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In this paper, we consider the following quasilinear Schrödinger system.
[image: image]
where k < 0 is a real constant, α > 1, β > 1, and α + β < 2*. We take advantage of the critical point theorem developed by Jeanjean (Proc. R. Soc. Edinburgh Sect A., 1999, 129: 787–809) and combine it with Pohožaev identity to obtain the existence of a ground-state solution, which is the non-trivial solution with the least possible energy.
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1 INTRODUCTION
This article is concerned with the following quasilinear Schrödinger system:
[image: image]
where k < 0 is a real constant.
Many scholars have made significant contributions to the study of the quasilinear Schrödinger system. Wang and Huang proved the existence of ground-state solutions for a class of systems by establishing a suitable Nehari–Pohožaev-type constraint set and considering related minimization problems in [2]. The existence of infinitely many solutions was established for the quasilinear Schrödinger system by the symmetric Mountain Pass Theorem; see [3]. The existence of positive solutions was obtained by using the monotonicity trick and Morse iteration in [4]. Chen and Zhang proved the existence of ground-state solutions by minimization under a convenient constraint and concentration compactness lemma in [5].
The quasilinear Schrödinger system (1.1) is in part motivated by the following quasilinear Schrödinger equation:
[image: image]
where W(x) is a given potential, k is a real constant, and l and h are real functions that are essentially pure power forms. The quasilinear Schrödinger Equation 1.2 describes several physical phenomena with different h; see [6–8].
Let the case [image: image] and k > 0. Setting z(t, x) = exp(−iFt)u(x), one can obtain a corresponding equation of elliptic type which has the formal variational structure:
[image: image]
where V(x) = W(x) – F is the new potential function. The problem (1.3) has been studied by many academics. In [9], the existence results of multiple solutions were studied via dual approach techniques and variational methods when k > 0 was small enough. The existence of soliton solutions was established by a minimization argument; see [10]. The Mountain Pass Theorem is combined with the principle of symmetric criticality to establish the multiplicity of solutions in [11]. In [12], the author proved the existence of soliton solutions via making a change in variables and creating a suitable Orlicz space. The minimax principles for lower semicontinuous functionals were used to find solutions in [13].
In [14], the authors used the method developed by [1, 15] to divide the energy functional into two parts and established the existence of ground-state solutions for a type of quasilinear Schrödinger equation like 1.3. Inspired by [14], we try to find the existence of ground-state solutions for system 1.1. This achievement can enrich the relatively few existing results about this system.
The main result of this paper is the following:
Theorem 1.1. When k < 0, α > 1, β > 1, and α + β < 2*, then (1.1) has a ground-state solution.
This paper is organized as follows. In Section 2, preparation work is completed. In Section 3, we reformulate this problem and prove Theorem 1.1. In this paper, C is defined as different constants.
2 REFORMULATION OF THE PROBLEM AND PRELIMINARIES
First, we explain that [image: image] denotes the Lebesgue space with the norm
[image: image]
where 1 ≤ p < ∞. [image: image] with the norm
[image: image]
where 1 ≤ p < ∞.
[image: image]
with norms
[image: image]
and
[image: image]
The embedding H1↪Lq is continuous and compact for q ∈ (2, 2*).
In (1.1), the Euler–Lagrange functional associated with Equation 1.1 is given by
[image: image]
For (u, v), constructing the variable like [16, 17], we have
[image: image]
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Since h is strictly monotone, it has a well-defined inverse function f and u = f(z), v = f(w). Note that
[image: image]
and
[image: image]
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Similarly, the same operation holds true for v = f(w).
Using the variable, (1.1) will become
[image: image]
where [image: image] and
[image: image]
on [0, ∞), f(0) = 0, and f(−t) = f(t) on [0, ∞). From the above facts, if (z, w) is a weak solution for (2.1), then [image: image] is a weak solution for (1.1). The energy functional I(u, v) reduces to the following functional: 
[image: image]
There are some properties of [image: image] as follows, which are proved in [16, 17].
Lemma 2.1. The function f(t) and its derivative satisfy the following properties:
(i) [image: image] as t → 0;
(ii) f(t) ≤ |t| for any [image: image];
(iii) [image: image] for all [image: image];
(iv) [image: image] for all [image: image];
(v) there exists a positive constant C such that
[image: image]

(vi) [image: image] for all [image: image].
3 PROOF OF THEOREM 1.1
In this section, we will complete the proof of Theorem 1.1. First, we will recall the critical point theorem in [1], which is crucial for proving Theorem 1.1.
Theorem 3.1. Let [image: image] be a Banach space and [image: image] an interval. Consider the following family of C1-functionals on X:
[image: image]
with B being non-negative and either A(z, w) → +∞ or B(z, w) → +∞ as [image: image]. Assume that there are two points (z1, w1), (z2, w2) ⊂ X such that
[image: image]
where Γλ = {γ ∈ C([0, 1] × [0, 1], X): γ(0, 0) = (z1, w1), γ(1, 1) = (z2, w2)}. Then, for almost every λ ∈ L, there is a sequence {(zn, wn)} ⊂ X such that
(i) (zn, wn) is bounded;
(ii) Φλ(z, w) → cλ;
(iii) [image: image] in the dual X−1 of X.
Moreover, the map λ → cλ is non-increasing and continuous from the left.
Let λ ∈ L be an arbitrary but fixed value where [image: image] exists, where [image: image] is the derivative of cλ with respect to λ. Let {λn} ⊂ L be a strictly increasing sequence such that λn → λ. To prove Theorem 3.1, we will show the following lemmas:
Lemma 3.1. There exists a sequence of path {γn} ⊂ Γ and [image: image] such that
(i) [image: image] if γn(t1, t2) satisfies
[image: image]

(ii) [image: image].
Proof. The proof is standard; see [1].
Lemma 3.1. means that there exists a sequence of paths {γn} ⊂ Γ such that
[image: image]
for all [image: image] sufficiently large; starting from a level strictly below cλ, all the “top” of the path is contained in the ball centered at the origin of fixed radius [image: image]. Now, for α > 0, we define
[image: image]
where K is given in lemma 3.1.
Lemma 3.2. For all α > 0,
[image: image]
Proof. We assume that (3.2) does not hold. Then, there exists α > 0 such that for any (z, w) ∈ Fα, we obtain
[image: image]
Without loss of generality, we can assume that
[image: image]
A classical deformation argument then says that there exists ϵ ∈ [0, α] and a homeomorphism η: X → X such that
[image: image]
[image: image]
[image: image]
Let {γn} ⊂ Γ be the sequence obtained in lemma 3.1. We choose and fix [image: image] sufficiently large in order that
[image: image]
By lemma 3.1 and (3.4), η(γm) ∈ Γ. Now if (z, w) = γm(t1, t2) satisfies
[image: image]
then (3.5) implies that
[image: image]
If (z, w) = γm(t1, t2) satisfies
[image: image]
by lemma 3.1 and (3.7), we obtain (z, w) such that [image: image] with Φλ(z, w) ≤ cλ + ϵ. From (3.6), we obtain
[image: image]
Combining (3.8) with (3.9), we obtain
[image: image]
which contradicts the variational characterization of cλ.
Next, we prove theorem 3.1.
Proof. Since lemma 3.2 is true, there exists a PS sequence for Φλ at the level [image: image], which is contained in the ball of radius K + 1 centered at the origin. Hence, this is proved.
Let [image: image], we define the following energy functional:
[image: image]
where λ ∈ L. Moreover, let
[image: image]
and
[image: image]
Letting [image: image], then A(z, w) → +∞ and B(z, w) ≥ 0.
By a standard argument in [18, 19], we have the following Pohožaev-type identity:
Lemma 3.3. If (z, w) ∈ H1 is a critical point of (3.10), then (z,w) satisfies Pλ(z, w) = 0, where
[image: image]
Similar to [9], we obtain the following lemma:
Lemma 3.4. Φλ(z, w) meet the conditions as follows:
(i) there exists (z, w) ∈ H1 \{(0, 0)} such that Φλ(z, w) < 0 for all λ ∈ L;
(ii) for cλ, we obtain
[image: image]
for all λ ∈ L, where
[image: image]
Proof. (i) Let (z, w) ∈ H1 \{(0, 0)} be fixed. For any [image: image], we obtain
[image: image]
As [20, 21], we consider [image: image] such that 0 ≤ ϕ(x) ≤ 1, 0 ≤ φ(x) ≤ 1 and
[image: image]
By Lemma 2.1 (ii) and (v), we obtain
[image: image]
By Lemma 2.1 (ii),
[image: image]
It follows that Φλ(t1ϕ, t2φ) → −∞ as (t1, t2) → (+∞, + ∞). Thus, there exists (t3, t4) > 0 such that Φλ(t3ϕ, t4φ) < 0. Thus, taking (z, w) = (t3ϕ, t4φ), we obtain Φλ(z, w) < 0 for all λ ∈ L.
(ii) As [20, 22], there exists C > 0 and ρ1 > 0 small enough such that
[image: image]
for [image: image]. From Lemma 2.1 (iii) and Hölder inequality, we obtain
[image: image]
where α1 = α or [image: image], β1 = β or [image: image], and [image: image]. It can conclude that Φλ has a strict local minimum at 0, and hence, cλ > 0. 
By Theorem 3.1, it is easy to know that for every [image: image], there exists a bounded sequence (zn, wn) ⊂ H1 such that Φλ(zn, wn) → cλ and [image: image].
Lemma 3.5. If (zn, wn) ⊂ H1 is the sequence obtained above, then for almost every [image: image], there exists (zλ, wλ) ∈ H1 \{(0, 0)} such that Φλ(zλ, wλ) → cλ and [image: image].
Proof. Since (zn, wn) is bounded in H1, up to a subsequence, there exists (zλ, wλ) ∈ H1 such that
[image: image]
[image: image]
[image: image]
Since [image: image], by the Lebesgue dominated convergence theorem, it is easy to get [image: image], that is, [image: image], as shown in [23]. Similar to [22, 24, 25], there exists C > 0 such that
[image: image]
[image: image]
By Hölder inequality and Lemma 2.1(ii) and (iv), we deduce that
[image: image]
where [image: image] and [image: image]. Similarly, we obtain
[image: image]
Following (3.12), 3.13, 3.14, and .3.15, we obtain
[image: image]
which implies that (zn, wn) → (zλ, wλ) in H1. Thus, (zλ, wλ) is a non-trivial critical point of Φλ(z, w) with Φλ(zλ, wλ) = cλ.
Next, we prove Theorem 1.1.
Proof. At first, using Theorem 3.1, for arbitrary [image: image], there is a (zλ, wλ) ∈ H1 such that
[image: image]
[image: image]
By Lemma 3.5, we obtain
[image: image]
Thus, there exists [image: image] such that
[image: image]
[image: image]
Next, we prove that [image: image] is bounded in H1. From Lemma 3.4
[image: image]
it follows that
[image: image]
By Lemma 2.1 (v) and Sobolev inequality, it follows that
[image: image]
and
[image: image]
[image: image]
Therefore,
[image: image]
Combining (3.17) and (3.18), we infer that there exists C > 0 such that
[image: image]
Thus, there exists C > 0 independent of n such that
[image: image]
Next, we can assume that the limit of [image: image] exists. By Theorem 3.1, we know that λ → cλ is continuous from the left. Thus, we obtain
[image: image]
Then, by using the fact that
[image: image]
and
[image: image]
for any [image: image] and [image: image], it follows that
[image: image]
Up to a subsequence, there exists a subsequence [image: image] denoted by (zn, wn) and (z0, w0) ∈ H1 such that (zn, wn) ⇀ (z0, w0) in H1. Using the same method as Lemma 3.5, we will obtain the existence of a non-trivial solution (z0, w0) for Φ and Φ′(z0, w0) = 0 and Φ(z0, w0) = c1.
To find ground-state solutions, we need to define that
[image: image]
By Lemma 3.3, it follows that
[image: image]
According to (3.17), we have m ≥ 0. Let (zn, wn) be a sequence such that
[image: image]
Similar to Lemma 3.5, we can prove that there exists (z′, w′) ∈ H1 such that
[image: image]
which implies that [image: image] is a ground-state solution of (1.1). The proof is complete.
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