal solutions of implementing strategy 1. Plot (A) blue dotted line is the optimal solution for implementing strategy 1. (B)Optimal control profile
for strategy 1.

FIGURE 7
Optimal solutions of implementing strategy 2. Plot (A) blue dotted line is the optimal solution for implementing strategy 2. (B)Optimal control profile
for strategy 2.
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3.5 Existence of endemic equilibrium of
the model

Let us consider P* � (S*, V*, E*, Q*, I*,M*, R*) as the endemic
equilibrium for system (2) and equate the derivative to zero (0). The
following results are obtained:

Λ + σV* + δ1Q* + τR* − ZβsS* − ω1S* � 0,
ϑS* − ZβvV* − ω2V* � 0,
Z βsS* + βvV*( ) − ω3E* � 0,
ŋS* + φE* − ω4Q* � 0,
γE* − ω5I* � 0,
δ2Q* + αI* − ω6M* � 0,
εeE* + εiI* + εmM* − ω7R* � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where Z � (I*+reE*+rqQ*+rmM*)
N1

* , for N1
* � N* − Q* −M*.

Then, P* � (S*, V*, E*, Q*, I*,M*, R*), and solving Eq. 14
simultaneously gives the following

S* � ϑω4ω6 Zβv + ω2( ) Λ + y1I*( )
y4

,

V* � ϑω4ω6 Λ + y1I*( )
y4

,

E* � ω5

γ
( )I*,

Q* � 1
ω4

γŋϑδ2ω4ω6 Zβv + ω2( ) Λ + y1I*( ) + φω5y3I*
γy3

( ),
M* � 1

ω6

γŋϑω4ω6 Zβv + ω2( ) Λ + y1I*( ) + φω5 + αγ( )y3I*
γy4

( ),
R* � 1

ω7

εeω5 + γεi( )I*
γ

+ εm
ω6

γŋϑδ2ω4ω6 Zβv + ω2( ) Λ + y1I*( ) + φω5 + αγ( )y3I*
γy4

( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

Substituting the expressions for S*, V*, andE* in Eq. 15 into the
fifth equation of Eq. 14 and simplifying, we obtain the following
equation for I*:

ω4ω6 Λ + y1I*( ) Zβv + ω2 + ϑ( )
y4

( ) − ω3ω5I*
γ

( ) � 0.

FIGURE 8
Optimal solutions of implementing strategy 3. Plot (A) blue dotted line is the optimal solution for implementing strategy 3. (B)Optimal control profile
for strategy 3.

FIGURE 9
Optimal solutions of implementing strategy 4. Plot (A) blue dotted line is the optimal solution for implementing strategy 4. (B)Optimal control profile
for strategy 4.
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Simplifying the above equation gives Eq. (16)

I* � Λγω4ω6 Zβv + ω2 + ϑ( )
ω3ω4y4 − γω4ω6y1 Zβv + ω2 + ϑ( ), (16)

where y1 � φδ1ω5

γω4
+ τ

ω7
(εeω5

γ
+ εi + εm

ω6
(φδ2ω5

γ
+ α)), y2 � σϑω4ω6+

εmŋδ2(Zβv + ω2), y3 � σϑω4ω6 + εmŋδ2(Zβv + ω2) − ω4ω6(Zβv(μ + ŋ)
−Z2βsβv − ω1ω2), andy4 � Z

Ky3
(Re) − 1 .

Note that, in evaluating S* and V*,

y4 � Zβs+ω2)(βv + ω1( )ω4ω6 − y2,

y4 � Z2βsβv + Zβsω2 + Zβvω1 + ω1ω2( )ω4ω6 − y2.

Substituting ω1 and ω2 and simplifying gives

y4 � Zβs μ + σ( ) + Zβvϑ + Zβv μ + ŋ( ) + Z2βsβv

+ μ + ϑ + ŋ( ) μ + ϑ( ) − y2,

y4 � Zβs μ + ϑ( ) + Zβvϑ − y3.

Let K � 1
(μ+σ+ϑ) (re

ω3
+ γ

ω3ω5
+ φrq

ω3ω4
+ (ω4αγ+ω5φδ2)rm

ω3ω4ω5ω6
).

It follows that

y4 � ZK βs μ + σ( ) + βvϑ( ) −Ky3,

y4 � Z βs μ + σ( ) + βvϑ( )
μ + σ + ϑ( ) re

ω3
+ γ

ω3ω5
+ φrq
ω3ω4

+ ω4αγ + ω5φδ2( )rm
ω3ω4ω5ω6

( )
−Ky3,

y4 � Z

Ky3
Re( ) − 1. (17)

The expressions for S* and V* can be rewritten as follows

S* � ϑω4ω6 Zβv + ω2( ) Λ + y1I*( )
Z

Ky3
Re( ) − 1

,

V* � ϑω4ω6 Λ + y1I*( )
Z

Ky3
Re( ) − 1

.

FIGURE 10
Optimal solutions of implementing strategy 5. Plot (A) blue dotted line is the optimal solution for implementing strategy 5. (B) Optimal control
profiles for strategy 5.

FIGURE 11
Optimal solutions of implementing strategy 6. Plot (A) blue dotted line is the optimal solution for implementing strategy 6. (B) Optimal control
profiles for strategy 6.
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Let us consider the denominators of S* and V* in the
following cases:

(a) If Re > 1, then Z
Ky3

(Re) − 1 � Z
Ky3

(Re) − 1 > 0. This results
in the endemic equilibrium point K* �
(S*, V*, E*, Q*, I*,M*, R*) since the expressions for S* and
V* are nonnegative, which implies I*> 0.

(b) If Re < 1, then since Z
Ky3

(Re) − 1 � Z
Ky3

(Re) − 1 < 0, which
implies I*< 0, endemic equilibrium does not exist.

Using Eq. (17), for I*> 0 when Re > 1, it implies that the
endemic equilibrium P* has a positive and unique equilibrium
point when Re > 1.

3.6 Global stability of endemic equilibrium

Let us consider a globally positively definite and unbounded
function L(x)with a globally negative time derivative. For L(x)< 0

for all x ≠ x*, then at equilibrium, x* is globally stable for the
autonomous system x′ � f (x) and L(x) is the Lyapunov function.
Theorem 3: The system (14) has an endemic equilibrium P* �
(S*, V*, E*, Q*, I*,M*) that satisfies S*> 0, V*> 0, E*> 0,
Q*> 0, I*> 0, andM*> 0. If Re > 1, the endemic equilibrium point
globally asymptotically stable in a positive region R7+ on H with

Λ � ZβsS* + ω1S* − σV* − δ1Q*,

ω2 � ϑS* −KβvV*
V*

,

ω3 � Z βsS* + βvV*( )
E*

,

ω4 � ŋS* + φE*
Q*

,

ω5 � γE*
I*

,

ω6 � δ2Q* + αI*
M*

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

FIGURE 12
Optimal solutions of implementing strategy 7. Plot (A) blue dotted line is the optimal solution for implementing strategy 7. (B) Optimal control
profiles for strategy 7.

TABLE 4 Strategies’ ACER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost involved ACER value

Strategy 1 1.5279 × 108 1.4064 × 103 9.2048 × 10−6

Strategy 2 2.0184 × 107 1.2513 × 103 6.1995 × 10−5

Strategy 3 3.9351 × 108 5.6206 × 103 1.4283 × 10−5

Strategy 4 1.5279 × 108 1.5279 × 103 1.2284 × 10−5

Strategy 5 3.9388 × 108 6.2463 × 103 1.5858 × 10−5

Strategy 6 5.2611 × 108 6.8719 × 103 1.3062 × 10−5

Strategy 7 5.2648 × 108 7.4975 × 103 1.4241 × 10−5
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TABLE 5 Strategies’ ICER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost incurred ICER value

Strategy 2 2.0184 × 107 1.2513 × 103 6.1995 × 10−5

Strategy 1 1.5269 × 108 1.4064 × 103 1.1705 × 10−6

Strategy 4 1.5279 × 108 1.5279 × 103 0.0012

Strategy 3 3.9351 × 108 5.6206 × 103 1.7002 × 10−5

Strategy 5 3.9388 × 108 6.2463 × 103 0.0017

Strategy 6 5.2611 × 108 6.8719 × 103 4.7312 × 10−6

Strategy 7 5.2648 × 108 7.4975 × 103 0.0017

TABLE 6 Strategies’ ICER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost incurred ICER value

Strategy 1 1.5269 × 108 1.4064 × 103 9.2108 × 10−6

Strategy 4 1.5279 × 108 1.5279 × 103 0.0012

Strategy 3 3.9351 × 108 5.6206 × 103 1.7002 × 10−5

Strategy 5 3.9388 × 108 6.2463 × 103 0.0017

Strategy 6 5.2611 × 108 6.8719 × 103 4.7312 × 10−6

Strategy 7 5.2648 × 108 7.4975 × 103 0.0017

TABLE 7 Strategies’ ICER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost incurred ICER value

Strategy 1 1.5269 × 108 1.4064 × 103 9.2108 × 10−6

Strategy 3 3.9351 × 108 5.6206 × 103 1.7499 × 10−5

Strategy 5 3.9388 × 108 6.2463 × 103 0.0017

Strategy 6 5.2611 × 108 6.8719 × 103 4.7312 × 10−6

Strategy 7 5.2648 × 108 7.4975 × 103 0.0017

TABLE 8 Strategies’ ICER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost incurred ICER value

Strategy 1 1.5269 × 108 1.4064 × 103 9.2108 × 10−6

Strategy 5 3.9388 × 108 6.2463 × 103 2.0067 × 10−5

Strategy 6 5.2611 × 108 6.8719 × 103 4.7312 × 10−6

Strategy 7 5.2648 × 108 7.4975 × 103 0.0017
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Proof. We define the Lyapunov function L and its endemic
equilibrium as follows:

L � ki S − S* − S* ln
S

S*
( )| + V − V* − V* ln

V

V*
( )(

+ E − E* − E* ln
E

E*
( ) + Q − Q* − Q* ln

Q

Q*
( )

+ I − I* − I* ln
I

I*
( )| + M −M* −M* ln

M

M*
( )), (19)

from Eq. (19), we have ki > 0 and i � 1, 2, 3, 4, 5, 6.

dL

dt
� ki 1 − S*

S
( )S′ + 1 − V*

V
( )V′ + 1 − E*

E
( )E′ + 1 − Q*

Q
( )Q′(

+ 1 − I*
I

( )I′ + 1 − M*
M

( )M′).
(20)

Substituting (2) and (18) into (20) gives

dL

dt
� k1 1 − S*

S
( )
× ZβsS* + ω1S* − σV* − δ1Q* + σV + δ1Q − ρ1S − ω1S( )
+ k2 1 − V*

V
( ) ϑS − ZβvV − ϑS* − ZβvV*

V*
( )V( )

+ k3 1 − E*
E

( ) ZβsS + ZβvV − Z βsS* + βvV*( )
E*

( )E( )
+ k4 1 − Q*

Q
( ) ŋS + φE − ŋS* + φE*

Q*
( )Q + k5 1 − I*

I
( )

× γE − γE*
I*

( )I + k6 1 − M*
M

( ) δ2Q + αI − δ2Q* + αI*
M*

( )M.

(21)
Solving the (21) value gives

dL

dt
� k1ω1 2 − S

S*
− S*

S
( )S* + k1ZβsS* 3 − S*

S
− E

E*
− SE*
S*E

( )
+ k4ŋS* 3 − S

S*
− Q

Q*
− S*Q*

SQ
( ) + k1σV* 3 − S

S*
− V*

V
− S*V
SV*

( )
+ k1δ1Q* 3 − S

S*
− Q*

Q
− S*Q
SQ*

( )
+ k2k3ZβvV* 3 − V*

V
− E

E*
− VE*
V*E

( )
+ k4φE* 3 − E*

E
− Q

Q*
− EQ*
E*Q

( )
+ k6αI* 3 − I*

I
− M

M*
− IM*
I*M

( ) + k5γE* 3 − E*
E

− I

I*
− EI*
E*I

( )
+ k6δ2Q* 3 − Q*

Q
− M

M*
− QM*
Q*M

( ). (22)

Let f1 � S
S*, f2 � V

V*, f3 � E
E*, f4 � Q

Q*, f5 � I
I*, andf6 � M

M*.
k1, k2, k3, k4, k5, and k6 are obtained by setting the coefficients of

f1, f2, f3, f4, f1f4 andf2f4 equal to 0, which after solving gives

k1 � k3 � 1, k2 � σV*
ϑS* − ZβvV*

, k4 � δ1Q*
ŋS* + φE*

,

k5 � Z βsS* + βvV*( )
γE*

, and k6 � δ1Q*
δ2Q* + αI*

.

Hence, the result is

dL

dt
� ω1 2 − f1 − 1

f1
( )S* + ZβsS* 3 − 1

f1
− f3 − f1

f3
( )

+ σV* 3 − f1 − 1
f2

− f2

f1
( ) + δ1Q* 3 − f1 − 1

f4
− f4

f1
( )

+ k2ZβvV* 3 − 1
f2

− f3 − f2

f3
( ) + k4φE* 3 − 1

f3
− f4 − f3

f4
( )

+ k5γE* 3 − 1
f3

− f5 − f3

f5
( ) + k6αI* 3 − 1

f5
− f6 − f5

f6
( )

+ k6δ2Q* 3 − 1
f5

− f6 − f5

f6
( ). (23)

From the above Eqs (22, 23), it can be realized that if the
arithmetic mean is greater than or equal to their geometric mean,
then dL

dt ≤ 0. dL
dt � 0 only holds if f1� f2 � f3 � f4 � f5 � f6. It

implies that S � S*, V � V*, E � E*, Q � Q* , and I � I* �
M � M* inH; therefore, the largest invariant set is
S, V, E, Q, I,M ∈ H: dL

dt � 0{ }. The endemic equilibrium P* is
globally asymptotically stable in the positive region R7

+ when
Re > 1 based on the Lyapunov–LaSalle stability theorem.

4 Model parameterization and
sensitivity analysis

We evaluate the reproduction number to find the transmission
routes of the pandemic and the proportion of individuals. A
sensitivity analysis was carried out to evaluate the contribution of
each parameter to the reproduction number.

4.1 Estimation of model parameters

We evaluate the reproduction numbers using the values in
Table 3. The effective reproduction number Re � 0.85575 and a
proportion of 0.19998 of the exposed individuals move to the
infected class at any given time. The contribution from each
transmission route is shown in the table below.

TABLE 9 Strategies’ ICER values with their overall infection averted and cost involved.

Strategy Overall infection averted Total cost involved ICER value

Strategy 1 1.5269 × 108 1.4064 × 103 9.2108 × 10−6

Strategy 6 5.2611 × 108 6.8719 × 103 1.0389 × 10−5

Strategy 7 5.2648 × 108 7.4975 × 103 0.0017
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Table 2 reveals that the infectious and exposed classes contribute
significantly to the transmission of the disease. This implies that
there must be admissible measures to halt the transmission of
the disease.

4.2 Sensitivity analysis

We illustrate the arithmetic behavior of model (2) parameters’
sensitivity. The sensitivity of the parameters in Re for the model is
defined in Eq. 24 as

ƤRe
p � ∂Re

∂p
.
p

R0
≈
%ΔRe

%Δp
. (24)

ƤRe
Λ � 1,ƤRe

βs �
βs μ + σ( )

a1
,ƤRe

βv �
βvϑ
a1

,ƤRe
re
� ReEa2,ƤRe

rq
� ReQa2,

ƤRe
rm

� ReM a2,ƤRe
εe
� −εe ReE

ω3
+ ReI

ω3
+ ReQ

ω3
( ),

ƤRe
εi
� −εi ReI

ω5
+ ReQ

ω5
− φδ2rm

ReM
( ),

ƤRe
εm

� − ReM εm

ω6
( ) ReE + ReI + ReM + φrq

ω3 ω4
( ),

ƤRe
δ1
� −δ1 ReQ

ω4
+ ReM

ω4
− αγrm

a2
( ),

ƤRe
δ2
� −δ2 ReQ

ω4
+ ReM

ω4
− αγ + φω5( )rm

a2
( ),

ƤRe
α � −α ReI

ω5
+ R0M

ω5
− ReM

a2
( ),

ƤRe
γ � −γ ReE

ω5
+ ReI

ω3 ω5
+ ReQ

ω2
3 ω5

+ ReM − 1
βs ω2a1

( ),
ƤRe

μ � −μa1 ReE

ω3
+ R0I

ω3
+ γ

ω3ω2
5

+ φrq
ω2
3 ω4

+ φrq
ω3ω2

4

− βs a2( ),
ƤRe

σ � − βsσ( ) ReE + ReI + ReQ + ReM

a23
− ReM

a23
( ),

ƤRe
ϑ � − βvϑ( ) ReE + ReI + ReQ + ReM

a3
− 1

a2
( ), and

ƤRe
φ � −φ ReE

ω3
+ ReI

ω3
+ ReQ

ω2
3 ω4

+ ReM

ω3 a3
− rq

ω3 ω5
− δ2rm

ω3 a2
( ),

where a1 � βsω2 + βvϑ, a2 � ReE + ReI + ReQ +
ReM, and a3 � μ + σ + ϑ.

From the above analysis, it is observed that Re will increase
proportionally as the following parameters (βs, βv, re, rq, rm)
increase; on the other hand, R0 decreases proportionally as the
following parameters (α, γ, σ,φ, μ, ϑ, εe, εi, εm, δ1, δ2) increase since
sensitivity indices are sign determined. This can be used to show the
numerical importance of the various parameters in Re. Table 3

illustrates the numerical results of the sensitivity index of the various
parameters in Re.

Based on the numerical illustrations shown in Table 3, the
effective reproduction number Re will change as the parameters
change. Sensitivity analysis is interpreted based on the sign
associated with the particular parameter. The effective
reproduction number Re will decrease as the parameter values
with the negative sign increase, while it increases when they
decrease. Considering that βs � 0.8192, it indicates that βs will
increase Re by 81% whenever there is a 1% increment in the
transmission rate of the susceptible individuals. This depicts the
explanation for all the parameter values with a positive sign. On the
other hand, εi � −0.1546 indicates that εi will decrease Re by 15%
whenever there is a 1% increment in the recovery rate of the infected
individuals. This depicts the explanation for all the parameter values
with a negative sign.

Now, we examine the relationship between the parameters of
effective reproduction number Re by checking the partial rank
correlation coefficients (PRCCs) of the parameters. The following
figure illustrates the behavioral pattern of each parameter in the
transmission dynamics of the disease.

From Figure 2, one could realize that (βs, βv, re, rq, γ,φ) have a
high positive effect on Re, while (μ, ϑ, εe) have a high negative effect
on Re. One could realize that all these parameters are associated with
vaccination and interventions to mitigate the infectivity rate in the
population.

4.3 Effects of vaccination and infectivity
reductions on the effective reproduction
number Re

This subsection explores the dynamics of Re with respect to
vaccination and infectivity reduction parameters (ϑ, σ, re, rq, rm).
The following figure demonstrates the changing effects of
vaccination and infectivity reduction parameters on Re.

Figure 3A demonstrates the influence of vaccination rate ϑ and
vaccine inefficacy σ. One can realize that the effective reproduction
number Re increases as the vaccination rate ϑ decreases, while Re

decreases as vaccine inefficacy σ decreases. Figure 3B–g show the
effects of vaccination rate ϑ, vaccine inefficacy σ, and infectivity
reductions. It is observed that to mitigate the disease’s transmission,
there should be effective control measures to minimize the
infectivity levels and maximize the vaccination rate to halt the
disease’s transmission. Figures 3H–J show the effect of the
infectivity reductions on Re. It could be observed that an increase
in re at any given time results in an increase in Re (Figure 3H;
Figure 3I). It can be seen that re and rq have a significant effect on Re,
as demonstrated in Figure 2. Based on the above graphical

TABLE 10 Strategies’ ICER values with their overall infection averted and cost incurred.

Strategy Overall infection averted Overall cost incurred ICER value

Strategy 1 1.5269 × 108 1.4064 × 103 9.2108 × 10−6

Strategy 7 5.2648 × 108 7.4975 × 103 1.6296 × 10−5
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representation, it is important to minimize the infectivity levels of
the exposed class re and quarantined class rq to halt the disease’s
transmission.

5 Numerical simulations and
discussions

In this section, the real data are observed to depict the
situation of the transmission. The real data are compared with
the model’s solution accuracy. The proposed model is applied to
explore the transmission of COVID-19 disease in Ghana using
data from the WHO [17]. This includes the daily number of
infections and the total number of daily infections after the
introduction of vaccines. The data are analyzed and compared
to other literature works for the simulations. The daily infections
and the total number of infections are simulated to analyze the
behavioral pattern of the transmission of the disease. In
particular, we illustrate the changing effects of the vaccination
rate ϑ, vaccine inefficacy σ , and infectivity reductions on the size
of infectious individuals.

5.1 Application of the SVEQIMR model

Once the model is formulated, it is necessary to compare it with
data to check its validity. Here, we want to check the accuracy and
authenticity of the model by verifying the extent to which the model
can represent the real situation, as described in [18]. The simulation
consists of the application of the data from Ghana to illustrate the
transmission of COVID-19 for the period 1st January 2022 to 1st
March 2022when the individuals were vaccinated. The following state
variables are considered using data from Ghana for the period 1st
January 2022 to 1st March 2022 [17]. The estimated total population
of Ghana is 31732129 [19]; hence, N(0) � 31732129, and the
assumed initial values are as follows: S(0) � 200000, V(0) �
120000, E(0) � 150000, I(0) � 997, Q(0) � 1000,M(0) � 800, and
R(0) � 500. All the parameters used for the simulations are shown
in Table 3.

The SVEQIMR model (fitted) depicts the pattern of the real
situation (real data), as shown in Figure 4A, which represents the
plot of the daily number of infections, and Figure 4B represents the
total number of infections for the period of 1st January 2022 to 1st
March 2022. The plot of the model results indicates the pattern of
the real situation. That is, the fitted model and real situation agree
with each other and illustrate the transmission dynamics of the
spread of the pandemic.

5.2 Effects of vaccination and infectivity
reductions on COVID-19 incidences

Here, we analyze the influence of vaccination rate and vaccine
inefficacy on the spread of COVID-19 disease using the same
dataset. Let us consider the following parameters: vaccination
rates ϑ � (0, 0.15, 0.25, 0.35, 0.45) and vaccine inefficacy σ �
(0, 0.02, 0.05, 0.07, 0.09) for the infected class.

Again, we demonstrate the changing effects of the different
infectivity reductions on the behavioral pattern of the transmission
of COVID-19 disease by considering the following arbitrary values
(0.05, 0.10, 0.15, 0.20, 0.25) for the infectivity reduction of exposed
individuals re, quarantined individuals rq, and isolated individuals
rm. The results are presented in Figure 5.

From Figure 5A, it is observed that an increase in the
vaccination rate ϑ results in a significant decrease in the daily
number of reported cases. On the contrary, an increase in vaccine
inefficacy σ results in an increase in the daily number of reported
cases, as shown in Figure 5B. It could also be observed that the
disease dies out gradually with time as vaccine inefficacy σ

approaches zero (0); however, a high vaccination rate ϑ reduces
the number of infections. Therefore, there is a significant effect of
different values of vaccination rate ϑ and vaccine inefficacy σ on
the disease’s spread. The above illustration shows that vaccination
against the spread of the coronavirus is very important and must
be adhered to.

From Figure 5C, it is realized that an increase in the infectivity
reduction of exposed individuals re results in a significant increase
and higher peaks in the daily reported cases. Furthermore, an
increase in the infectivity reduction of the quarantined class rq
results in a moderate increase in the daily reported cases compared
to the peaks of re, as shown in Figure 5D. The peaks of daily
reported cases are lower than those of the exposed class because the
individuals in this group are confined and monitored. In Figure 5E,
there is a significant decline in the daily reported cases as the
infectivity reduction of the isolated individuals rm decreases,
which has fewer peaks than the others. From the above
graphical representation, the infectivity reduction of the
exposed individuals re should be controlled carefully because
the higher the infectivity reduction, the higher the number of
daily reported cases and vice versa. This graphical representation
can be confirmed by the numerical illustration of the contribution
of the transmission route in Table 2. The exposed compartment
contributed significantly to the effective reproduction number Re,
with a proportion of 0.19998 of the individuals moving to
the infected class. This means that approximately 20% of
individuals in the exposed compartment become infected at
a given time. The above diagram depicts the order of
contribution of the transmission route to the effective
reproduction number Re.

6 Optimal control problem and
cost–benefit analysis

We modify Equation 2 with the following optimal control
variables: κp(t), representing the public awareness of the
prevalence of COVID-19 and related infections where
κp(t) ∈ [0, 1], which reduces the forces of infection ρ1 and ρ2,
by 1 − κp(t); κv(t), denoting the control effort to intensify
COVID-19 vaccination; and κi(t), denoting the control effort
for infectivity reduction, which reduces infectivity by 1 − κi(t).
All these efforts denote the control interventions in minimizing
the transmission of COVID-19 and its reinfections. The modified
Eq. (2) is given in Eq. (25) as follows:

Frontiers in Physics frontiersin.org15

Appiah et al. 10.3389/fphy.2024.1383357

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383357


dS

dt
� dS

dt
� Λ + σV + δ1Q + τR − 1 − κp( )ρ1S − μ + κvϑ + ŋ( )S,

dV

dt
� κvϑS − 1 − κp( )ρ2V − μ + σ( )V,

dE

dt
� 1 − κp( ) ρ1S + ρ2V( ) − μ + 1 − κi( )φ + 1 − κi( )γ + εe( )E,

dQ

dt
� ŋS + 1 − κi( )φE − μ + δ1 + 1 − κi( )δ2( )Q,

dI

dt
� 1 − κi( )γE − μ + α + εi( )I,

dM

dt
� 1 − κi( )δ2Q + αI − μ + εm( )M,

dR

dt
� εeE + εiI + εmM − μ + τ( )R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(25)

where ρ1 and ρ2 remain as in Section 2 with the initial conditions
given in the model (2).

6.1 Objective functional

We now formulate the optimal trajectories that show the effect
of the control efforts κp(t), κv(t), andκi(t) subjected to (36); the
objective functional Q is given as

Q κp, κv, κi( ) � ∫tf

0
h1E + h2I + h3Q + h4M + 1

2
z1κ

2
p t( ) + 1

2
z2κ

2
v t( ) + 1

2
z3κ

2
i t( )[ ]dt.

(26)

We focus on minimizing the cost function (26), and the total
cost of implementing the optimal control is given as

Z � ∫tf

0

1
2
z1κ

2
p t( ) + 1

2
z2κ

2
v t( ) + 1

2
z3κ

2
i t( )[ ]dt. (27)

The parameters z1, z2,and z3 in Eq. 27 are the balancing cost
factors for κp(t), κv(t), and κi(t), respectively. All the control
efforts κp(t), κv(t), and κi(t) are assumed to be bounded by
Lebesgue measurable time-dependent functions on the interval
[0, tf], where tf is the final time with the control effort set defined
in Eq. 28 as

Γ � κp, κv, κi for 0≤ κp, κv, κi ≤ 1,( ), 0≤ t≤ tf( ). (28)

Now, we establish point-wise Hamiltonian H through
Pontryagin’s maximum principle to transform the optimal
control system (25) and its associated objective functional (26).
The following optimal solution is achieved.

H � h1E + h2I + h3Q + h4M + 1
2
z1κ

2
p t( ) + 1

2
z2κ

2
v t( ) + 1

2
z3κ

2
i t( )

+λS Λ + σV + δ1Q + τR − 1 − κp( )ρ1S − μ + κvϑ + ŋ( )S( )
+λV κvϑS − 1 − κp( )ρ2V − μ + σ( )V( )
+λE 1 − κp( ) ρ1S + ρ2V( ) − μ + 1 − κi( )φ + γ + εe( )E( )
+λQ ŋS + 1 − κi( )φE − μ + δ1 + 1 − κi( )δ2( )Q( )
+λI γE − μ + α + εi( )I( )
+λM 1 − κi( )δ2Q + αI − μ + εm( )M( )
+λR εeE + εiI + εmM − μ + τ( )R( ), (29)

where λS, λV, λE, λQ, λI, λM, and λR in Eq. 29 are the co-state
variables with respect to the state variables, S, V, E, Q, I,M, andR.

Theorem 4: Given κ*p(t), κ*v(t), and κ*i(t) as the optimal controls
and the corresponding solutions S0, V0, E0, Q0, I0, M0, andR0 of
the system (25), which minimizes Z(κp(t), κv(t), κi(t)) over Γ,
then there exist co-state variables λS, λV, λE, λQ, λI, λM, and λR
that satisfy

dλj
dt

� −∂H
∂j

, (30)

with conditions λj(tf) � 0, where j � S, V, E, Q, I,M, R. Then,
the optimality conditions that minimize the Hamiltonian, H, of (29)
with respect to the controls are given as

κ*p t( ) � min κp max, max 0,
λE − λS( )ρ01S0 + λE − λV( )ρ02V0

z1
( ){ },

κ*v t( ) � min κv max, max 0,
λS − λV( )ϑS0

z2
( ){ }′

κ*i t( ) � min κi max, max 0,
λQ − λE( )φE0 + λI − λE( )γE0 + λM − λQ( )δ2Q0

z3
( ){ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(31)

Proof:We formulate the adjoint equation for the optimal system
by taking the partial derivative of Eq. 30 as follows in Eq. (32):

dλS
dS

� 1 − κp( ) λS − λE( )ρ1 + λV − λS( )κvϑ + λS − λV( )σV + λQ − λS( )ŋ + λS − λQ( )δ1Q + λS − λR( )τR + μλS ,

dλV
dV

� 1 − κp( ) λE − λV( )ρ2 + λV − λS( )κvϑS + λS − λV( )σ + μλV,

dλE
dE

� −h1 + 1 − κp( ) λE − λS( )ρ1S + λE − λV( )ρ2V[ ] + λQ − λE( ) 1 − κi( )φ + λI − λE( ) 1 − κi( )γ + λR − λE( )εe + μλE ,

dλQ
dQ

� −h2 + λQ − λS( )ŋS + λS − λQ( )δ1 + λQ − λE( ) 1 − κi( )φE + λM − λQ( ) 1 − κi( )δ2 + μλQ,

dλI
dI

� −h3 + 1 − κi( ) λI − λE( )γE + λM − λI( )α + λR − λI( )εi + μλI ,

dλM
dM

� −h4 + 1 − κi( ) λM − λQ( )δ2Q + λM − λI( )αI + λR − λM( )εm + μλM,

dλR
dR

� λR − λE( )εeE + λR − λI( )εi I + λR − λM( )εmM + λS − λR( )τ + μλR .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(32)

The control set illustrates the co-state system with the optimal
conditions.

∂H
∂κp

� z1κp + λS − λE( )ρ01S0 + λV − λE( )ρ02V0,

∂H
∂κv

� z2κv + λV − λS( )ϑS0,
∂H
∂κi

� z3κi+ λE − λQ( )φE0 + λE − λI( )γE0 + λQ − λM( )δ2Q0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

We solve for κp(t), κv(t), and κi(t) as κ*p(t), κ*v(t), and κ*i(t) of
Eq. (33), and the results confirms the expression in Eq. (31) are
as follows:

κ*p t( ) � min κp max, max 0,
λE − λS( )ρ01S0 + λE − λV( )ρ02V0

z1
( ){ },

κ*v t( ) � min κv max, max 0,
λS − λV( )ϑS0

z2
( ){ }′

κ*i t( ) � min κi max, max 0,
λQ − λE( )φE0 + λI − λE( )γE0 + λM − λQ( )δ2Q0

z3
( ){ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(34)

Therefore, using the bounds of the controls κp(t), κv(t), and
κi(t), the control efforts are in the compact form given by the optimal
condition of the system in Eq. (34); hence, the proof is complete.
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6.2 Optimal control strategies

Here, our aim is to determine the number of infections after
deploying the optimal control interventions. We explore the effects
of implementing the interventions; therefore, the optimality system
(36) is solved forward in time and the adjoint system backward in
time with the corresponding lower and upper bounds of the
controls. We used the population of Ghana to study the
behavioral pattern of COVID-19. The estimated total population
of Ghana is 31732129 [19]; hence, N(0) � 31732129, and the
assumed initial values are as follows: S(0) � 200000, V(0) �
120000, E(0) � 150000, I(0) � 997, Q(0) � 1000,M(0) � 800, and
R(0) � 500, together with Λ = 1,364, τ � 0.2, and ŋ � 0.21 and
parameter values illustrated in Table 3. The balance costs associated
with the objective functional are assumed to be z1 � 5, z2 �
10, and z3 � 20, and weight hi � 100, where i � 1, 2, 3, 4. The
lower bound (LB) and upper bound (UB) are assumed to be LB1 �
0, UB1 � 1, LB2 � 0, UB2 � 1, LB3 � 0, andUB3 � 1. The results are
illustrated according to the strategies to implement the control
strategies.

6.2.1 Strategy 1: implementation of public
awareness (κp)

The optimal solutions illustrated in Figure 6 account
for the observations when the control effort κp is applied
accordingly.

The optimal solutions illustrated above depict the following
observations when public education is only applied:

(a) Figure 6A represents the effect of the control effort κp on the
infectious individuals. It implies that the number of
individuals will decrease if the control effort is optimally
implemented in halting the disease’s transmission.
Conversely, it will increase significantly.

(b) Figure 6B represents the profile of the control effort for public
awareness of COVID-19. It implies that education on
COVID-19 should reach 50% of the population
throughout the implementation to halt COVID-19
transmission.

6.2.2 Strategy 2: implementation of vaccination (κv)
The optimal solutions illustrated in Figure 7 account

for the observations when the control effort κv is applied
accordingly.

The optimal solutions illustrated above depict the following
observations when vaccination is only applied:

(a) Figure 7A represents the effect of the control effort κv on the
infectious individuals. It implies that the number of
individuals will decrease if the control effort is optimally
implemented in halting the disease’s transmission.
Conversely, it will increase significantly.

(b) Figure 7B represents the profile of the control effort for
vaccination to prevent COVID-19. It implies that
approximately 25% of the population should be vaccinated
within 80 days and intensified further up to 75% in the
subsequent days throughout the implementation to halt
COVID-19 transmission.

6.2.3 Strategy 3: implementation of infectivity
treatment (κi)

The optimal solutions illustrated in Figure 8 account for the
observations when the control effort κi is applied accordingly.

The optimal solutions illustrated above depict the following
observations when infectivity treatment is only applied:

(a) Figure 8A represents the effect of the control effort κi on the
infectious individuals. It implies that the number of
individuals will decrease if the control effort is optimally
implemented in halting the disease’s transmission.
Conversely, it will increase significantly.

(b) Figure 8B represents the profile of the control effort for
COVID-19 reinfection. It implies that approximately 75%
of the individuals suspected to be carriers of the virus should
be treated/monitored throughout the implementation to halt
COVID-19 transmission.

6.2.4 Strategy 4: implementation of public
awareness and vaccination (κp, κv)

The optimal solutions illustrated in Figure 9 account for the
observations when the control efforts κp and κv are applied
accordingly.

The optimal solutions illustrated above depict the following
observations when control efforts for public awareness and
vaccination are applied:

(a) Figure 9A represents the effect of the control efforts κp and κv
on the infectious individuals. It implies that the number of
individuals will decrease if the control effort is optimally
implemented in halting the disease’s transmission.
Conversely, it will increase significantly.

(b) Figure 9B represents the profile of the control efforts for
public awareness and vaccination against COVID-19. It
implies that approximately 80% of the population
should be educated on COVID-19 within 22 days,
which can be relaxed to approximately 25%, and 50%
of the population should be vaccinated throughout the
implementation of these interventions to halt COVID-19
transmission.

6.2.5 Strategy 5: implementation of public
awareness and infectivity treatment (κp, κi)

The optimal solutions illustrated in Figure 10 account for the
observations when all the control efforts κp and κi are applied
accordingly.

The optimal solutions illustrated above depict the following
observations when all the control efforts for public awareness and
infectivity treatment are applied:

(a) Figure 10A represents the effect of the control efforts
κp and κi on the infectious individuals. It implies that the
number of individuals will decrease to a minimum within
30 days if the control effort is optimally implemented in
halting the disease’s transmission. Conversely, it will increase
significantly.

(b) Figure 10B represents the profile of the control efforts for
public awareness and infectivity treatment. It implies that
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approximately 80% of the population should be educated on
COVID-19, and 50% of suspected carriers of the virus
should be treated/monitored throughout the
implementation of these interventions to halt COVID-19
transmission.

6.2.6 Strategy 6: implementation of vaccination
and infectivity treatment (κv , κi)

The optimal solutions illustrated in Figure 11 account for the
observations when the control efforts κv and κi are applied
accordingly.

The optimal solutions illustrated above depict the following
observations when all the control efforts for vaccination infectivity
reduction are applied:

(a) Figure 11A represents the effect of the control efforts κv and κi
on the infectious individuals. It implies that the number of
individuals will decrease to a minimum within 20 days if the
control effort is optimally implemented in halting the
disease’s transmission. Conversely, it will increase
significantly.

(b) Figure 11B represents the profile of the control efforts for
public education and vaccination against COVID-19. It
implies that all the interventions U1 andU2 should be
implemented at levels higher than 25% from the start of
implementation throughout the subsequent days to halt
COVID-19 transmission.

6.2.7 Strategy 7: implementation of all
controls (κp, κv , κi)

The optimal solutions illustrated in Figure 12 account for the
observations when the control efforts κp, κv, and κi are applied
accordingly.

The optimal solutions illustrated above depict the following
observations when all the control efforts are applied:

(a) Figure 12A represents the effect of the control efforts
κp, κv, and κi on the infectious individuals. It implies that
the number of individuals will decrease to a minimum
within 10 days if the control effort is optimally
implemented in halting the disease’s transmission.
Conversely, it will increase significantly.

(b) Figure 12B represents the profile of all control efforts. It
implies that approximately 80% of the population should be
educated on COVID-19, approximately 50% of the
population should be vaccinated, and 50% of suspected
carriers of the virus should also be treated/monitored
throughout the implementation period of these
interventions to halt COVID-19 transmission.

6.3 Cost–benefit analysis

Once the strategies are given, it is imperative to know the cost
associated with implementing such intervention(s). Therefore, we
explore the cost associated with each control strategy to check their
effectiveness. We outline some cost-effectiveness approaches to
further understand the control strategies.

We consider two procedures, namely, average cost-effectiveness
ratio (ACER) and incremental cost-effectiveness ratio (ICER), which
have been explained in [20–23], to carry out epidemiological studies.

6.4 Average cost-effectiveness ratio

We define the ACER of implementing a strategy as

ACER � Overall cost generated by applying the strategy
Overall infection averted by applying the strategy

. (35)

The overall cost Z stated in (27) would be used to evaluate the
total cost that the intervention would generate in Eq. 36. We then
compare the ACER values of each strategy, and the one with the
lowest value is the most cost-effective, saving costs. Therefore, the
cost-effective intervention is considered the strategy with the least
ACER value. The expression in Eq. 35 is illustrated as follows.

From Table 4, control strategy 1, which involves the
implementation of public education only, has the least value of
ACER, indicating cost savings. However, relying solely on this
metric is not enough to choose a strategy; hence, we further
explore other approaches.

6.5 Incremental cost-effectiveness ratio

We define the ICER of implementing a strategy as

ICER � The cost difference generated by strategies x andy
Difference in the overall infection averted in strategies x andy

.

(36)

The total cost function Z stated in (27) would be used
to estimate the overall cost that the intervention
would generate in Eq. (36). It is worth knowing that the
averted total number of infections is the difference between
the initial values of Ex and Ix, without control(s) and with
controls. The outcomes are tabulated in increasing order of
infection averted.

The ICER in Table 5 is calculated as

ICER 2( ) � 1.2513 × 103 − 0
2.0184 × 107 − 0

� 6.1995 × 10−5,

ICER 1( ) � 1.4064 × 103 − 1.2513 × 103

1.5269 × 108 − 2.0184 × 107
� 1.1705 × 10−6,

ICER 4( ) � 1.5279 × 103 − 1.4064 × 103

1.5279 × 108 − 1.5269 × 108
� 0.0012,

ICER 3( ) � 5.6206 × 103 − 1.5279 × 103

3.9351 × 108 − 3.9351 × 108
� 1.7002 × 10−5,

ICER 5( ) � 6.2463 × 103 − 5.6206 × 103

3.9388 × 108 − 2.3231 × 108
� 0.0017,

ICER 6( ) � 6.8719 × 103 − 6.2463 × 103

5.2611 × 108 − 3.9388 × 108
� 4.7312 × 10−6,

ICER 7( ) � 7.4975 × 103 − 6.8719 × 103

5.2648 × 108 − 5.2611 × 108
� 0.0017.

Assessing strategies 2 and 1 in Table 5, it is noticed from the
ICER that strategy 2 is expensive to deploy in a resource-limited
setting; therefore, strategy 2 is removed from the list of possible
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controls, and the ICER is calculated again. This is presented
in Table 6.

Assessing strategies 1 and 4 in Table 6, it is noticed from the
ICER that strategy 4 is expensive to deploy in a resource-limited
setting; therefore, strategy 4 is removed from the list of possible
controls, and the ICER is calculated again. This is presented
in Table 7.

Assessing strategies 1 and 3 in Table 7, it is noticed from the
ICER that strategy 3 is expensive to deploy in a resource-limited
setting; therefore, strategy 3 is removed from the list of possible
controls, and the ICER is calculated again. This is presented
in Table 8.

Assessing strategies 1 and 5 in Table 8, it is noticed from the ICER
that strategy 5 is expensive to deploy in a resource-limited setting;
therefore, strategy 5 is removed from the list of possible controls, and
the ICER is calculated again. This is presented in Table 9.

Assessing strategies 1 and 6 in Table 9, it is noticed from the ICER
that strategy 6 is expensive to deploy in a resource-limited setting;
therefore, strategy 6 is removed from the list of possible controls, and
the ICER is calculated again. This is presented in Table 10.

Finally, assessing strategies 1 and 7 in Table 10, it is noticed from
the ICER that strategy 7 is expensive to deploy in a resource-limited
setting; therefore, strategy 7 is removed from the list of possible
controls. Therefore, we conclude that strategy 1 is the most cost-
effective strategy to use among the several strategies under study
here. From the above analysis, it is obvious that strategy 1, which
involves public education, is the intervention that saves cost.

7 Conclusion

We have presented a work that analyzes the changing effects of
vaccination and infectivity reductions on the transmission of
COVID-19 using data from Ghana. We have estimated the
model’s parameters and analyzed their effects on disease
transmission through numerical and graphical illustrations.
Again, we have exhibited the threshold dynamics of the effective
reproduction number Re together with the contributions from the
transmission routes (Table 2). We have demonstrated the sensitivity
of the model’s parameters to study their effects on the effective
reproduction number Re (Table 3; Figure 2; Figure 3).

The aim of this work is to study the effect of vaccination and
infectivity reductions in controlling COVID-19 transmission and
devise control interventions that save cost to mitigate the
transmission; therefore, we have formulated optimal control
strategies together with the cost–benefit analysis that consider
control measures involving both pharmaceutical and non-
pharmaceutical interventions to control COVID-19. We
implemented the strategies (Figure 6A–Figure 12A), and it was
realized that public education, vaccination, and infectivity
reductions to prevent COVID-19 should be intensified and reach
approximately 25% of the population from the beginning and
intensified in the subsequent days (Figure 6B–Figure 12B).

It is also worth knowing that public education saves cost as per
the cost–benefit analysis compared to the other strategies raised in
this work. This intervention can minimize COVID-19, as illustrated
in Figure 6A. This intervention should reach approximately 50% of
the population throughout the period of its implementation in order

to realize the results of strategy 1 (Figure 6). Although strategy
1 saves cost, other strategies elaborated in this work can also be
applied, but one has to consider the cost involved in implementing
the strategy. The cost involved in applying the optimal control
strategies is presented in Table 4–Table 10.

The outcomes of the findings imply that both pharmaceutical
and non-pharmaceutical measures are very important in controlling
the transmission of COVID-19. These control measures should
always be vigorously implemented to create public awareness on
COVID-19 and its reinfection, as illustrated in
Figure 6B–Figure 12B, in order to reduce the effective contact
rates and rates of acquiring COVID-19, as illustrated in Figure 3.

Although we have demonstrated the dynamics of COVID-19
transmission with vaccination and different infectivity
reductions, this work is focused on the homogeneity of the
population, and we hope to extend this study to explore the
transmission dynamics of COVID-19 reinfection by considering
heterogeneity of the population such as age and sex. We
encourage individuals to adhere to personal hygiene and be
aware of COVID-19 reinfection.
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