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Active laser imaging utilizes time-of-flight and echo intensity measurements to
generate distance and intensity images of targets. However, scattering caused by
cloud and fog particles, leads to imaging quality deterioration. In this study, we
introduce a novel approach for improving imaging clarity in these environments.
We employed a matched filtering method that leverages the distinction between
signal and noise in the time domain to preliminarily extract the signal from one-
dimensional photon-counting echo data. We further denoised the data by
utilizing the Long Short-Term Memory (LSTM) neural network in extracting
features from extended time-series data. The proposed method displayed
notable improvement in the signal-to-noise ratio (SNR), from 7.227 dB to
31.35 dB, following an analysis of experimental data collected under cloud and
fog conditions. Furthermore, processing positively affected the quality of the
distance image with an increase in the structural similarity (SSIM) index from
0.7883 to 0.9070. Additionally, the point-cloud images were successfully
restored. These findings suggest that the integration of matched filtering and
the LSTM algorithm effectively enhances beam imaging quality in the presence of
cloud and fog scattering. This method has potential application in various fields,
including navigation, remote sensing, and other areas susceptible to complex
environmental conditions.
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1 Introduction

Active laser imaging utilizes the reflection of a laser beam incident onto a target to detect
an echo signal for target imaging [1]. Algorithmic processing of the echo signal allows for a
variety of information to be extracted, such as the distance to the target [2–5], shape [6, 7],
and reflectivity of the target [8]. Active laser imaging has found widespread application in
diverse fields, including target recognition [9, 10], autonomous driving [11–13], and
guidance [14]. However, random scattering of light beams induced by cloud and fog
particles in real-world scenarios [15] causes a reduced SNR in imaging [16, 17].
Consequently, there is a growing need for a technique to enhance the SNR in cloudy
and foggy environments. The random scattering induced by cloud and fog results in a weak
echo signal. The time-correlated single-photon counting (TCSPC) method, which is known
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for its ability to capture weak echo photons with high sensitivity, is
particularly suitable for imaging in intricate scattering
environments, such as cloud and fog [18, 19], as well as
underwater [20, 21]. Therefore, a photon counter was employed
to receive the echo photons and acquire the one-dimensional photon
counting time distribution data of the beam. However, it is still
necessary to process the noise present in the echo data in cloudy and
foggy environments.

In recent years, diverse methods for processing echo data have
emerged with the aim of enhancing data quality in the presence of
noise interference. These methods include median filtering [22],
mean filtering [23], Kalman filtering [24], and matched filtering
[25], all of which are applied in the time domain. Additionally,
methods such as low-pass filtering [26], processed in the frequency
domain, and wavelet threshold denoising [27, 28], are applied in the
wavelet domain. Median filtering showed effectiveness in
eliminating pulse noise while preserving the edge clarity of the
image during noise processing. Mean filtering is adept at removing
abrupt noise but may not effectively safeguard local signal changes.
Kalman filtering typically assumes Gaussian noise distribution.
Low-pass filtering can effectively filter out noise but may be less
efficient in preserving signal details. The effect of wavelet threshold
denoising is influenced by various factors. Hou et al. [29] discovered
that when processing signals against a backdrop of strong noise, this
method fails to achieve precise signal detection and still suffers from
significant noise interference, making it less than ideal for denoising
signals with low SNR. By recognizing the disparity between the
signal and backscatter noise in the time domain, matched filtering
facilitates the identification of target echoes, which effectively filters
out backscatter noise and enhances the SNR of the output.
Nevertheless, challenges arise in extracting the target signal peaks
in scenarios with strong noise characteristics. With the development
of machine learning, various neural network architectures such as
convolutional neural networks [30], BP neural networks [31], and
recurrent neural networks (RNNs) [32] have been applied to
denoising, recognition, and classification tasks. Although RNN
are effective in processing one-dimensional time series, they are
susceptible to gradient vanishing and explosion when implemented
on complex data. The LSTM algorithm, which is a specialized form
of the RNNs, addresses this challenge by incorporating gating
mechanisms to control data flow [33]. The advantages and
disadvantages of different noise filtering techniques are detailed
in Section 1 of the Supplementary Material.

The aim of this study is to introduce a novel method to enhance
the SNR of data, which contains noise induced through the
backscattering effect of cloud and fog. The proposed denoising
method combines matched filtering with the LSTM algorithm,
resulting in the formation of the MF-LSTM algorithm. The initial
noise reduction was accomplished through matched filtering,
leveraging the temporal distribution difference between the signal
and noise. The LSTM algorithm was integrated to extract features
from the one-dimensional time-series signal, further enhancing
noise filtration and improving the SNR of imaging in cloudy and
foggy environments. The efficacy of the proposed method in
enhancing the SNR of beam imaging in these environments was
experimentally validated.

This article begins by outlining the experimental system design,
followed by the introduction of a denoising method MF-LSTM

algorithm. Subsequently, experimental verification was performed
to demonstrate the effectiveness of this method for denoising the
echo data of beam imaging under varying visibility conditions. A
comparative analysis against mean filtering, median filtering, and
the LSTM algorithm without matched filtering is conducted to
reveal an improvement in the SNR. Furthermore, enhancements
are observed in both the quality of the point cloud images and the
SSIM index of the distance images. This method demonstrates
improvements in imaging quality in cloudy and foggy
environments.

2 Materials and methods

2.1 System working principle

Figure 1 displays the diagram of the imaging system developed
to investigate imaging in cloudy and foggy environments and assess
the denoising effect of the proposed algorithm. The beam at a
wavelength of 532 nm, was expanded and collimated by lenses L1
and L2. A quarter-wave plate (QWP) was used to generate a
circularly polarized beam. Utilizing a Dammann grating (DG)
with a diffusion angle of 2° and a diffraction efficiency of 68.32%,
the beam was divided into a 17 × 17 beam array. Subsequently, the
beam was directed towards the target, after which the diffused
reflected beam from the target was focused onto the detector
using lens L3. This process yielded 17 × 17 one-dimensional
photon counting time distribution data. The collected data were
then transmitted to the personal computer (PC) for further analysis.
A fog-making machine (FOGGER) generated a cloudy and foggy
environment for the study. Cloud and fog visibility sensors were
utilized to monitor visibility throughout the experiment. The
instrument defines visibility based on the meteorological optical
range, representing the path length traveled by a parallel beamwith a
color temperature of 2700 K when its luminous flux weakens to 5%
of its initial value in the atmosphere. This article primarily centers
on the post-processing of photon counting echo data under cloud
and fog conditions. The denoising algorithm was performed under
two operations: first, we employed a matched filtering method,
grounded in the disparities between noise and signal distributions
in the time domain, to extract the signals. Second, we utilized the
LSTM algorithm, capitalizing on its strengths in extracting intricate
temporal signal features, to further denoise the data and enhance the
imaging quality. The specific method is detailed in Section 2.2.

2.2 MF-LSTM algorithm

Step 1: Applying matched filtering for the initial processing
of noisy data.

The data were initially processed using a matched filtering
method. The normalized target echo data without cloud and fog
was taken as the instrument response function, denoted as h(t), for
matched filtering. The one-dimensional echo signal of each laser
subbeam was filtered sequentially. The matched filtering result was
represented as gi,j(t) � si,j(t) ⊗ h(t), where si,j(t) is the photon
count distribution data of the ith row and jth column of the beam
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array under cloud and fog conditions [25]. The data obtained after
matched filtering is a two-dimensional photon count time
distribution. In LSTM networks, the default assumption is that
two-dimensional input data consists of discrete integers.
However, model training usually involves updating parameters
using algorithms like gradient descent, which require
differentiating these parameters to compute gradients. Since
discrete values are typically non-differentiable, they cannot be
processed directly in gradient descent. To address this, input data
can be transformed by mapping each discrete variable in the input
sequence to a continuous vector value, thereby rendering the
model’s input differentiable. This allows for the computation of
gradients through backpropagation, enabling parameter updates
and optimization. Although the matched filtering process
described in this study directly produces two-dimensional
continuous floating-point numbers, LSTM networks typically
treat these as if they were discrete, necessitating a dimensionality
increase. To facilitate smooth operation of the LSTM network, the
“unsqueeze” function in “PyTorch” can be employed to convert two-
dimensional data into three-dimensional continuous values. This
step effectively integrates the two methodologies.

Step 2: Applying the LSTM algorithm for further noise reduction.

After matched filtering in the cloudy and foggy environments,
the data from each subbeam in the array served as the input of the
network. The echo data corresponding to each subbeam in the
cloudy and foggy-free environments served as the output of the
network. The network employed the mean-square error as its loss
function, with the learning rate set at lr � 5 × 10−6. The loss function

is used to obtain the difference between predicted and actual values,
and this difference is minimized through training. Figure 1B
illustrates the network structure, which was trained using a
configuration consisting of linear and LSTM layers. We
introduced direct input-output mapping between adjacent LSTM
layers, where the sum of the mapping and the result processed by the
LSTM layer and linear layer was used as the input for the subsequent
LSTM layer. By introducing the direct input-output mapping
between adjacent LSTM layers, the traditional multiplicative
backpropagation process can be converted into an additive one.
This adjustment helps alleviate issues of vanishing or exploding
gradients that occur when chain derivatives become excessively
small or large. Furthermore, this input-to-output mapping
enables the direct transfer of information from one layer to
subsequent layers, assisting in countering the degradation issues
that arise as network depth increases. Additionally, it addressed
concerns regarding the local information loss caused by increasing
the number of layers. During the test phase, the echo data
(289 × 800 × 1) acquired form each subbeam were fed into the
trained network after matched filtering.

The distance was extracted from the data using the peak value
method by identifying the time corresponding to the highest
number of echo photons in the photon-count echo data and
multiplying it by the laser flight speed to derive the target distance.

Figure 1C depicts the unit structure of the LSTM neural network,
which regulates data through a forget gate, input gate, and output gate
[34]. The forget gate ft � σ(Wf[Jt−1, xt] + bf) governs the
information preserved from the preceding neuron. By conducting
linear operations on the output data Jt−1 of the previous neuron
and the input data xt of the current neuron, the result undergoes

FIGURE 1
Schematic of the imaging system under cloud and fog conditions. (A) Laser: 532 nm laser; L1-L3: lens; QWP: quarter-wave plate; DG: Dammann
grating; T: object; PC: personal computer. (B) Schematic of denoising model structure based on the MF-LSTM algorithm. (C) LSTM neural network unit
structure diagram. Ct-1: memory data of the previous neuron; Ct: memory data of the current neuron; Jt-1: output data of the previous neuron; Jt: output
data of the current neuron; xt: input data of the current neuron; ft: forget gate; it: input gate; ot: output gate; σ: Sigmoid function; tanh: Tanh function;
~Ct: data obtained by processing the input data with the Tanh function. The specifications for each device are detailed in Section 2 of the
Supplementary Material.
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transformation through the Sigmoid function, which produces a vector
within the range of (0, 1). This vector is then multiplied with the
memory data Ct−1 of the previous neuron to determine the retained
information from the prior state. The input gate it � σ(Wi[Jt−1, xt] +
bi) governs the preservation of the current neuron data. Integration of
the input data to obtain ~Ct � tanh(Wc[Jt−1, xt] + bc) and summation
with the data controlled by the forget gate. This sum is then passed on to
the next neuron to acquire memory information Ct � ftCt−1 + it ~Ct.
The output gate ot � σ(Wo[Jt−1, xt] + bo) regulates the output
information of the current neuron. The memory information Ct of
the current neuron is processed and combined with the output gate to
derive the output information Jt � ot tanh(Ct). This output serves as
both the output of the current neuron and the input for the subsequent
neuron. In these equations,Wf,Wi,Wc,Wo and bf, bi, bc, bo represent
the weights and bias parameters of the network, respectively. As a result,
LSTM selectively retains and discards information through gating,
augmenting its capability to process intricate one-dimensional
temporal information.

3 Experimental results

3.1 Denoising efficacy of the proposed
algorithm in comparison to other methods
on one-dimensional data

Validation experiments were conducted using the apparatus
illustrated in Figure 1A to assess the efficacy of the proposed method
for data denoising in cloudy and foggy environments. First, we
examined the transmission of a single subbeam in cloudy and foggy
environments. The photon-counting time distribution histogram

was obtained after the reflection of the target at a distance of 6 m,
using a photon counter. The single-photon detector module is
utilized to detect photons, which, upon reception, are converted
into electrical signals and output to a time-correlated photon
counter. The photon counter is triggered on the falling edge,
with a time resolution of 25 ps. In this study, we selected a time
resolution of 100 ps to categorize the echo photons, recording the
arrival time of each photon in groups, thereby generating a time-
distributed histogram of the data. A total of 8670 sets of one-
dimensional data were used as the training set for the network,
which depicted in Figure 1B. Subsequently, the training set was
processed using the matched filtering method and trained using the
LSTM network model. Finally, the trained network was applied to
denoise the one-dimensional photon-count time distribution data.
The denoising results of the MF-LSTM algorithm, were compared
with those of mean filtering, median filtering, and the LSTM
algorithm without matched filtering. Figure 2 displays the
comparison of one-dimensional photon count time distribution
data of individual subbeams in a noise-free environment, a
cloudy and foggy environment, and after denoising with various
algorithms.

Each small grid on the horizontal axis in Figure 2 represents the time
resolution of the photon counter, with a time grid of 100 ps. As shown in
Figures 2A, A distinct target echo signal peak is evident in the photon
count time distribution in the absence of cloud and fog. The photon
number distribution primarily comprised of echo photons reflected by
the target. Echo photons in the non-target reflection time regionwere also
observed at a significantly lower rate, owing to the high sensitivity of the
photon counter. Figure 2B displays the impact of backward scattering
from cloud and fog, which led to a reduction in the number of echo
photons reflected by the target and an increase in the number of noise

FIGURE 2
Denoising results of one-dimensional data under different algorithms. (A) Noise-free environment; (B) cloudy and foggy environment; (C) mean
filtering; (D) median filtering; (E) LSTM algorithm; (F) MF-LSTM algorithm.

Frontiers in Physics frontiersin.org04

Cui et al. 10.3389/fphy.2024.1392509

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1392509


photons, which concentrated at a distance closer than the target. This
interference hampers the use of the peak value method for distance
measurement, resulting in a decrease in the distance measurement value
and the introduction of errors. The data displayed in Figures 2C,D show
that application of the mean and median filtering for signal denoising
may result in partial reduction in noise and an increase in the signal
proportion. However, when the number of noise photons caused by the
backscattering of cloud and fog is high, the distinction between the
scattering peak value influenced by cloud and fog and the signal peak
value becomes small. This led to a suboptimal noise filtering effect and a
small improvement in the distance measurement using the peak value
method. In Figure 2E, it is evident that the noise distribution is reduced
when the LSTM algorithm without matched filtering was employed for
denoising. A distinction is apparent between the echo peak value caused
by cloud and fog backscattering and the echo peak value resulting from
the target reflection. This distinction enhanced the results of the peak
value method for ranging; however, the peak value of cloud and fog
backscattering remained relatively high. The denoising effect based on the
MF-LSTM algorithm is displayed in Figure 2F. Leveraging the
distribution difference between signal and noise in the time domain,
matched filtering exploits this dissimilarity to extract the signal.
Compared with the LSTM algorithm without matched filtering, it
effectively filters out the noise data induced by backscattering from
cloud and fog.

3.2 Denoising efficacy of the proposed
algorithm under various visibility conditions

To investigate the denoising efficacy of the proposed algorithmunder
varying visibility conditions, a histogram of photon count time
distribution for the target reflection at a distance of 6 m in cloud and
fog conditions was obtained using the device depicted in Figure 1A.
Following network training, the echo data from subbeams with visibility
values of 6, 10, 14, 18, 22, and 26m were utilized as test data. Denoising
was conducted using MF-LSTM algorithm. We evaluated the quality of
the signal by obtaining the SNR based on the formula SNR � np/nb,
where np is the average number of photons of the target signal in one-
dimensional photon counting, and nb is the average number of noise

photons contained in the data. The denoising effectiveness of the
algorithm was subsequently compared with mean filtering, median
filtering, and the LSTM algorithm, as depicted in Figure 3.

From Figure 3, it is evident that the SNR of the echo data in
cloudy and foggy environments increased with improving visibility.
These results confirm that improving visibility causes a diminish in
the noise originating from the backward scattering of cloud and fog.
The method proposed in this study enhanced the SNR of the echo
data under various visibility levels after denoising. By comparing the
SNR values from the different algorithms in Figure 3, we concluded
that the proposed method generally outperforms mean filtering,
median filtering, and the LSTM algorithm without matched filtering
in terms of denoising effectiveness. When visibility deteriorates,
noise increases and the SNR decreases, the filtering capability of
other methods diminishes. However, the method proposed in this
study maintains a stable SNR after denoising under different
visibility conditions, exhibiting a gradual upward trend and
showcasing strong noise resistance.

Histograms of the photon count time distribution under
different visibility levels in cloud and fog at a target distance of
6 m, corresponding to Figure 3, are presented in Figure 4. The initial
power of the beam in this study consistently matches the power of
the beam under noiseless conditions, as illustrated in Figure 2A. The
distribution of SNR under different visibility is provided in Figure 4.

As depicted in Figure 4, when visibility is low, the target signal is
submerged in the backscattered signals from cloud and fog, making
accurate distance calculation challenging using the peak value
method. With increasing visibility, the number of photons
reflected by the target rises, the proportion of noise from cloud
and fog scattering decreases, and the SNR improves. The denoised
results using the MF-LSTM algorithm are presented in Figure 5. It is
evident that across various visibility levels, noise is effectively filtered
out, allowing clear peaks of the target echo signal to emerge,
accompanied by an increase in signal proportion.

When visibility is low and cloud and fog concentration is high, the
laser undergoes multiple scattering, making it challenging to distinguish
between the target signal and noise, as illustrated in Figures 4A,B, which
consequently impacts the ranging accuracy. After denoisingwith theMF-
LSTM algorithm, the echo data transformed into Figures 5A,B,
respectively, reveal clear peaks of the target echo signal. The average
ranging error was calculated by determining the difference between the
measured distance and the real distance using the formula
MAE � ∑N

i�1|d1(i) − d0(i)|/N, where d1(i) is the ith measured
distance, d0(i) is the ith real distance, and N is the number of
measurements. In Figures 4A,B, the average ranging error before
denoising was 5.955 and 3.735m, respectively, and became
0.2550 and 0.1650m, respectively, after denoising. This comparison
demonstrates that the method proposed in this study effectively
enhances ranging accuracy under conditions of multiple scattering
caused by cloud and fog.

3.3 Denoising efficacy of the proposed
algorithm in dense cloud and fog
environments

To further illustrate the advantages of combining matched filtering
and the LSTM algorithm, a study was conducted under conditions of

FIGURE 3
Denoising results of different algorithms under various
visibility levels.
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FIGURE 4
Histograms of the photon count time distribution under different visibility levels. (A) Visibility: 6 m; SNR: 3.895 dB; (B) visibility: 10 m; SNR: 7.167 dB;
(C) visibility: 14 m; SNR: 7.311 dB; (D) visibility: 18 m; SNR: 8.279 dB; (E) visibility: 22 m; SNR: 8.637 dB; (F) visibility: 26 m; SNR: 9.548 dB.

FIGURE 5
Histograms of the photon count time distribution after denoising based on the MF-LSTM algorithm. (A) Visibility: 6 m; SNR: 22.95 dB; (B) visibility:
10 m; SNR: 23.35 dB; (C) visibility: 14 m; SNR: 23.59 dB; (D) visibility: 18 m; SNR: 23.66 dB; (E) visibility: 22 m; SNR: 23.76 dB; (F) visibility: 26 m;
SNR: 24.36 dB.
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high cloud and fog scattering, as depicted in Figure 6A. The cloud and
fog visibility, as well as the target distance, depicted in Figure 6, are both
6 m. The target signal is submerged in noise, and obtaining a clear target
signal peak becomes challenging. At this point, as shown in Figure 6D,
matched filtering can still preliminarily filter the data, producing
smoother data closer to the noiseless signals shown in Figure 6B.
However, due to strong scattering noise, multiple peaks are generated,
making it difficult to distinguish the target signal. Due to the robust data
fitting ability of neural networks, these systems can directly establish
mappings between input and output signals. Using the noise signals
shown in Figure 6A and the data processed after matched filtering in
Figure 6D as inputs to the network,mappings were establishedwith that
shown in Figure 6B. The results obtained after network processing are
displayed in Figures 6C,E, respectively. The comparison reveals that the
MF-LSTMalgorithm exhibits a higher SNR and is closer to the noiseless
signal after processing than achieved using only the LSTM algorithm.
Therefore, it can be inferred that the MF-LSTM algorithm
synergistically leverages the advantages of both matched filtering for
extracting the target signal based on signal and noise distribution
difference, and the LSTM algorithm for capturing complex time
series signal features. Compared with the LSTM network alone, the
MF-LSTMalgorithm demonstrates superior data fitting capabilities and
enhances the network’s noise removal performance.

3.4 Enhancement and evaluation of
proposed algorithm

To investigate the improved imaging performance of the
proposed algorithm under cloud and fog conditions, an

experimental 17 × 17 beam array was employed to image three
targets (“H,” “I” and “T”) at a distance of 6 m within the
environment. One-dimensional time-correlated photon count
distribution data from the beam array under cloud and fog
conditions, measured 10 times for each target for a total of
8670 sets, were utilized as the training set. For the neural
network-based denoising method, data at different visibility
levels were necessary as the network’s training set. The
visibility levels and the corresponding SNR for different
targets are outlined in Table 1.

The training dataset of this experiment includes three scenarios:
high, moderate, and low cloud and fog concentrations. When the
cloud and fog concentration is high, the corresponding visibility is
less than or equal to 10 m, and the SNR is less than 5 dB. When the
cloud and fog concentration is moderate, the corresponding
visibility is between 10 and 25 m, and the SNR is between 5 and
10 dB. When the cloud and fog concentration is low, the
corresponding visibility is higher than 25 m, and the SNR is
higher than 10 dB.

The echo data of the three targets under average visibility
conditions at 14.36, 13.24, and 13.58 m were used as the test sets.
The network was applied to denoise the echo data from each
subbeam, providing a comparison in the photon count time
distribution data before and after denoising. The number of
photons in each time grid was extracted from the data before
and after denoising. The corresponding distance value for each
time grid was determined to derive the photon distribution at
different distance values.

Figure 7 displays the point cloud map of the target imaging
before and after denoising acquired by organizing the photons from

FIGURE 6
Comparison of denoising data between the LSTM andMF-LSTM algorithm in dense cloud and fog environments. (A)Cloudy and foggy environment;
(B) noise-free environment; (C) LSTM algorithm; (D) matched filtering; (E) MF-LSTM algorithm.
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each subbeam at every distance. Figure 7A shows the effect of the
cloud and fog on the three targets, which results in randomly
scattered photons in space and a significant amount of noise in
the point-cloud image. Additionally, a deterioration in the visibility
causes an increase in noisy photons, making it difficult to distinguish
the target image. Figure 7B displays the data after applying the MF-
LSTM algorithm for denoising, showing a notable reduction in the
noise distribution in the point cloud image. Photons were primarily
concentrated in the target area at a distance of 6 m, which leads to an
enhanced target resolution capability. By calculating the total
number of photons in the signal and the total number of
photons in the noise before and after denoising, we determined
that the ratios of signal to noise points for the three types of targets
increased by 17.64%, 23.58%, and 27.35% for visibility conditions at
14.36, 13.24, and 13.58 m, respectively, after denoising using the
proposed algorithm. These results suggest that the MF-LSTM
algorithm can achieve the denoising of point cloud images of
targets under different visibility levels by denoising single
subbeam echo data.

4 Discussion

4.1 Denoising efficacy of the proposed
algorithm on the target range profiles

To further validate the enhancement of the imaging effect in the
cloudy and foggy scattering environments using the MF-LSTM
algorithm, denoising was applied to the range profiles of the
three targets within the cloudy and foggy environments. We
compared our MF-LSTM algorithm with mean filtering, median
filtering, and the LSTM algorithm for denoising photon count time
distribution data. Using the peak value method to extract the
distance values corresponding to each point from the denoised
data, the distance profiles after denoising with various algorithms
are illustrated in Figure 8.

By calculating the average ranging error of a single pixel in the
three target images before and after denoising, it was observed that
the average ranging error decreased by 61.74%, 65.09%, and 82.88%,
for the “H,” “I,” and “T” target images, respectively, following the

TABLE 1 Visibility and SNR of different targets in the training set.

Object 1 2 3 4 5 6 7 8 9 10

H Visibility (m) 42.46 21.07 22.14 24.25 23.66 23.40 52.11 8.783 9.544 9.617

SNR (dB) 10.25 9.829 9.125 9.990 8.843 9.962 13.61 4.949 5.088 4.616

I Visibility (m) 24.96 23.28 22.24 16.29 15.42 17.15 12.17 9.277 10.02 14.24

SNR (dB) 9.701 8.716 8.617 7.133 6.558 6.106 5.019 3.710 4.575 5.868

T Visibility (m) 21.82 18.54 20.02 18.82 12.22 14.87 18.76 16.93 7.413 9.479

SNR (dB) 9.170 8.432 9.557 9.016 6.018 7.632 9.113 8.572 2.186 4.479

FIGURE 7
(A) Point cloud images of different targets in cloudy and foggy environments; (B) denoising results of the MF- LSTM algorithm.
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application of the MF-LSTM algorithm. This indicates that the MF-
LSTM algorithm effectively enhances the accuracy of imaging in
cloudy and foggy environments.

The quality of the images before and after denoising was
assessed based on the structural similarity index SSIM(x, y) �
[l(x, y)]α · [c(x, y)]β · [s(x, y)]γ [35]. The SSIM values after
denoising using different algorithms are listed in Table 2, where
l(x, y) is the brightness comparison function, c(x, y) is the contrast
comparison function, s(x, y) is the structural comparison function.
l(x, y) � (2�x · �y + C1)/(�x2 + �y2 + C1),
c(x, y) � (2σx · σy + C2)/(σ2x + σ2y + C2),
s(x, y) � (σxy + C3)/(σx · σy + C3), α, β, and γ are constants greater
than 0; �x and �y are the average grayscale values of the image; σx and
σy are the image variances, σxy is the covariance of two images; and
C1, C2 and C3 are constants.

Figure 8 and Table 2 indicate that the backscattering by cloud and
fog has an impact on the imaging of the target distance images leads to
poor image resolution due to the noise distribution. It can be observed
that although the SSIM of the image improved after mean filtering, the
denoising process was less effective infiltering out the noise distribution,
which resulted in a relatively small improvement in the target
resolution. No significant improvement was observed in the SSIM of
the image following median filtering, and in some cases, the SSIM was
even smaller than that of the noisy image, leading to a relatively minor
enhancement in the image. As shown in Figure 8, denoising with the
LSTM algorithm restored the image within the target range compared
to the cloud and fog environment and after mean and median filtering.

However, the noise areas were not entirely filtered out, and the
distinctions between the target and signal regions were relatively
small. The SSIM after denoising using this method was smaller than
that of noisy images, resulting in a poor denoising effect on the range
profiles and no improvement in the target resolution. The application of
the MF-LSTM algorithm not only effectively restored the image within
the target range, but also reduced the noise distribution in the data by
leveraging the difference between the signal and noise in the time
domain based on matched filtering. This process effectively filtered out
noisy areas in the image, thereby improving the SSIM and enhancing
the resolution of the image. These results indicate that the MF-LSTM
algorithm can not only effectively restore the target image, but also filter
out background noise. In comparison to other algorithms, this method
proves effective in enhancing the SSIM of images, thereby improving
the resolution ability of the target image. This indicates that the
proposed method can both denoise point cloud images and restore
distance images. Figure 9 shows the SNR of the image after denoising
using different algorithms.

FIGURE 8
Distance images of the target at 6 m after denoising using different algorithms. Noisy: in cloudy and foggy environments; Mean: mean filtering;
Median: median filtering; Ours: MF-LSTM algorithm. The colorbar represents the distance.

TABLE 2 Comparison of the SSIM values after denoising using different
algorithms.

Object Noisy Mean Median LSTM Ours

H 0.7883 0.8059 0.7847 0.7579 0.9070

I 0.7371 0.7832 0.7418 0.7082 0.9052

T 0.7205 0.7968 0.7885 0.6844 0.9458

FIGURE 9
Image SNR after denoising using different algorithms.
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The SNR of the “H” target in the cloudy and foggy environments
was 7.227 dB as illustrated in Figure 9. The SNRs after denoising
using the mean filtering, median filtering, LSTM and MF-LSTM
algorithms were 21.47, 23.95, 26.10, and 31.35 dB, respectively.
Figure 9 shows an improvement in the SNR of different targets
after denoising using various algorithms. By comparing the SSIM
and SNR of different denoising algorithms, it can be concluded that
the MF-LSTM algorithm provides more effective denoising impact
than other methods. Therefore, it can be applied for denoising active
laser imaging in cloudy and foggy scattering environments.

To further investigate the denoising effect of the MF-LSTM
algorithm on range profiles in various cloud and fog environments,
the initial power of the beam was maintained at a constant value. By
reducing visibility to increase cloud and fog scattering noise,
different levels of noise and signals are obtained. Imaging of the
“H” target was performed at a distance of 6 m under visibility levels
of 9.04, 14.36, and 28.15 m. The SNR and SSIM values of the images
before and after algorithm denoising are presented in Table 3. These
results indicate that the SNR and SSIM of the images processed by
the MF-LSTM algorithm were enhanced, suggesting that this
algorithm is adaptable to different cloud and fog environments.

4.2 Denoising efficacy of the proposed
algorithm on low-reflectivity targets

The target reflectivity influences the number of photons
reflected by the target. When the target reflectivity is low, the
number of reflected photons decreases. Under conditions of high
cloud and fog scattering, accurate distance information of the target
cannot be obtained from echo data. Therefore, this study simulated
the SNR of targets with lower reflectivity in cloud and fog under the
same distance and visibility using the Monte Carlo method [36], and
denoised the data using the MF-LSTM algorithm. The SNR of the
low-reflectivity targets before and after denoising is presented
in Table 4.

It can be concluded that target reflectivity has a significant
impact on the SNR in cloudy and foggy environments. The SNR of
low-reflectivity targets is low. After denoising, the SNR improves
under different low-reflectivity conditions by approximately
10 times, which is basically unaffected by the target reflectivity.

4.3 Denoising efficacy of the proposed
algorithm in high proportion of multiple
scattering

Photons transmitted through cloud and fog undergo multiple
random scatterings by cloud and fog particles. According to Ref.
[37], it is evident that the distance between consecutive
scatterings of photons follows an exponential distribution, and
the time intervals between scatterings also follow an exponential
distribution. A detected photon undergoes multiple scatterings,
and the sum of multiple independent exponential random
variables follows a gamma distribution. Consequently, photons
undergoing multiple scatterings in cloud and fog exhibit a
gamma distribution.

The Monte Carlo simulation method for cloud and fog
scattering [36] is based on Mie scattering theory and multiple
scattering theory. Consequently, this method was employed to
simulate and analyze the multiple scattering of light beams
through cloud and fog at a target distance of 6 m with a SNR of
1.896 dB. Subsequently, the MF-LSTM algorithm was applied for
denoising, and the results are depicted in Figure 10.

From Figure 10A, it is evident that the multiple random
scatterings of photons in cloud and fog lead to photons being
detected by the detector before reaching the target, resulting in
noise distribution preceding the target peak. Additionally, photons
reflected from the target also undergo multiple scatterings, resulting
in noise distribution after the target peak. The peak of cloud and fog
scattering in the photon count time distribution histogram
represents photons that have undergone multiple scatterings,
revealing the statistical characteristics of cloud and fog. The
broadening effect is evident, displaying a gamma distribution,
which is consistent with theoretical expectations. The target peak
also exhibits broadening, but the photons within the target peak still
retain the information of essentially unscattered ballistic photons.
The broadening effect is less pronounced compared to the cloud and
fog scattering peak, indicating a distinction between the two
distributions. As depicted in Figure 10A, the noise peak caused
by multiple scatterings in cloud and fog surpasses the target signal
peak. This results in the inability to accurately extract the target
signal, consequently leading to reduced ranging accuracy.
Leveraging the distinctions between the gamma distribution noise
caused by multiple scatterings in cloud and fog and the target signal
peak, this study employs the MF-LSTM algorithm to extract the
target signal peak, achieving the removal of noise from multiple
scatterings in cloud and fog. From Figure 10B, it can be concluded
that the MF-LSTM algorithm effectively filters out the noise from
multiple scatterings by exploiting the disparities between noise and
signal distributions. After denoising, a distinct target signal peak is

TABLE 3 Denoising effect of MF-LSTM on range profiles under different cloud and fog conditions.

Visibility (m) 9.04 14.36 28.15

Noisy MF-LSTM Noisy MF-LSTM Noisy MF-LSTM

SNR (dB) 4.919 29.07 7.227 31.35 10.18 31.42

SSIM 0.7471 0.8195 0.7883 0.9070 0.8385 0.9090

TABLE 4 SNR of the MF-LSTM denoised under low-reflectivity targets (dB).

Reflectivity 0.1 0.2 0.3 0.4 0.5

Noisy 0.8573 1.008 1.062 1.096 1.241

MF-LSTM 12.82 12.83 12.84 13.12 13.15
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obtained, thereby enhancing ranging accuracy. The SNR increases to
12.53 dB after denoising. Hence, it can be inferred that the MF-
LSTM algorithm is capable of improving ranging accuracy and SNR
in scenarios characterized by a high proportion of multiple
scattering in cloud and fog.

Monte Carlo simulation can also be used to simulate near-zero
visibility environments, which are difficult to produce in the
laboratory. Subsequently, the data can be denoised using the MF-
LSTM algorithm, with the denoising results presented in the Section
3 of the Supplementary Material. Additionally, Monte Carlo
simulation can be employed to assess the denoising performance
of the MF-LSTM algorithm under different cloud and fog particle
sizes, with corresponding results provided in the Section 4 of the
Supplementary Material.

4.4 Denoising efficacy of the proposed
algorithm under different learning rates

The learning rate represents the step length at which the
gradient moves towards the optimal solution of the loss function
in each iteration. If the learning rate is too high, it may cause the
network to fail to converge. Conversely, if the learning rate is too
low, it may slow the network’s training speed and increase
training time. This study investigates the changes in the
denoising effectiveness of imaging target “I” under different
learning rates when the visibility is 13.24 m, the SNR is
5.708 dB and the SSIM is 0.7131, as shown in Table 5. The
data in this table shows that at a learning rate of 5 × 10−6,
both the SNR and SSIM are relatively high, prompting the
selection of this learning rate for denoising the target.

We next compare the method proposed in this study with
previous denoising schemes in cloudy and foggy environments.
Feng Huang et al. [16] established a range-gated method for
image denoising under cloud and fog conditions, which improves
signal strength by shielding scattered light outside of the selected
area. However, when the cloud and fog concentration is high, the
gating method has little effect on the image improvement, and post-
processing algorithms are still needed to process the image. The MF-

LSTM algorithm can still recover the signal peak of the target and
improve imaging performance even when the cloud and fog
backscatter is high and the echo signal reflected by the target is
low. Sang et al. [38] proposed a defogging method based on fog
contour estimation, which involves subtracting the fog peak directly
from histograms to reduce false alarms caused by fog at close
distances. At a visibility of 50 m, this method was affected by the
uneven distribution of cloud and fog, leading to inaccurate fog
contour estimates and poor denoising results, with many noise
points remaining in the images. In contrast, our study achieved
effective filtration of cloud and fog noise in denser fog with a
visibility of 14 m. The denoised images exhibit clear and visible
target contours, with cloud and fog noise points effectively removed.
Daiki Kijima et al. [39] proposed a method using double gating
exposures under short pulse modulation, employing additional time
gating exposures to estimate the scattering characteristics of fog and
compensate for its scattering effects, thereby reconstructing target
depth and intensity information. The image SNR of the method is
27.04 dB in dense fog environments, which is lower than the
29.07 dB achieved in this study. Lu et al. [40] developed an
algorithm to mitigate the effects of scattering media during the
imaging process of time-of-flight cameras. Their approach began
with applying threshold segmentation to the depth histograms of
images to eliminate interference from backscatter noise. This was
followed by an image restoration algorithm based on atmospheric
backlight prior knowledge to remove image disturbances. Finally,
outliers in the images were removed. Their experiments denoised
images of objects located 2 m away, achieving a maximum increase
in the SSIM to approximately 0.7, showing only a slight
improvement in SSIM compared to noise images under cloudy
and foggy conditions. In contrast, our study conducted in a cloud
and fog environment with a visibility of 13.24 m and targeting an
object at a distance of 6 m, was able to increase the SSIM to 0.9052.
Therefore, the denoising algorithm proposed in our study
demonstrates a significant improvement over this method. By
comparing with the above research in dense fog environments
with this study, it can be concluded that the MF-LSTM
algorithm exhibits superior denoising effectiveness when the
cloud and fog backscattering is high.

FIGURE 10
(A) Histogram of photon count time distribution after multiple scatterings in cloud and fog; (B) Denoising results obtained using the MF-
LSTM algorithm.
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To further extend the application of the algorithm in different
scenarios, additional studies will be conducted on image denoising
for complex targets and longer distances in realistic cloud and fog
scenarios. A denoising database will be established, and the
network’s robustness in various realistic scenarios will be enhanced.

5 Conclusion

We introduced a novel method to enhance imaging performance
in cloudy and foggy scattering environments by combining matched
filtering and the LSTM algorithm. This approach initially employs
matched filtering to process the data and extract the target signal
based on the difference in the noise and signal distribution in the
time domain, thereby preliminary filtering out noise. Subsequently,
leveraging the advantages of LSTM in extracting complex temporal
signal features, further denoising is conducted under cloud and fog
environments. Experimental imaging of different targets under
cloud and fog conditions was performed. Our method
demonstrated superior performance in denoising cloud and fog
scattering noise and recovering target information compared to the
results obtained using mean filtering, median filtering, and LSTM
algorithm without matched filtering.

The experimental results indicated that the proposed method
exhibited a notable denoising effect on the data at various visibility
levels, and the SNR distribution after denoising remained relatively
stable across different visibility conditions. The SNR for imaging the
“H” target under cloud and fog conditions increased from 7.227 to
31.35 dB, demonstrating a superior improvement compared to
21.47 dB for mean filtering, 23.95 dB for median filtering, and
26.10 dB for the LSTM algorithm without matched filtering. The
SSIM increased from 0.7883 to 0.9070, showing a more significant
improvement compared to 0.8059 for mean filtering, 0.7847 for
median filtering, and 0.7579 for the LSTM algorithm without
matched filtering. The proposed method demonstrated
effectiveness in denoising one-dimensional echo data under
different visibility levels and in improving two-dimensional range
profiles and three-dimensional point cloud images. In summary, the
MF-LSTM algorithm achieved improvement in denoising compared
to related methods by leveraging the ability of matched filtering to
extract signals based on noise and signal distribution differences
along with the advantages of the LSTM algorithm in processing
complex time-series signals. This method exhibits superior
denoising effects on cloud and fog scattering noise compared to
other related methods. It has the potential to contribute not only to
research on improving target imaging in cloudy and foggy scattering
environments but also to provide assistance in other fields such as
scattering environment imaging, target recognition, and target
visualization.

It has potential applications in specific fields such as navigation
or underwater exploration. By pre-collecting data under various

environmental conditions, the network can be comprehensively
trained and tested to ensure robust restoration performance
under various scenarios. Subsequently, directly inputting real
navigation data into the trained network can reduce
computational complexity and ensure practicality. The time
consumption for inputting test data directly into the trained MF-
LSTM algorithm is 0.2395 s, meeting the real-time requirements for
navigation under non-emergency situations. During actual
navigation, different weather conditions may result in differences
between received target signals and ideal signals in terms of shape.
To enhance the accuracy and robustness of signal detection, the
response function of the matched filtering in the MF-LSTM
algorithm can be dynamically adjusted. Moreover, in underwater
detection, regularization layers can be added to the network to
randomly drop a portion of neurons, enhancing the model’s
adaptability to small variations in input data and robustness in
diverse environments.
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