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Maxwell’s equations can be successfully extended to electromagnetic fields
having three complex-valued components rather than their usual three real-
valued components. Here the implications of interpreting the imaginary-valued
components as extending into time rather than space are explored. The
complex-valued Maxwell equations remain consistent with the original
Maxwell equations and the experimental results that they predict. Further, the
extended equations predict novel phenomena such as the existence of
electromagnetic waves that propagate not only through regular space but
also through a separate temporal space (time) that is implied by the three
imaginary components of the fields. In a vacuum, part of these imaginary
valued waves propagates through time at the same rate as an observer
stationary in space. While the imaginary valued field components are not
directly observable, analysis indicates that they should be indirectly detectable
experimentally based on secondary effects that occur under special
circumstances. Experimental investigation attempting to falsify or support the
existence of complex valued electromagnetic fields extending into time is
merited due to the substantial theoretical and practical implications involved.
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1 Introduction

Maxwell’s Equations, the foundation of classical electrodynamics, exhibit a number of
widely recognized asymmetries [1–3]. However, it has recently been shown that these
asymmetries can be lessened while still retaining consistency with known experimental
results by assuming that electromagnetic fields have three complex-valued components
rather than three real-valued components [4], as in

E �
Ex1 + i Et1

Ex2 + i Et2

Ex3 + i Et3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Ex + iEt (1.1)

where i � ���−1√
, and Ex �

Ex1

Ex2

Ex3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ and i Et � i
Et1

Et2

Et3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ are, respectively, the usual real-valued
electric field vector in the classic Maxwell equations, and new imaginary-valued quantities
that are assumed to exist in a transcendent part of space and to be unobservable. When
Maxwell’s equations are modified to accommodate such complex-valued fields, the
resulting formulation remains consistent with the original Maxwell equations, and with
existing experimental findings such as conservation of charge and observable energy. The
extended equations exhibit increased symmetry in the form of an electromagnetic duality
transformation, and they predict the existence of magnetic monopoles while also providing
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a novel explanation for why these monopoles have escaped detection
during past experimental searches.

This development of the complex-valued version of Maxwell’s
equations, solely within the scope of classical electromagnetism, was
largely guided by efforts to increase the symmetry of these equations
while retaining their simplicity and consistency with known
experimental results. The resulting complex-valued equations
increase the symmetry of the original Maxwell equations in two
ways (items one and two of Table 1). First, classical theory posits that
only electric charge exists, while the complex-valued theory
generalizes this by predicting that both electric and magnetic
charge exist. Second, previous discussions about the existence of
magnetic charge have largely assumed that magnetic monopoles are
separate entities from electric charge, while in contrast the complex-
valued equations take magnetic and electric charge to be one and the
same physical entity.

The novelty of these first two modifications can be clarified by
considering how the idea of hypothetical magnetic charge is typically
illustrated within classical electrodynamics by modifying Maxwell’s
equations to be

∇ · E � 1
ϵ0
ρ (1.2a)

∇× E � −μ0Jm − ∂B
∂t

(1.2b)
∇ · B � μ0ρm (1.2c)

∇× B � μ0 J +
1
c2

∂E
∂t

(1.2d)

[2,3,5,6], where there are two significant additions to the classic
Maxwell’s equations. Here E (B) is the 3-component electric
(magnetic) field, c is the speed of light, ϵ0 (μ0) is the permittivity
(permeability) of free space, ρ is the electric charge density, and J is
the volume electric current density. Eqs. 1.2 are an extension of
Maxwell’s equations where the normal zero on the right hand side of
Eq. 1.2c has been replaced with a “missing”magnetic charge density
ρm term, making it more symmetric with Eq. 1.2a, and a new
magnetic current density term Jm has been added on the right
side of Eq. 1.2b to make it more symmetric with Eq. 1.2d. While
these extended Maxwell’s equations exhibit a beautiful symmetry
that is formally represented by an electromagnetic duality
transformation, this symmetry is marred by the fact that
extensive experimental search efforts (using modern accelerators,
examining cosmic rays, etc.) have repeatedly failed to find the
magnetic monopoles implied by these extensions, suggesting to
many that such monopoles are rare and/or extremely massive, or
that they simply do not exist so that the extended Eqs. 1.2 are
inconsistent with experiment.

In contrast, if one introduces complex-valued
electromagnetic fields where the imaginary portions are taken
to be unobservable, one can replace density ρm with iρ and Jm
with i J in Eqs. 1.2, retaining the increased symmetry associated
with theorized magnetic monopoles, and explaining why these
monopoles have not been found experimentally: their magnetic
fields are purely imaginary-valued and not observable. Further,
this is achieved without introducing a new type of magnetic
charge: a single charged particle such as an electron or proton
serves as a source/sink for both real-valued and imaginary-valued
fields. This latter concept differs from that of a dyon which
similarly has both electric and magnetic fields [7], but unlike
what is considered here both of the dyon’s fields have only real-
valued components (dyons have also not been found in
experimental searches so far [8]).

While the earlier complex-valued Maxwell equations are more
symmetric and consistent with previous negative experimental
searches for magnetic monopoles, they are also limited in that they
continue to exhibit other asymmetries. It thus seems reasonable to
inquire whether there are additional ways to increase the symmetry of
these equations without leading to contradictions with known
experimental findings. If so, it is of interest to explore what the
implications of such an extension would be, and whether their novel
predictions might be verified or falsified. Specifically, another
asymmetry of Maxwell’s equations, and one that was retained in
the previously derived complex-valued version of these equations [4],
is the assumption of an underlying 4D spacetime reminiscent of
Minkowski spacetime, having one real-valued temporal dimension
but three complex-valued spatial dimensions.

To address this issue, here we investigate the implications of
increasing the symmetry of space and time in Maxwell’s equations,
expressing this as the temporal fields hypothesis:

Electromagnetic fields have imaginary-valued
components that extend into time.

This hypothesis is examined by interpreting the unobservable
imaginary components of electromagnetic fields as extending into
time, rather than into space as was done previously in [4]. Since each
electromagnetic field vector, like in Eq. 1.1, has three imaginary
components, this indicates that time, like space, must in some sense
be considered to be three dimensional (item three in Table 1),
placing space and time on a more symmetrical footing in that each
now has three dimensions. The specific motivation for proposing
multi-dimensional time is that the fields represented by the
complex-valued Maxwell equations have three imaginary
components, so taking them to exist in a 3D temporal space
leads to increased symmetry and simplicity of these equations. In
particular, this leads to the temporal fields hypothesis above that

TABLE 1 Maximizing the symmetry of Maxwell’s equations.

Asymmetries in Past Classical Theory Increased Symmetries in Current Theory

1. only electric charge exists both electric and magnetic charge exist

2. electrical and magnetic charge are separate entities qe and qm electric and magnetic charge are the same entity q

3. space is 3D, time is 1D both space and time are 3D

4. E, B extend into space but not time E, B extend into both space and time
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electromagnetic fields have components extending into time as well
as space (item 4, Table 1).

In the following, solely within the framework of classical
electromagnetism (no consideration of gravity or quantum physics),
the complex-valued Maxwell equations are described, some of their
basic properties are discussed, and two types of duality transforms are
given (Section 2). A Lorentz transformation generalized to a three
dimensional complex space C3 is described, a spacetime interval
generalized to C3 is shown to be invariant under this
transformation, and this interval is found to imply a universal speed
constraint on all physical entities (Section 3). A wave equation is then
derived in the usual way but now from the complex valued Maxwell
equations, resulting in the prediction that the imaginary components of
electromagnetic wavesmove through time, and surprisingly do so at the
same speed in a vacuum as an observer at rest in space does (Section 4).
While the imaginary components of complex electromagnetic fields are
unobservable directly, falsifying or supporting the temporal fields
hypothesis experimentally should be possible by detecting indirect
effects that the imaginary components produce under special but
realizable conditions (Section 5). A brief assessment and discussion
of limitations is given (Section 6).

2 Complex-valued
electromagnetic fields

In this section, a version of Maxwell’s equations accommodating
complex-valued electromagnetic fields extending into time is
described, and two duality transformations are given to indicate
more formally the resulting increased symmetry.

2.1 Accommodating complex fields with
temporal imaginary-valued components

The complex-valued Maxwell equations considered here are
given by:

∇ · E � 1
ϵ0
ρ (2.1a)

∇× E � −icμ0 J −
∂B
∂t

(2.1b)
∇ · B � ic μ0ρ (2.1c)

∇× B � μ0 J +
1
c2

∂E
∂t

(2.1d)

These equations indicate that both electric and magnetic charge
exist, and that they are the same entity (items 1, 2 in Table 1). Here E
(B) is the complex electric (magnetic) field in C3, bold font indicates
3-component column vectors, and SI units are assumed. While these
equations superficially appear to be similar to Maxwell’s original
equations extended as in Eqs. 1.2, they differ in very substantial
ways. The electric and magnetic field vectors E and B that appear
here have complex-valued components,

E �
Ex1 + i Et1

Ex2 + i Et2

Ex3 + i Et3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Ex + iEt B �
Bx1 + i Bt1

Bx2 + i Bt2

Bx3 + i Bt3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Bx + iBt (2.2)

where

Ex �
Ex1

Ex2

Ex3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ Et �
Et1

Et2

Et3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ Bx �
Bx1

Bx2

Bx3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ Bt �
Bt1

Bt2

Bt3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2.3)

are vectors in 3D real-valued space R3. These fields are assumed to
be functions of location in a spacetime whose points are
represented by s � x + ic t, where x and t are both 3D real-
valued vectors and the latter is associated with time. However,
the real valued variable t that appears in ∂t in Eqs. 2.1 remains the
familiar clock time–its relation to the vector t is described in
Section 3. Vectors Ex and Bx are the usual electric and magnetic
fields as they currently appear in Maxwell’s original equations. In
contrast, Et and Bt in Eq. 2.2, both lying in R3, indicate that
electromagnetic fields have imaginary-valued portions i Et and i
Bt of their components that are unobservable and that are
interpreted as extending into time.

It is helpful to introduce some terminology and concepts that
facilitate visualization of these fields. Their real field portions Ex and
Bx are said to lie in real-valued space, or r-space, that corresponds to
familiar and observable 3D space used by the classical Maxwell
equations. In contrast, Et and Bt are taken to exist in a separate
temporal space or t-space that is tightly linked to the notion of clock
time t. To facilitate visualizing these fields, it helps to think of the
complex-valued fields E and B in two different but equivalent ways.
First, we can view each of their three field components as lying in the
complex (Argand) plane, as shown on the left in Figure 1.
Alternatively, we can think of the real and imaginary portions of
fields E and B as lying in two 3D spaces, as illustrated on the right in
Figure 1. The latter viewpoint is adopted here–it makes the
observable vs. unobservable distinction between real-valued
spatial and imaginary-valued temporal components explicit. The
classical Maxwell equations based on Ex and Bx assume the familiar
3D r-space that is observable, while the imaginary portions Et and Bt

of the complex fields E and B lie in unobservable t-space, which is
called “temporal” to emphasize its relationship to familiar clock time
t. The formulation of electromagnetism considered here only
hypothesizes that electromagnetic fields extend into t-space; it
does not assume a priori that matter, charge or any other
physical entities extend into t-space.

FIGURE 1
Two different geometric conceptions of the complex-valued
field E (analogous comments apply to B). On the left, each component
of E lies in a complex-valued plane. On the right, E is viewed as the sum
of 3D real-valued Ex in r-space and 3D imaginary-valued i Et in
t-space. Vector Et itself is real-valued. Red indicates imaginary-valued
axes and components.
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As with Eqs. 1.2b, 1.2c which include hypothetical magnetic
monopoles, Eqs. 2.1b, 2.1c include new terms on their right sides
that imply the existence of magnetic charge and current, increasing
the underlying symmetry. However, unlike Eqs. 1.2, these terms are
purely imaginary, thus explicitly implying the existence of imaginary
components in the fields E and B. Further, these terms differ in using
ρ and J rather than ρm and Jm as in Eqs. 1.2, and therefore they do
not imply the existence of a novel kind of magnetically
charged particle.

Eqs. 2.1 also differ from the classic Maxwell’s equations in that
the divergence ∇· and curl ∇× operations generalized to complex
fields are not the typical operators that one might expect. These non-
standard reduction vector operators provide convenient
abbreviations whereby vector product operations in a 3D
complex space C3 are “reduced” to a linear sum of the standard
correspondingR3 operations in r-space and t-space. If C � Cx + iCt

and C′ � C′
x + iC′

t are two arbitrary vectors in C3 where Cx , Ct , C′
x

and C′
t all lie in R3, the reduction dot product · and cross product ×

of C and C′ in C3 are defined to be

C · C′ � Cx · C′
x + iCt · C′

t (2.4a)
C × C′ � Cx × C′

x + iCt × C′
t (2.4b)

where the vector products on the right side of these equations are
the usual ones in R3. The vector product being defined on the left
side of each of these equations acts on vectors in C3 and, in
general, returns a complex number. The complex-valued dot
product defined in Eq. 2.4a does not qualify as an inner
product, while the complex-valued cross product in Eq. 2.4b
avoids the well-known challenges that occur in generalizing the
cross product to spaces other than R3 [9,10]. With this notation,
the reduction differential operator ∇ in C3 is defined as
∇ � ∇x + i 1

c∇t, where

∇x �

∂
∂x1

∂
∂x2

∂
∂x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∇t �

∂
∂t1

∂
∂t2

∂
∂t3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.5)

The factor 1
c in ∇ occurs because points s � x + ic t in the underlying

spacetime use c to scale t-space dimensions into units of meters, so
the t-space components of ∇ are in effect given by ∂

∂(ctj) � 1
c

∂
∂tj
.

Let C � Cx + iCt be a continuous differentiable vector field in
C3 (such as E or B). Then, following the above, the reduction
divergence and curl used in Eqs. 2.1 are defined to be

∇ · C � ∇x · Cx + i 1
c∇t ·Ct ∇× C � ∇x × Cx + i 1

c∇t× Ct (2.6a, b)
and similarly, the reduction gradient and Laplacian are defined to be

∇T � ∇xTx + i
1
c
∇tTt ∇2C � ∇ · ∇C � ∇2

xCx + i
1

c2
∇2
tCt (2.6cd)

where T � Tx + i Tt is a continuous differentiable scalar field in
C3. In the absence of imaginary components, these operations
simplify to their usual definitions in 3D real space. It is
straightforward but tedious to show that many of the usual
relations for  in R3, such as

∇ · ∇× C( ) � 0 ∇× ∇T( ) � 0 ∇× ∇× C( ) � ∇ ∇ · C( ) − ∇2C

(2.7abc)
continue to hold for∇ inC3 as defined above, as can be confirmed by
using straightforward algebraic manipulations and well-known
identities in R3.

The complex-valued Maxwell equations 2.1 introduced here
within classical electrodynamics differ very substantially from
those described in past work. For instance, previous work based
on analogies between Dirac’s equation for the electron and
Maxwell’s equations differs in that it uses complex fields E ± icB

and vectors
E
icB

( ) having six components, where E and B are the

usual 3D real-valued fields [11,12]. Other recent past work has
proposed complex forms of Maxwell’s equations where, unlike here,
magnetic charge is often incorporated as ρ � ρe + i ρm and J = Je + i
Jm, with ρm and Jm being different entities than ρe and Je and these
are sometimes related to previously proposed magnetic monopoles
such as Dirac’s [13–16]. The work done here also differs in a major
way from that in [4] where the imaginary field components were
interpreted as existing in space rather than in time as is done here.
This temporal interpretation is a much more challenging prospect: it
involves aligning measurable clock time t with events in t-space,
assessing the implications of special relativity, and interpreting the
properties of electromagnetic waves propagating through time as
well as space. None of this past work has considered the central novel
concept proposed here - that electromagnetic fields have
components extending into time.

2.2 Properties and duality transformations

The complex-valued Maxwell’s equations 2.1 exhibit a number
of basic properties, including the implication that, unlike the fields,
both ρ and J do not have intrinsic imaginary components. If they
did, that would make Eqs. 2.1 inconsistent with experimental data.
For example, if ρ is replaced by ρ � ρx + i ρt in Eq. 2.1c, this would
imply that x · Bx � −cμ0ρt, which is inconsistent with known
observations that ∇x · Bx � 0 always, so it must be that iρt is
always zero. Further, the complex valued Eqs. 2.1 continue to
imply a continuity equation ∇ · J � −∂ρ

∂t, as can readily be
demonstrated by taking the divergence ∇· of both sides of Eq.
2.1d and using relation Eq. 2.7a.

An intriguing implication of allowing electromagnetic fields to
have imaginary components is that it permits the existence of
magnetic charge while simultaneously explaining why magnetic
monopoles have not been detected in numerous past experiments
that have searched for them [17]. For theoretical reasons, many
physicists continue to believe that magnetic monopoles probably
exist in spite of the negative experimental evidence. As a result, a rich
variety of possible types of magnetic monopoles have been proposed
over the years, including Dirac’s string model [18], ‘t Hooft-
Polyakov monopoles [19,20], the Wu-Yang fiber bundle model
[21], two-photon models [22,23], and others [24,25]. Eqs. 2.1
represent a novel solution to this issue by implying the existence
of a new type of magnetic monopoles. Eq. 2.1c entails that ∇t ·
Bt � 1

ϵ0 ρ and thus indicates that charge serves as a source/sink for
radially directed magnetic fields Bt that lie in imaginary-valued
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t-space. In other words, charges act as both electric and magnetic
monopoles, serving as sources (positive electric charges as N poles)
and sinks (negative charges as S poles) for unobservable imaginary-
valuedmagnetic fields in t-space. Thus, in the theory developed here,
we know that particles carrying a magnetic charge are the same as
those carrying an electric charge, that the predicted magnetic
monopoles are widespread (every electron, proton, etc.), their
existence is consistent with past experimental negative search
results, they come in two types, they are stable particles having
relatively low mass, they are not dyons [7], they are conserved, etc.

Central to the issue of symmetry, the complex-valued Maxwell
Eqs. 2.1, like Eqs. 1.2, clearly exhibit increased symmetry when
compared to the original Maxwell equations, the difference relative
to Eqs. 1.2 being that the additional terms in Eqs. 2.1b, 2.1c are
imaginary rather than real valued and thus do not contradict
existing experimental data. This increase in symmetry is manifest
as an electromagnetic duality transformation involving the electric
and magnetic fields of the complex-valued Maxwell equations
given by

E′ � cB, B′ � −1
c
E, ρ′ � iρ, J′ � i J (2.8)

under which Eqs. 2.1 are invariant. As an example, when this duality
transformation is applied to Eq. 2.1a, it gives

∇ · E′ � c∇ · B � ic2μ0ρ � ic2μ0 −iρ′( ) � 1
ϵ0
ρ′ (2.9)

where c2 � (ϵ0μ0)−1 is used on the last step. Analogous results occur
when this transformation is applied to the remaining Eqs. 2.1.

Further, since Eqs. 2.1 involve complex-valued fields, they each
represent two sets of equations, one set in r-space (real-valued,
observable) and the other set in t-space (imaginary-valued,
unobservable). For instance, writing out Eq. 2.1c gives

∇ · B � ∇x + i
1
c
∇t( ) · Bx + iBt( ) � ∇x · Bx + i

1
c
∇t · Bt � ic μ0ρ.

(2.10)
and equating the real and imaginary parts of this gives two equations

x · Bx � 0 ∇t · Bt � 1
ϵo
ρ (2.11a, b)

where (omitting the implicit i on both sides of Eq. 2.11b) each is in
R3, the first involving r-space, the second involving t-space.
Applying this procedure to all of the complex-valued Maxwell
equations results in four r-space electrodynamics equations given by

∇x · Ex � 1
ϵ0
ρ ∇x × Ex � −∂Bx

∂t
(2.12a, b)

∇x · Bx � 0 ∇x × Bx � μ0 J +
1

c2
∂Ex

∂t
(2.12c, d)

and four t-space electrodynamics equations given by

∇t · Et � 0 ∇t × Et � − 1
ϵo

J − c
∂Bt

∂t
(2.13a, b)

∇t · Bt � 1
ϵo
ρ ∇t × Bt � 1

c

∂Et

∂t
(2.13c, d)

The first set of these equations (2.12) are the original asymmetric
Maxwell equations in r-space where the symbols Ex and Bx represent

the familiar electromagnetic fields. These equations show that the
complex-valued Maxwell equations truly generalize the originals,
and thus that they are consistent with the known experimental
results of classical electrodynamics in physically observable r-space.
They also do not imply new observable phenomena in r-space that
are experimentally absent. The second set of these equations (2.13)
describe the imaginary-valued unobservable fields Et and Bt in
t-space. Comparing Eqs. 2.12 to 2.13, it becomes clear that these
equations are symmetric with respect to each other if one
interchanges the roles of the electric and magnetic fields. This
symmetry is manifest by a cross-domain duality transformation
given by

x0c t Ex0cBt Bx0 − 1
c
Et (2.14a, b, c)

that maps the set of equations Eqs. 2.12 into Eqs. 2.13, and vice versa
via the inverse transformation. The first rule x0c t of this cross-
domain transformation implies that ∇x 0

1
c∇t because this rule

indicates that the individual components ∂
∂xj of ∇x transform as

∂
∂xj0

∂
∂(ctj)0

1
c

∂
∂tj. For instance, applied to Eq. 2.12a the cross-

domain transformation gives

∇x · Ex � 1
ϵ0
ρ 0

1
c
∇t · cBt( ) � 1

ϵ0
ρ 0 ∇t · Bt � 1

ϵ0
ρ

The resulting equation is Eq. 2.13c, and similar applications of these
transformation rules to the remaining Eqs. 2.12 give the
remaining Eqs. 2.13.

3 Interpreting t-space and the
imaginary field components

The extension of Maxwell’s equations to encompass complex-
valued electromagnetic fields (Eqs. 2.1) leaves open the question of
how to interpret t-space and the imaginary components of the
electromagnetic fields.

3.1 The conceptual issues

How should one interpret the imaginary components of fields E
andB that extend into t-space? One possibility is to consider space to
be three dimensional, with each dimension being complex-valued
(six real-valued dimensions), and time to be an additional separate
single dimension. This is what was done in the previous analysis [4],
and it represents an approach where time remains formulated in a
way that is consistent with most of the existing classical
electrodynamics literature. However, such an approach implies a
spacetime with a total of seven real-valued dimensions, and a
marked asymmetry in the nature of space (three complex
dimensions) and time (single real-valued dimension). An
alternative possibility, the one considered here, is that t-space is
intimately related to time rather than to space. Clock time t is taken
as derived from movement through a 3D t-space, motivated by the
3D nature of the imaginary components of the electromagnetic fields
which we now accordingly interpret as extending into time. The
observable clock time t that we measure is no longer taken to be a
dimension of the underlying spacetime because t is derivative: it

Frontiers in Physics frontiersin.org05

Reggia 10.3389/fphy.2024.1388397

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1388397


corresponds to the extent of one’s movement along a trajectory
through an unobservable underlying 3D t-space. From this
perspective, the imaginary components of the complex
electromagnetic fields are viewed as extending into time rather
than space, and spacetime has six real-valued dimensions.

The apparently radical notion that time could in some sense be
three dimensional initially sounds implausible to some. One
dimensional clock time is the basis of the existing laws of
classical physics, it is measurable, and it is compatible with our
subjective experience of the passage of time (although subjective
passage of time has significant differences from passage of clock time
[26]). Classical electromagnetism, for example, is founded on the 4D
spacetime of special relativity (4-vectors in Minkowski spacetime)
having three spatial and one time dimension. However, there have
been numerous past proposals in the literature arguing that time
may be multi-dimensional based on a remarkably broad range of
differing motivations. For example, viewing time as multi-
dimensional has been proposed to have advantages in
investigating superluminal Lorentz transformations [27], special
relativity [28], unification of quantum mechanics and gravity
[29], electromagnetism [30], electroweak interactions [31],
development of two-time physics [32,33], cosmological modeling
[34], Dirac’s quantization condition [35,36], and quantum gravity
[37]. Importantly, the one dimensional time that we measure with
clocks and experience subjectively does not preclude the possibility
that this measure is based on an underlying 3D “temporal space”
that is not directly observable.

As described in the Introduction, the current theoretical analysis
explores the implications of maximizing the symmetry of Maxwell’s
equations without contradicting known experimental findings.
From this perspective there are two factors related to symmetry
that motivate considering the possibility that time is three
dimensional, and that t-space represents time rather than being a
part of space. First, assuming that time has three dimensions like
space increases symmetry by placing time dimensionality on an
equal footing with that of space (Table 1, item 3). It also simplifies
the representation of complex spacetime in that, rather than
spacetime having three complex spatial dimensions and one time
dimension (overall seven real-valued numbers), it simply has three
complex spacetime dimensions (6 real-valued numbers). Thus, the
dimensionality of spacetime becomes both more symmetric and
simpler in the complex-valuedMaxwell equations than it would be if
one takes t-space to be an aspect of space rather than time as was
done in [4]. Second, taking t-space to be the underlying basis of time
increases the symmetry of electromagnetic fields in the sense that
they extend not only into space but also into time (Table 1, item 4). If
one accepts the view of special relativity that space and time truly
form an integrated spacetime, it is both puzzling and asymmetric
that, as currently conceived, electromagnetic fields only extend into
space and not into time.

3.2 The underlying spacetime and
spacetime velocity

In considering the possibility that t-space represents the
fundamental underlying source of our experience of time, and to
lay the groundwork for possible experimental testing of the temporal

fields hypothesis (Section 5), we next consider the underlying
spacetime implicit in Eqs. 2.1 and characterize how clock time t
relates to 3D t-space. As described above, spacetime structure overall
is represented here as a 3D complex valued space C3, with the real-
valued r-space representing familiar 3D physical space, and the
imaginary-valued t-space representing a 3D temporal space, the
latter being inaccessible to us via direct experiment. Specifically, the
occurrence of an event at a location s in C3 spacetime is given via
cartesian components as

s ≡
x1 + ict1
x2 + ict2
x3 + ict3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � x + ict (3.1)

where x �
x1

x2

x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ and t �
t1
t2
t3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ are both vectors in R3. Each time

component tj is measured in seconds, so c tj in Eq. 3.1 is measured in
meters, just like xj. The imaginary portion ic t of s lies in the separate
imaginary-valued t-spacewhere the individual quantities t1, t2, and t3
are not directly observable. This unobservability of individual tj
values relates to the differences between physical space and time. For
example, we can move in any direction in space but are confined to
move only “forward” in time, and we can directly perceive events in
any direction in space but cannot directly observe events in the
future or past. These differences between space and time are widely
recognized in physics, psychology, and philosophy, as are that time
is poorly understood, that subjective and objective passage of time
differ, and that time differs from space [38–42].

In interpreting Eqs. 2.1 and Eq. 3.1 in what follows, it is very
important for one to clearly distinguish an entity’s 3D position
vector t in t-space from our familiar measurable notion of 1D clock
time t. We continue to interpret measured clock time duration dt in
the usual way, and thus ∂t in the complex Maxwell Eqs. 2.1 has the
same meaning as in the original Maxwell equations. However, it
remains to make explicit how a 1D measurable time duration dt
relates to unobservable t-space. In the theory presented here, the
measured passage of clock time in an inertial reference frame S is
assumed to be linearly proportional to the extent (“distance”) that an
entity moves along a 1D trajectory in S’s 3D t-space, just as we
associate a 1D distance with the extent that an object moves along a
trajectory through S’s 3D r-space.

Let ds be the differential spacetime displacement between two
arbitrary infinitesimally separated events s and s9 occurring in an
inertial reference frame S. Specifically,

ds �
dx1 + ic dt1
dx2 + ic dt2
dx3 + ic dt3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � dx + ic dt (3.2)

where dx1 � x1
′ − x1, dt1 � t1′ − t1, etc., and define

dx| | � dx1
2 + dx2

2 + dx3
2( ) 1

2 (3.3a)
dt| | � dt1

2 + dt2
2 + dt3

2( ) 1
2 (3.3b)

to be the distances occurring in r-space and t-space between those
two events. (To avoid using numerous parentheses, here and
throughout the remainder of this paper, differentiation d is given
precedence over raising a quantity to a power, so dt12 is an
abbreviation for (dt1)2, etc.) We designate the measured distance
dx between the two events in frame S’s observable r-space in the
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usual fashion to be dx � |dx| as defined in Eq. 3.3a. For Eq. 3.3b, we
analogously adopt the following temporal correspondence between
the measured clock time dt separating the two events in frame S’s
t-space and the distance separating the two events in t-space:

dt � dt| | (3.4)
The temporal correspondence of Eq 3.4 is an explicit

assertion defining how an increment of familiar clock time dt
corresponds to the “distance” |dt| along a trajectory through S’s
t-space, just as dx relates to the distance |dx| along a trajectory
through S’s r-space.1

We next define the velocity v of an arbitrary object located at s in
an inertial frame S to be

v � ds
dt

� dx
dt

+ ic
dt
dt

� vx + i vt (3.5)

where again t is familiar clock time observed in S and

vt � c
dt
dt

(3.6)

is an apparent temporal velocity measured in m/s. Note that the
quantity dt

dt here is the ratio of an infinitesimal displacement dt in S’s
t-space occurring during an infinitesimal clock time period dt
observed in S. In other words, as conceived in the theory
presented here, any physical object is taken to be moving along
its worldline in spacetime, not just with its conventional velocity vx
in r-space, but also with a velocity vt in the t-space of S. Velocity vt
will be discussed further and a second type of temporal velocity
designated vτ will be defined in Section 3.4 after first considering a
restricted Lorentz transformation.

3.3 Lorentz transformation

It is fairly straightforward to extend the standard 4 × 4 Lorentz
transformation matrix to a 6D spacetime which, unlike here,
incorporates a 3D real-valued time. For example, [28] gives a 6 ×

6 transformation matrix Λ � Q R
R Q

[ ] for real-valued 6-vectors

[x1, x2, x3, ct1, ct2, ct3]T where Q �
γ 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ and

R �
−γvx/c 0 0

0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, assuming appropriate alignment of reference

frame axes, expressed in the notation used here. We now specify an
analogous transformation L for the C3 spacetime used here based on
a single 3 × 3 complex-valued matrix L.

To express a restricted Lorentz transformation, consider the
perspective of an observer at rest in inertial frame S as an object

(clock) at rest in another inertial frame ~S moves with constant
velocity v � vx + i vt as measured in S. Let s � x + ic t be the
coordinates of an event observed in S and let ~s � ~x + ic ~t be the
corresponding coordinates of the same event as observed in ~S. As
is commonly done, orient the r-space axes to be in parallel and let
~S move along a shared x1 ~x1 axis with speed vx , letting t � ~t � 0
when the origins are co-located in r-space. Orient the t-space axes
analogously so that ~S moves along a shared t1~t1 axis with speed vt ,
letting x � ~x � 0 when the origins are co-located in t-space. With
this selection of axes, a restricted Lorentz transformation (or
boost) between coordinate systems can be expressed as

Ls � Lx + ic L*t (3.7)
where the matrix L is given by

L �
γ − iβγ 0 0

0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (3.8)

Here β � vx/c and γ � (1 − β2)−1
2, and the superscript * indicates the

complex conjugate. Note that β is defined in terms of vx as usual.
The restricted Lorentz transformation L in Eq. 3.7 is the same as

the Lorentz transformation in 4-vector spacetime under these
conditions, as follows. Applied to the coordinates s of an event in
S, L gives the coordinates ~s = Ls of that same event in ~S as

~s � Lx + ic L*t �
γ − iβγ 0 0

0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x1

x2

x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + ic
γ + iβγ 0 0

0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ t1
t2
t3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(3.9)

�
γx1 − iβγx1 + icγt1 − βcγt1

x2 + ict2
x3 + ict3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � γ x1( − βct1)
x2

x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

+ ic

γ t1 − β

c
x1( )

t2

t3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is equivalent to

~x1 � γ x1 − βct1( ) ~t1 � γ t1 − β

c
x1( ) (3.10)

~x2 � x2 ~t2 � t2

~x3 � x3 ~t3 � t3

These latter six equations are identical to the existing 4-vector
Lorentz transformation because ~t � ~t1 in the context of the axis
orientations selected above. Accordingly, the usual implications
of the Lorentz transformation (relativity of simultaneity, length
contraction, time dilation, etc.) continue to apply within the
complex spacetime considered here.

3.4 A universal spacetime speed constraint

The natural generalization of the standard spacetime interval in the
theory presented here is now shown to be invariant under a Lorentz
transformation. Let s and s′ be the coordinates of two infinitesimally
separated events in a reference frame S and let ds be as defined earlier
(Eq. 3.2). Define the spacetime interval ds2 associated with s and s′ to be

1 Multidimensional time raises the issue of whether closed time-like loops

might be possible in flat spacetime. Here it is simply assumed that such

closed curves do not occur in 3D t-space, but this needs further analysis.

Even if they are possible, the temporal correspondence of Eq. 3.4 implies

that there would not be a closed loop involving measurable clock time t,

and thus no disruption of causality as we experience it.
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ds2 � c2dt1
2 + c2dt2

2 + c2dt3
2 − dx1

2 − dx2
2 − dx3

2

� c2 dt| |2 − dx| |2
� c2dt2 − dx2 (3.11)

where again, dxj � x′
j − xj and dtj � t′j − tj, and the last two

equalities follow from Eqs. (3.3), (3.4). Then the interval d~s2 in
another inertial frame ~S for the Lorentz transformed vectors ~s and ~s′
of s and s′, respectively, is

d~s2 � c2 d~t
2 − d~x2 (3.12)

� c2 γ t1
′ − β

c
x1
′( ) − γ t1 − β

c
x1( )[ ]2

+ c2dt22 + c2dt23

− γ x1
′ − βct1

′( ) − γ x1 − βct1( )[ ]2 − dx2
2 − dx2

3

� c2 dt21 + dt22 + dt23( ) − dx2
1 + dx2

2 + dx2
3( ) � c2 dt2 − dx2

It follows that d~s2 � ds2, so ds2 is invariant under the Lorentz
transformation of Eq. 3.7, analogous to the invariance of the interval
in standard 4-vector spacetime.

We now consider further the velocity and speed with which any
physical entity such as a particle is moving through the t-space of
inertial frame S. First, note that while we can observe the individual
components of vx , we cannot directly observe the individual
components of velocity vt since the latter are based on the
unobservable (imaginary-valued) components of t. However, we can
determine the apparent speed vt with which an object is moving
through t-space. Recalling the definition vt � c dt

dt of Eq. 3.6, the
temporal correspondence dt � |dt| of Eq. 3.4 implies that the
apparent speed vt with which the particle is moving through t-space
is given by

vt � vt| | � c
dt| |
dt

� c
dt

dt
� c (3.13)

regardless of the particle’s speed vx � |vx| in r-space. This makes sense
in that an observer at rest in frame S’s r-spacemeasures the difference in
clock times (and hence t-space separation, according to Eq 3.4) of two
events in S traversed by the particle using synchronized resting clocks
located in S’s r-space at those two events. In other words, from the
viewpoint of observers at rest in S the moving particle is going through
time at the same rate as an observer. However, Eq. 3.13 fails to capture
the rate at which time is actually passing from the viewpoint of the
moving particle (time dilation).

Accordingly, we now define a particle’s veridical temporal
velocity vτ that differs from its apparent velocity vt , and that
facilitates identifying potential experimentally testable predictions
of the temporal fields hypothesis (Section 5). Let frame ~S be the
proper inertial reference frame for a particle moving through frame
S’s r-space, so ~t (designated henceforth as τ) is the proper clock time
measured by the moving particle at rest in ~S, and ~t (designated as τ)
is the particle’s position in ~S’s t-space. The veridical temporal
velocity for the particle is defined to be

vτ � c
dτ

dt
(3.14)

where dτ here is a differential displacement in ~S’s 3D t-space while dt
is a real-valued clock time increment in the frame S. It follows that
the veridical speed with which the particle is viewed as moving by an
observer in S is given by

vτ � vτ| | � c
dτ| |
dt

� c
dτ

dt
� c

γ
(3.15)

where the last equality follows because, according to the Lorentz
transformation of Eq. 3.7, we have dt � γdτ, so dτ

dt � 1/γ. The speed
vτ tells one the amount of proper time dτ that passes for the moving
particle during an amount of clock time dt that passes for a resting
observer in frame S. Stated more informally, speed vτ represents how
rapidly the moving particle is aging from the viewpoint of an
observer at rest in S’s r-space.

Now consider an object such as a clock moving at an
arbitrary but fixed velocity vx through the r-space of inertial
reference frame S. Let this moving clock generate two events
located at s and s′ (e.g., the clock leaves a mark in r-space at two
different times) that are separated by distance dx and time dt as
measured in S. Then the interval between the two events is given
by ds2 � c2dt2 − dx2 as recorded in S. However, in a reference
frame ~S in which the clock is at rest, the corresponding interval is
given by d~s2 � c2d~t

2 − d~x2 � c2d~t
2 � c2dτ2 since ~S is the proper

reference frame for the moving clock so d~x2 � 0. By the
invariance of the interval (Eq. 3.12), these two quantities ds2

and d~s2 must be equal, so c2dτ2 � c2dt2 − dx2, from which
algebraic manipulations give

dx

dt
( )2

+ c
dτ
dt

( )2

� c2. (3.16)

Here the first term on the left is v2x, the squared speed at which the
clock is moving through the r-space of S, and the second term is v2τ
by Eq. 3.15. Substituting the quantities vx and vτ into Eq. 3.16 gives
the following universal speed constraint

v2x + v2τ � c2 (3.17)
for the theory presented here. While we cannot in general directly
observe the individual components of vτ , if we know an object’s
speed vx through frame S’s r-space, we can easily determine the
object’s veridical speed vτ based on Eq. 3.17. There is a well-
known analogous result in standard 4-vector special
relativity, e.g., [43].

The universal speed constraint indicates that any object is
never at rest in the spacetime of an inertial reference frame,
consistent with our experience of constantly moving through
time even when we are at rest in a reference frame’s r-space. It
further implies that there is an upper limit of c on the speed vx
that any object can have in r-space, as is well known, and also on
the speed vτ that any object can have in t-space, i.e., that 0≤ vx ≤ c
and 0≤ vτ ≤ c. Conceptually, the universal speed constraint Eq.
3.17 can be visualized as caricatured in Figure 2 which plots vx
and vτ against each other. According to the universal speed
constraint, any object “at rest” in inertial frame S having
speed vx = 0 in S’s r-space must have an associated veridical
temporal speed vτ = c (Figure 2A). At the other extreme,
according to the universal speed constraint, photons traveling
through frame S’s r-space with speed vx = c must have an
associated veridical temporal speed vτ = 0 (Figure 2B),
consistent with relativistic time dilation effects in the limit as
vx → c. In the general situation of a particle moving at an
intermediate speed vx in S’s r-space with 0 < vx < c, the
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particle has a speed of vτ = c/γ (Figure 2C), also consistent with
time dilation in special relativity.

4 Imaginary-valued electromagnetic
wave components propagate
through time

One can derive from the complex-valued Maxwell’s equations
above not only that electromagnetic waves consistent with those of
classical electromagnetism exist, but that unlike our current conception
of such waves, they propagate into t-space as well as r-space. In other
words, the complex-valued equations predict that the imaginary
components of electromagnetic waves propagate through time. This
is a striking prediction that has no parallel in contemporary
electrodynamics and may play an important role in experimentally
testing the temporal fields hypothesis, as described in the next section.

To derive a wave equation in a vacuum without charge present,
take the reduction curl ∇× of Eq. 2.1b’s left side and use Eq. 2.7c
to give

1( ) ∇× ∇× E( ) � ∇ ∇ · E( ) − ∇2E � −∇2E

since ∇ · E � 0 in the absence of charge. Similarly, taking the curl ∇×
of Eq. 2.1b’s right side results in

2( ) − ∇×
∂B
∂t

� − ∂
∂t

∇× B( ) � − ∂
∂t

1
c2

∂E
∂t

( ) � − 1
c2

∂2E
∂t2

Equating (1) and (2) and carrying out a similar procedure for B
starting from Eq. 2.1d gives

∇2E � 1

c2
∂2E
∂t2

and ∇2B � 1

c2
∂2B
∂t2

(4.1a, b)

as complex-valued wave equations that are analogous to those for
the original Maxwell equations. Once again equating the real and
imaginary parts of these equations gives two sets of wave equations,

∇2
xEx � 1

c2
∂2Ex

∂t2
∇2
xBx � 1

c2
∂2Bx

∂t2
(4.2a, b)

and

∇2
tEt � ∂2Et

∂t2
∇2
tBt � ∂2Bt

∂t2
(4.3a, b)

The first two of these equations, Eqs. 4.2, are the familiar wave
equations for Ex and Bx in empty r-space, where the denominator
of the first factor on their right hand sides is the squared speed
|dxdt|2 with which the wave is propagating through r-space, and
hence |dxdt| � c in m/s. Since velocity vx � dx

dt, the speed of wave
propagation in r-space is vx � |vx| � |dxdt| � c m/s, consistent with
what is observed experimentally. The second two equations, Eqs.
4.3, make it explicit that the imaginary portions of
electromagnetic waves also propagate through time, not just
space. Analogous to the situation in r-space, the first implicit
factor on the right hand sides of Eqs. 4.3 is the reciprocal of the
squared rate |dtdt|2 with which the wave is propagating through
t-space, and hence |dtdt| � 1 s/s. As defined in Eq. 3.6, in t-space the
apparent temporal velocity vt � c dt

dt scales this quantity by c, so
the speed of wave propagation in t-space is vt � |vt | � c|dtdt| � cm/
s, and thus electromagnetic waves also propagate through empty
t-space with speed c m/s.

To illustrate a simple solution to the full wave equation Eq.
4.1a in C3, imagine that a single isolated source emits a
monochromatic electromagnetic wave pulse (e.g., light) that
generates a hyper-spherical wave propagating through r-space
and t-space. When sufficiently distant from the source, a portion
of this wave can be approximated by a monochromatic sinusoidal
plane wave

E � Eo e
iϕ (4.4)

in C3, where Eo is a constant three dimensional real-valued vector.
While plane waves represented in complex exponential form like
this are often given as solutions to the standardMaxwell equations in
r-space, that is generally done with the understanding that one
discards the imaginary part of the solution. In contrast, here we do
not discard the imaginary part since complex-valued fields are
involved, and we consider the full Eq. 4.4 to be a possible
solution. In this solution,

ϕ � k · x − ω · t + δ (4.5)
is the wave phase, where x + ic t is a point in C3 space, k is a
constant spatial wave propagation vector with k = |k| as wave
number, ω is an analogous constant temporal wave propagation
vector with ω � |ω| as the wave’s angular frequency, and real
valued δ is a phase constant. Eq. 4.4 represents a solution where

FIGURE 2
Universal speed constraint visualized as a plot of vτ vs. vx . Thick solid bar of length c indicates speed magnitude. (A) A particle at rest in frame S’s
r-space (vx =0, vτ � c). (B) Amassless particle such as a photonmoving at light speed in frame S’s r-space (vx = c, vτ =0) and not aging. (C)General case of
a particle moving in S’s r-space with intermediate speed 0 < vx < c.
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the wave fronts in t-space are π/2 out of phase with those
in r-space.

To see that the Eq. 4.4 is a solution to the full wave Eq 4.1a, first
substitute Eo eiϕ into the left side of Eq. 4.1a, giving

∇2E � ∇2
x + i

1
c2

∇2
t( ) Eo e

iϕ

� Eo ∇2
x cos ϕ + i

1
c2
∇2
t sin ϕ( )

� Eo ∇x · ∇x cos ϕ + i
1
c2
∇t · ∇t sinϕ( )

� Eo −∇x · k sinϕ − i
1
c2

∇t · ω cos ϕ( )
� Eo − k2 cos ϕ − i

ω2

c2
sin ϕ( )

� −k2Eoe
iϕ

� −k2E (4.6)
where the penultimate step used the relation k � ω/c.

Before substituting Eo eiϕ into the right side of Eq. 4.1a to show
that it gives the same result as Eq. 4.6, it is helpful to know the
derivative ∂ϕ

∂t . To derive this derivative requires the derivative ∂t
∂t of

t-space location vector t with respect to clock time t, constrained by
the temporal correspondence dt � |dt| of Eq. 3.4. To compute ∂t

∂t
under this constraint, note that just as the constant spatial vector k
indicates the wave propagation direction in r-space, the constant
temporal vector ω indicates the wave propagation direction in
t-space. Let ω̂ � ω

ω be a unit vector pointing in the direction of
the wave’s movement in t-space, where ω � |ω|. Then over an
infinitesimal clock time increment dt, dt � ω̂dt due to the

temporal correspondence dt � |dt|, giving the needed ∂t
∂t � ω̂. It

follows that electromagnetic wave speed in t-space in a vacuum
is independent of frequency, and that

∂ϕ
∂t

� − ∂
∂t

ω · t( ) � −ω · ∂t
∂t

� −ω · ω
ω
� −ω

2

ω
� −ω (4.7)

Thus, substituting Eo eiϕ into the right side of Eq. 4.1a results in

1
c2

∂2E
∂t2

� 1
c2
Eo

∂2

∂t2
cos ϕ + i sinϕ( )

� 1
c2

Eo
∂
∂t

ω sinϕ − iω cos ϕ( )
� ω

c2
Eo −ω cos ϕ − iω sin ϕ( )

� −ω
2

c2
Eo cos ϕ + i sin ϕ( )

� −k2Eoe
iϕ

� −k2E (4.8)
where the final steps again used the relation k � ω/c. Since the final
quantities in Eqs. (4.8), (4.6) are equal, Eoeiϕ is a solution to Eq. 4.1a.
Analogous results can be obtained for Eq. 4.1b for B.

Some care is needed in visualizing/interpreting the part of an
electromagnetic wave that propagates through t-space because we
have no experience directly observing the imaginary-valued part of
the wave experimentally. To illustrate this, Figure 3 provides an
informal characterization of a wave in a vacuum for an observer o at
rest in the r-space of an inertial frame S at the location where a pulse
of electromagnetic radiation (e.g., light) is initiated. Cross sections
are shown for the r-space and t-space portions of the expanding
wave (conceptually a 6D hypersphere in C3) that follows the flash of
radiated light at clock time ta at the origin. While the r-space portion
in the top row is familiar and as expected with the observer o
remaining at the origin of r-space (vx � 0), by the universal speed
constraint that same observer is moving through t-space in some
direction with speed vτ � vt � c. Thus, that observer is moving along
with a portion of the t-space wave, as pictured in the second row
Figure 3 (observer o’s movement through t-space is arbitrarily taken
to be in the direction of the dotted arrow) rather than remaining at
the origin. While special relativity and Maxwell’s equations indicate
that it is impossible for a material object to accelerate so that it can
travel along with an electromagnetic wave at speed vx � c like this in
empty r-space, within the theory developed here they also indicate
that doing so is commonplace in vacuum t-space. The observer at
rest in S’s r-space where the electromagnetic wave is initiated is
moving with speed vt � c in t-space, and thus along with part of the
imaginary-valued, unobservable portion of the wave.

5 Experimental testing of the
hypothesis

Is it possible to falsify experimentally the novel predictions made
by the temporal fields hypothesis and the complex-valued Maxwell
Eq 2.1? This is a challenging issue, given that electromagnetic fields
in t-space are taken a priori to not be directly observable. However,
these imaginary-valued fields should be experimentally detectable
indirectly based on secondary effects that they cause under special

FIGURE 3
An observer o at rest at the origin of the r-space of an inertial
frame S when an electromagnetic wave pulse (e.g., light flash) is
initiated there at clock time ta in a vacuum. Long horizontal black
arrow at the bottom indicates passage of clock time t. In the top
row, snapshots of the familiar resulting spherical wave in r-space
(colored red) are shown at successive times tb and tc with o remaining
stationary at the origin. In the second row, the same sequence is
shown for imaginary valued t-space, but whereas the observer o
remains at rest in r-space (vx � 0), the universal speed constraint
implies that the observer at rest in r-space is moving with speed vτ �
vt � c in some t-space direction (arbitrarily taken to be along the
dotted arrow here) and so o moves along with the wave through
t-space as shown.
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circumstances. Here we consider, as examples, avenues of
experimental study that could be pursued to support or to falsify
two predictions of the temporal fields hypothesis: demonstrating
time dilation for unstable charged particles at rest in r-space, and
detecting evidence of imaginary components of electromagnetic
waves in dielectrics. Only a brief, qualitative sketch of these two
possible approaches is given here–much further thought, analysis,
and description of experimental details would be needed to design
operational experiments. The only point being made is that, in
principle, there are ways to experimentally evaluate the existence of
imaginary-valued electromagnetic fields using contemporary
experimental methods.

5.1 Time dilation for unstable charged
particles at rest

The first experimental approach involves looking for effects of
forces exerted on charged particles by the fields Bt and Et that exist in
imaginary-valued t-space. Much of what we know experimentally
about the familiar fields Ex and Bx is based on the effects that they
exert on matter in r-space. This suggests that we can test the
temporal fields hypothesis by analogously looking for effects in
time, i.e., in t-space rather than in r-space, on charged matter
resulting from forces due to Bt and Et. For this, we need to first
characterize what those forces would be.

In classical electrodynamics, Maxwell’s equations are
complemented by the Lorentz force law Fx � qe[Ex + (vx × Bx)]
describing the force Fx in r-space due to fields Ex and Bx acting on a
particle having electrical charge qe and moving with velocity vx
through r-space. When hypothesized magnetic charge is considered
in the literature as in Eq. 1.2, this law is often extended to be

Fx � qe Ex + vx × Bx( )[ ] + qm Bx − 1
c2

vx × Ex( )[ ] (5.1)

where forces due to magnetic charge qm are included [2,3]. This
extension is derived from the classic Lorentz force law based on an
electromagnetic duality transformation for Eqs. 1.2. Here we
proceed analogously, applying the cross-domain duality
transformation Eqs. 2.14 to the classic Lorentz force law,
which produces

F � Fx + iFt � q Ex + vx × Bx( )[ ] + icq Bt − 1
c2

vt × Et( )[ ] (5.2)

The quantity vx � dx
dt in the traditional Lorentz force law has been

mapped by the cross-domain transformation into d(ct)
dt � c dt

dt � vt in the
rightmost part of Eq. 5.2. Unlike Eq. 5.1, F in Eq. 5.2 involves forces in
both r-space and t-space, q replaces both qe and qm, and the forces due
to fields Bt and Et are seen to be purely imaginary valued, extending
solely through t-space. Thus, a particle with charge qwould be expected
to accelerate in r-space according to the traditional Lorentz force law,
altering vx precisely as we observe, because there is no direct influence
on a particle’s movement in r-space due to the Bt and Et fields. Further,
only Bt and Et would act on a particle’s movement in t-space. For
example, a charge q at rest at the origin in r-space produces a field
Ex � 1

4πϵo
q
x2 x̂ in electrostatics underlying Coulomb’s Law, where x̂ is a

unit vector in the direction of x. Applying the cross-domain duality
transformation Eqs. 2.14 to this indicates that

Bt � μo
4πc

q

t2
t̂ (5.3)

is a t-space magnetic analog to Coulomb’s law in electrostatics,
where t̂ is a unit vector in the direction of another charge in t-space.
Thus, in t-space particles of opposite magnetic charge would attract
one another, and those with the same magnetic charge would repel
one another. These considerations suggest using experimental tests
like the following.

Equations Eqs. 5.2, 5.3 predict that under specific
circumstances one would observe time dilation affecting the
decay rate of unstable charged particles at rest in r-space. In
other words, unlike the time dilation effects predicted by special
relativity for charged particles moving at relativistic speeds, we
are now considering time dilation affecting unstable particles at
rest in the r-space of an observer’s reference frame, something
predicted to occur by the complex-valued but not by the classic
Maxwell equations. As an example, consider a small and very thin
hollow spherical shell at rest in the r-space of an observer’s
reference frame, as sketched in Figure 4. At an initial time ti let
this shell have fixed, embedded positively charged particles q+ in
it that are unstable and spontaneously decay with a known half-
life when they are at rest (e.g., an ionized radioactive isotope).
Suppose that at time ta a much larger amount q- of mobile
negatively charged stable particles (e.g., electrons) is added to
the sphere temporarily, being removed at time tb. Ignoring
transient effects at times ta and tb, Eq. 5.3 implies that
following time tb, the dominating negative charge that was
present during the period ta to tb would result in a strong
resultant radial field Bt in t-space pointing towards the shell,
as illustrated in Figure 4. By Eq. 5.2, this field would exert a
substantial force of c q+ Bt on the positively charged particles
remaining on the shell following time tb that would reduce their
speed through t-space, and thus reduce the passage of their

FIGURE 4
Example sequence of events predicted to produce slowed
particle aging (time dilation) via t-spacemagnetic fieldsBt (red arrows).
Long horizontal black arrow indicates passage of clock time t. Shown
at the upper left at initial time ti is a maximal cross-section
through a thin hollow sphere (thickness not drawn to scale) at rest
having fixed embedded unstable particles (q+) that are positively
charged (+). At time ta, amuch larger amount ofmobile stable particles
(q-) that are negatively charged (−) are added, being removed at time
tb, so that the resulting total charge is temporarily strongly negative,
thus implying resultant incoming radial fields Bt in t-space as
illustrated (red arrows). Decay of the original unstable q+ particles
during the period from tb until final time tf is predicted to be slowed,
consistent with a time dilation effect even though they are at rest
in r-space.
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proper time. This would be manifest experimentally by an
apparently increased half-life with slower decay of the
unstable positively charged particles between times tb and tf.
The control experiment for comparison would be the same
procedure except without the temporary addition of charge q-

to the sphere during time period ta to tb.

5.2 Electromagnetic waves in dielectrics

A second potential experimental approach to evaluating the
temporal fields hypothesis involves the prediction that the imaginary
components of electromagnetic waves propagate through time
(t-space). While such waves are not directly observable according
to the theory presented here, under special circumstances they may
be detectable indirectly because of the universal speed constraint.

The standard Maxwell’s equations are often re-expressed for use
inside of matter by introducing an electric displacement vector D
and an auxiliary magnetic vector H that capture the macroscopic
effects of polarization and magnetization. Taking a similar approach
here for the complex-valued Maxwell equations, this would
correspond in a homogeneous linear medium to using complex-
valuedD � ϵE andH � 1

μBwhere ϵ> ϵo and μ> μo are the medium’s
permittivity and permeability, respectively. In the absence of free
charge and free current, the complex-valued Maxwell equations
inside the medium become

∇ · E � 0 ∇× E � −∂B
∂t

(5.4a, b)

∇ · B � 0 ∇× B � ϵμ ∂E
∂t

(5.4c, d)

from which one derives

∇2E � ϵμ ∂
2E
∂t2

and ∇2B � ϵμ ∂
2B
∂t2

(5.5a, b)

as complex-valued wave equations. These are the same as the
vacuum wave equations 4.1 except that 1

c2 � ϵoμo has been
replaced by ϵμ.

Equating the real and imaginary parts of these equations gives
two sets of wave equations,

∇2
xEx � ϵμ ∂

2Ex

∂t2
and ∇2

xBx � ϵμ ∂
2Bx

∂t2
(5.6a, b)

and

∇2
tEt � ϵμc2∂

2Et

∂t2
and ∇2

tBt � ϵμc2∂
2Bt

∂t2
(5.7a, b)

in r-space and imaginary-valued t-space, respectively. It follows
from an analysis similar to that of Sect. 4 that wave speed inside the
medium is

vx � vt � 1��ϵμ√ � c

n
(5.8)

where n �
���ϵμ
ϵoμo

√
is the medium’s index of refraction.

Consider the observable portion of a planar electromagnetic
wave that is initially traveling through vacuum with speed vx � c in
the r-space of an inertial reference frame S. According to the
universal speed constraint Eq. 3.17, the photons in that wave are

traveling at speed vτ � 0 through S’s t-space and thus are not aging.
When this wave is normally incident upon a dielectric material at
rest in S that is substantially transparent at the wave’s frequency, the
transmitted portion of the wave’s speed through the dielectric
decreases to vx � c/n. In this situation the universal speed
constraint implies that for the photons comprising the wave,

v2τ � c2 − v2x � c2 − 1
n2
c2 � c2 1 − 1

n2
( )> 0 (5.9)

must hold, and thus these photons in the wave inside the dielectric
are aging, unlike with a wave moving through a vacuum, but it is
unclear how this could be experimentally verified.

On the other hand, consider a portion of a wave initiated inside
of a sphere of dielectric material that is traveling inside the dielectric
in the same direction through t-space as the dielectric material. By
Eq. 5.8, the photons in this portion of the wave would have a speed of
vτ � c/n. It follows from Eq. 3.17 that for these photons,

v2x � c2 − v2τ � c2 − 1
n2

c2 � c2 1 − 1
n2

( ) (5.10)

must hold. Thus, unlike in a vacuum t-space, photons comprising
this portion of the wave would “spill over” into r-space, and thus
they would be potentially detectable as they exit the dielectric. These
considerations suggest experimental tests such as the following.

FIGURE 5
Snapshots of events following a very short burst of
electromagnetic radiation occurring at clock time ta, located at the
center of a solid sphere of dielectric material (black circles) that is at
rest in the r-space of frame S and is surrounded by vacuum/air.
The waves have a frequency for which the dielectric is largely
transparent. As shown on the left, in r-space the spherical wave
(vertical red arcs) propagates in all three dimensions (tb), with some of
the wave being transmitted (blue arcs) and some being reflected (red
arcs) at the boundaries (tc). The r-space wave inside the dielectric
quickly vanishes (td) due to both repeated transmission through the
boundary and attenuation. In contrast, on the right an imaginary-
valued portion of the samewave is shown inside the dielectricmaterial
(horizontal red arcs) moving in the same direction through t-space as
the sphere. This specific t-space portion of the wave inside the
dielectric does not encounter boundaries, so it is not weakened by
transmission losses at the boundaries of the dielectric as occurs in
r-space. However, its reduced vτ < c through t-space in the dielectric
implies that it must spill over into r-space, producing an r-space part of
the wave (blue arcs) which persists for a longer time period than is
predicted by the standard Maxwell equations.
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Consider a solid sphere of homogeneous linear dielectric material
having a refractive index of n > 1 at rest in reference frame S (Figure 5).
Let there be a very short burst of electromagnetic radiation at the center
of the sphere at a frequency at which the dielectric is largely transparent.
In r-space, the observable part of the wave rapidly weakens due to
attenuation and to transmission outside of the block at the boundaries
(Figure 5, left side). For example, for light in a typical glass sphere
(n ≈ 1.5) surrounded by air/vacuum, only 4% of the wave’s energy
remains in the sphere after just the first reflection. The imaginary-
valued portion of the wave inside the dielectric sphere that is moving in
the same direction in t-space as the block (see Figure 3) does not directly
experience losses from transmission outside the block because it does
not encounter these r-space boundaries (Figure 5, right side). However,
because the photons in this part of the wave have speed vτ � c

n< c inside
the dielectric, by the universal speed constraint and by Eq. 5.10 they
must also have speed vx � c(1 − 1

n2)1/2 > 0 there. Thus, the temporal
fields hypothesis predicts that these persistent r-space electromagnetic
waves will be transmitted through the block’s boundaries for a
substantially longer time period beyond what would be predicted by
the classic Maxwell equations. Such r-space waves, although perhaps
quite weak, should be detectable by a nearby observer at rest in r-space.
To bemaximally informative, variations of such an experiment could be
done using materials with different n values, waves of different
frequencies (e.g., from ELF to visible), etc.

6 Discussion

In classical electrodynamics, the fields E and B are assumed to
extend solely into three dimensional space (r-space) and thus to have
three real-valued components. In contrast, the work presented here has
asked what the consequences would be if these fields actually have three
complex-valued components where the unobservable imaginary parts
extend into three dimensional time (t-space) rather than space. The
approach taken here to addressing this issue is driven by maximizing
the symmetry of Maxwell’s equations. The resulting complex-valued
Maxwell equations are more symmetrical than the classic Maxwell
equations in multiple ways: both electric charge and magnetic charge
exist, these types of charge are the same entity, both space and time are
three dimensional, and the fields extend into both space and time
(Table 1). In spite of these generalizations, the complex-valuedMaxwell
equations remain consistent with the originals and with the existing
experimental results of classical electromagnetism.

An interesting aspect of the complex-valued Maxwell equations
considered here is what they imply about the nature of time. There is a
very large literature in physics, psychology, neuroscience, and
philosophy with widely divergent views about time; for example,
[26, 38–42]. Opinions differ regarding such fundamental issues as
whether or not the concept of time is an illusion, whether or not
the past and future always exist (block vs. dynamic Universe, eternalists
vs. presentists, etc.), what the relationship is between objective physical
time and human subjective time (flow of time, concept of Now, etc.),
and what determines the arrow of time (thermodynamic, cosmological,
electromagnetic, etc.). The hypothesis that electromagnetic fields have
three separate imaginary-valued components extending into time
contributes to this discussion by implying that in some sense a
separate, unobservable 3D temporal space underlies our familiar
concept of objective clock time. This is captured in the theory by

identifying a temporal correspondence equating the amount of clock
time that wemeasure between two events to the extent that those events
are separated in the underlying t-space (Eq. 3.4). A resting clock having
periodic cycles that mark the distance traversed in t-space regardless of
the direction of movement thus becomes completely analogous to a
resting ruler having periodic lines that mark the distance traversed in
r-space regardless of the direction of movement.

Two very striking predictions follow from the temporal fields
hypothesis that are not predicted by the standard Maxwell
equations. First, the complex-valued Maxwell equations imply
that electrically charged particles also serve as magnetic
monopoles having magnetic fields extending into t-space. Such
magnetic monopoles would not be detected by current search
methods because they do not have magnetic fields extending into
r-space. The second striking prediction is that electromagnetic
waves not only propagate through space but also through time.
Surprisingly, portions of these unobservable waves travel through
vacuum t-space at the same speed as observers at rest in an
inertial reference frame S. This unanticipated result implies that
an observer at rest in frame S would be traveling through t-space
along with a wave front generated at the observer’s location,
something that is forbidden by special relativity in r-space. This
prediction follows from the temporal fields hypothesis based on a
straightforward derivation of the wave equation from the
complex-valued Maxwell equations, and from the invariance
of the complex spacetime interval under a Lorentz
transformation in C3. If the temporal fields hypothesis proves
to be correct, information could thus be transmitted through time
in a previously unsuspected fashion, and this could have
important scientific and technological implications.

The theoretical work presented here provides only some
initial steps towards characterizing the implications of the
temporal fields hypothesis. It has some significant limitations,
as follows. As noted in the Introduction, this work only considers
classical electrodynamics in flat spacetime. Incorporating
considerations of cosmology, such as the implications of
introducing curved spacetime and general relativity, would be
of substantial interest. For example, are closed time-like loops
possible in 3D t-space, and if so, would they affect our
experienced conventional 4D spacetime based on measured
clock time t, disrupting causality in some fashion (see
Footnote 1)? Does the extension of electromagnetic fields to
t-space have any implications for understanding the nature of
dark energy/matter or the possible existence of a “fifth force”?
Further, extending the current hypothesis to quantum physics
also raises many issues and would be an extremely important next
step in theory development. Would quantification of the fields
lead to any new and unexpected results? Would they contribute
to our understanding of entanglement (e.g., particles widely
separated in r-space but still close in t-space)? Would fields
extending into time provide a different interpretation of what
virtual photons are or new insights into their role in the Casimir
effect? How would the existence of electromagnetic waves in
t-space relate to non-propagating evanescent waves involving
virtual photons, and to the nature of the underlying energy
source harvested by recently invented devices that extract
electric power from the zero-point energy associated with
quantum vacuum fluctuations [44]?
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Even within classical electrodynamics there are substantial
limitations to what has been done so far. Complex scalar and vector
potentials need to be introduced, something that is complicated by the
cross-domain duality (e.g., in contrast to in r-space, a scalar potential is
needed for Bt while a vector potential is needed for Et). In addition,
energy considerations need to be analyzed, similar to the energy
conservation analysis that was done previously [4] for the complex
Maxwell equations that had imaginary components in space rather than
in time as is the case here. Finally, while the possible experimental tests
of the hypothesis described in Section 5 are intended only to show in
principle that there are ways to test the hypothesis, those tests will need
to be fleshed out in quantitative detail to be realizable. In the current
absence of direct experimental data characterizing attenuation of the
field imaginary components, this is tremendous challenge whose
resolution depends on the materials used, what their properties are
in t-space (e.g., rate of wave attenuation in t-space, given that charge
does not have an imaginary component as described in the first
paragraph of Section 2.2), selecting appropriate frequencies to test,
etc. These issues might be resolved in part by systematic exploratory
finite-element simulations that solve for real and imaginary field
components over a broad range of possibilities. All of these
limitations represent important directions for possible future work,
whichmight also include simplifying and illuminating the analysis done
here by repeating it using a Clifford algebra [45].

While challenging, experimental tests of the temporal fields
hypothesis are clearly merited because of the potential impact on our
understanding of electromagnetism and spacetime physics. Finding
experimental evidence that electromagnetic fields have components
extending into t-space, using methods like those discussed above or
other approaches, could ultimately have tremendous implications for the
foundations of physics. Even if experimental evaluation should fail to
find support for the existence of imaginary-valued field components,
then such results will still be interesting, because they would indicate the
need for a theoretical explanation of why, in the unified spacetime that
underlies contemporary physics, electromagnetic fields do not extend
into the temporal aspects of spacetime. In other words, if space and time
are truly integrated in the way existing theory indicates, then why do
electromagnetic fields extend only into space and not into time? To the
author’s knowledge this latter issue has not been substantially considered
previously.
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