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The irregular solutions of the stationary Schrödinger equation are important for the
fundamental formal development of scattering theory. They are also necessary for
the analytical properties of the Green function, which in practice can greatly speed
up calculations. Nevertheless, they are seldom considered in numerical treatments
because of their divergent behavior at origin. This divergence demands high
numerical precision that is difficult to achieve, particularly for non-spherical
potentials which lead to different divergence rates in the coupled angular
momentum channels. Based on an unconventional treatment of boundary
conditions, an integral-equation method is here developed which is capable of
dealing with this problem. The available precision is illustrated by electron-density
calculations for NiTi in its monoclinic B19’ structure.
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1 Introduction

The problem of the numerical solution of the stationary Schrödinger equation for a single
particle has been investigated in very many scientific publications but rarely with a focus on
irregular solutions. While, for spherical potentials, the separation of radial and angular
variables simplifies the problem into the solution of one-dimensional radial Schrödinger
equations, the situation is more complicated for non-spherical potentials. Here, the separation
of variables leads to radial equations where different angular momentum components are
coupled by the non-diagonal potential matrix elements. If, as usual, a cutoff is applied by
restricting angular-momentum components to l≤ lmax, then lmax + 1 independent second-
order linear differential equations must be solved for spherical potentials, while a set of
(lmax + 1)2 coupled second-order linear differential equations must be solved for non-
spherical potentials. This represents a significant complication, particularly for the
irregular solutions, which diverge with different powers of the radial variable r as r−l−1.

It is the purpose of this paper to present an approach which is capable of treating the
divergent behavior in a numerically efficient manner. The approach is based on the integral-
equation method of Gonzales et al. [1], who obtained regular solutions of the radial
Schrödinger by integrations using Clenshaw–Curtis quadratures [2]. The numerical
solution of second-order differential equations by integral-equation methods was
introduced by Greengard [3] and Greengard and Rokhlin [4], who observed that stable,
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high-order numerical methods exist for the solution of integral
equations. For instance, evaluation of the integrals with
Clenshaw–Curtis quadratures leads to spectral accuracy. Spectral
accuracy means that the results converge with the inverse pth power
of the number of mesh points for p-times continuously
differentiable integrands and exponentially for p → ∞. In
contrast to this, the accuracy of solutions of differential equations
by finite difference methods, like the Numerov method used in [5], is
limited by a small inverse power of the number of mesh points.

The paper is organized as follows. In Section 2, the mathematical
approach is presented. First, the integral equations for the coupled radial
equations are defined and their boundary conditions are discussed.
Then, we explain how the numerical effort can be reduced by using
auxiliary integral equations and how discretization at Chebyshev
collocation points leads to systems of linear algebraic equations
which can be solved by standard numerical techniques. In Section 3,
two examples are numerically investigated: a constant potential,
for which the results are compared to the analytical results derived
from the expressions given in Appendix A, and a realistic potential
as it appears in all-electron density-functional electronic-structure
calculations. It is shown that accurate bound-state wavefunctions
and energies are obtained for constant potentials and that
straightforward complex-contour integrations for calculating the
electron density from the Green function can be applied. For that
purpose, the correct divergence of the Green function at the origin
is enforced by using unconventional boundary conditions. The
numerical investigations are done with the KKRnano code of the
JuKKR code package. This code is based on the full-potential
screened Korringa–Kohn–Rostoker Green function method [6]
and was developed for density-functional calculations for systems
with thousands of atoms [7].

2 Mathematical approach

2.1 Coupled radial equations

The coupled regular and irregular solutions of the
Schrödinger equation

−∇2
r + V r( ) − E[ ]Ψ r;E( ) � 0 (1)

for the potential V(r) can be defined [8] by linear Fredholm integral
equations of the second kind as

RL′L r; k( ) � jl′ kr( )δL′L + ∫ ∞

0
dr′r 2′ gl′ r, r′; k( )

× ∑
L″
VL′L″ r′( )RL″L r′; k( ) (2)

and as

SL′L r; k( ) � −ikh 1( )
l′ kr( )βL′L k( ) + ∫ ∞

0
dr′r 2′ gl′ r, r′; k( )

× ∑
L″

VL′L″ r′( )SL″L r′; k( ). (3)

Here

VLL′ r( ) � ∫dr̂YL r̂( )V r( )YL′ r̂( ) (4)

are matrix elements of the potential and

βL′L k( ) � δL′L − ∫ ∞

0
drr2jl′ kr( )∑

L″
VL′L″ r( )SL″L r; k( ) (5)

is a matrix, which implicitly depends on the irregular solutions. The
function gl(r, r′; k) is given by

gl r, r′; k( ) � −ik jl kr( )h 1( )
l kr′( ) for r≤ r′

h 1( )
l kr( )jl kr′( ) for r≥ r′.{ (6)

In these equations and throughout the paper, Rydberg atomic units
are used. jl, h

(1)
l � jl + inl, and nl are spherical Bessel, Hankel, and

Neumann functions, YL spherical harmonics, and L a combined
index for the angular momentum quantum numbers l and m,
respectively. Radial and angular variables are denoted by r � |r|
and r̂ � r/r, respectively, and k � 		

E
√

is the square root of the
energy variable.

The important difference between the inhomogeneous
integral Eq. 2 for the regular solutions and Eq. 3 for the
irregular solutions is that the source term in Eq. 2 contains
Bessel functions, which lead to the rl′ behavior of the regular
solutions RL′L(r; k) at the origin. The source term in Eq. 3
contains Hankel functions, which lead to the r−l′−1 behavior of
the irregular solutions SL′L(r; k) at the origin. The numerical
solution of Eq. 3 demands high accuracy because the integrand
contains functions which increase with different powers r−l″−1 at
the origin.

If, as is often done, the coupled radial solutions are not
determined from the Fredholm integral Eqs 2, 3 but from
differential equations, an additional difficulty arises. The
differential equations can be obtained from Eqs 2, 3 by applying
the operator

Lr � − d2

dr2
− 2
r

d
dr

+ l′ l′ + 1( )
r2

− k2. (7)

With Lrgl′(r′, r; k) � −δ(r − r′)/r′2, Lrjl′(kr) � 0, and
Lrh

(1)
l′ (kr) � 0, this leads to the coupled Schrödinger equations

∑
L″

− d2

dr2
− 2
r

d
dr

+ l′ l′ + 1( )
r2

− k2( )δL′L″ + VL′L″ r( )[ ]RL″L r; k( ) � 0

(8)
for the regular solutions RL″L(r; k) and to an identical equation
for the irregular solutions SL″L(r; k). With the cutoff l≤ lmax, the
differential equation Eq. 8 has 2(lmax + 1)2 linearly independent
solutions—one regular and one irregular solution for each value
of L. The different solutions are distinguished by different
boundary conditions. These conditions must be specified
explicitly for the differential equation (Eq. 8) while they are
naturally contained in the integral equations (Eqs 2, 3) as a
consequence of the source terms. During the numerical solution
of the differential equation (Eq. 8), it is essential to maintain the
linear independence of the solutions. Because of the
discretization error, this represents a considerable challenge
already for the regular solutions, for instance, as explained in
[9], and an even greater challenge for the irregular solutions
because these diverge at the origin. A discretization error, of
course, also occurs in numerical treatments of integral equations,
but by using Clenshaw–Curtis quadrature, the error can be made
substantially smaller so that accurate results can be achieved.
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2.2 Boundary conditions

To discuss the boundary conditions, it is convenient to
assume finite integration limits rmin and rmax. This is
equivalent to the assumption that the potential vanishes for
r≤ rmin and r≥ rmax. For such potentials, the integral equation
Eq. 3 can be written as

SL′L r; k( ) � −ikh 1( )
l′ kr( )βL′L k( ) − ikh 1( )

l′ kr( )∫ r

rmin

dr′r 2′ jl′ kr′( )
×∑

L″
VL′L″ r′( )SL″L r′; k( )

−ikjl′ kr( )∫ rmax

r
dr′r 2′ h 1( )

l′ kr′( )
×∑

L″
VL′L″ r′( )SL″L r′; k( ), (9)

where Eq. 6 was used. With

βL′L k( ) � δL′L − ∫ rmax

rmin

dr′r 2′ jl′ kr′( )∑
L″

VL′L″ r′( )SL″L r′; k( ), (10)

which arises from Eq. 5 for the finite integration limits, Eq. 9 for
SL′L(r; k) can be rewritten as

SL′L r; k( ) � − ikh 1( )
l′ kr( )δL′L + ikh 1( )

l′ kr( )∫ rmax

r
dr′r 2′ jl′ kr′( )

×∑
L″

VL′L″ r′( )SL″L r′; k( )
−ikjl′ kr( )∫ rmax

r
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )SL″L r′; k( ).
(11)

This shows that the irregular solutions can be expressed as

SL′L r; k( ) � −ikjl′ kr( )CL′L r; k( ) − ikh 1( )
l′ kr( )DL′L r; k( ), (12)

where the matrix functions CL′L(r; k) and DL′L(r; k) are defined as

CL′L r; k( ) � ∫ rmax

r
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )SL″L r′; k( ) (13)

and as

DL′L r; k( ) � δL′L − ∫ rmax

r
dr′r 2′ jl′ kr′( )∑

L″
VL′L″ r′( )SL″L r′; k( ). (14)

From Eq. 12, the inner and outer boundary conditions are
obtained as

SL′L r; k( ) � −ik jl′ kr( )CL′L rmin; k( ) + h 1( )
l′ kr( )DL′L rmin; k( ) for r≤ rmin

h 1( )
l′ kr( )δL′L for r≥ rmax

{ .

(15)

Like Eq. 12, the regular solutions can be expressed as

RL′L r; k( ) � jl′ kr( )AL′L r; k( ) − ikh 1( )
l′ kr( )BL′L r; k( ) (16)

with matrix functions AL′L(r; k) and BL′L(r; k) defined as

AL′L r; k( ) � δL′L − ik∫ rmax

r
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )RL″L r′; k( )
(17)

and as

BL′L r; k( ) � ∫ r

rmin

dr′r 2′ jl′ kr′( )∑
L″

VL′L″ r′( )RL″L r′; k( ). (18)

This can be shown by using Eq. 6 in Eq. 2, which results in

RL′L r; k( ) � jl′ kr( )δL′L −ikjl′ kr( )∫ rmax

r
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )RL″L r′; k( )
−ikh 1( )

l′ kr( )∫ r

rmin
dr′r 2′ jl′ kr′( )∑

L″
VL′L″ r′( )RL″L r′; k( ).

(19)

From Eq. 16, the inner and outer boundary conditions are
obtained as

RL′L r; k( ) � jl′ kr( )AL′L rmin; k( ) for r≤ rmin

jl′ kr( )δL′L − ikh 1( )
l′ kr( )BL′L rmax; k( ) for r≥ rmax

{
(20)

2.3 Auxiliary integral equations

The use of integral equations instead of differential
equations has been hindered in the past by the much larger
computational work. When the interval from rmin to rmax is
discretized by N mesh points, the integral equations given
above can be converted into systems of linear algebraic
equations with the dimension N. Thus, the computing time
scales as N3 whereas the computing time to solve linear
differential equations typically scales only linearly with N.
This means that the effort increases with the third power of
the interval length |rmax − rmin| for the solution of linear integral
equations, but only linearly with |rmax − rmin| for the solution of
linear differential equations.

To overcome this problem, Greengard and Rokhlin [4]
observed that the cubic scaling with |rmax − rmin| is avoided by
dividing the interval into subintervals and by solving auxiliary
integral equations locally in each subinterval. If the interval
[rmin, rmax] is divided into N subintervals [rn−1, rn] with r0 �
rmin and rN � rmax and if p discretization points are used in each
subinterval, the computing time scales as Np3 for the solution of
the auxiliary integral equations. Thus, it increases only linearly
with the interval length |rmax − rmin|. Admittedly, the prefactor
p3 can be large, but this is not a serious drawback in view of
current computer capabilities. The method of subintervals is
based on the property that the integral equation Eq. 11 for the
coupled irregular solutions can be written as

SL′L r; k( ) � −ikjl′ kr( )CL′L rn; k( ) − ikh 1( )
l′ kr( )DL′L rn; k( )

−ikjl′ kr( )∫ rn

r
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )SL″L r′; k( )
+ikh 1( )

l′ kr( )∫ rn

r
dr′r 2′ jl′ kr′( )∑

L″
VL′L″ r′( )SL″L r′; k( )

(21)
where the matrix function (Eqs 13, 14) are used for the particular
value rn and the integrals arise from deviations of the matrix
functions at r and rn. The idea is to solve Eq. 21 separately for
each subinterval with r restricted as rn−1 ≤ r≤ rn by introducing
auxiliary integral equations
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Yn
L′L r; k( ) � jl′ kr( )δL′L − h 1( )

l′ kr( )∫ rn

r
dr′r 2′ jl′ kr′( )

×∑
L″

VL′L″ r′( )Yn
L″L r′; k( ) + jl′ kr( )∫ rn

r
dr′r 2′ h 1( )

l′ kr′( )
×∑

L″
VL′L″ r′( )Yn

L″L r′; k( ) (22)

and

Zn
L′L r; k( ) � h 1( )

l′ kr( )δL′L − h 1( )
l′ kr( )∫ rn

r
dr′r 2′ jl′ kr′( )

×∑
L″

VL′L″ r′( )Zn
L″L r′; k( ) + jl′ kr( )∫ rn

r
dr′r 2′ h 1( )

l′ kr′( )
×∑

L″
VL′L″ r′( )Zn

L″L r′; k( ). (23)

The advantage of introducing these local solutions is that they do
not depend on the unknown solution SL′L(r; k), unlike Eq. 21
which contains the matrix functions Eq. 13 and Eq. 14. With the
local solutions, which can be obtained numerically as described
in Section 2.5, the irregular solution can be expressed in the
interval [rn−1, rn] as
SL′L″ r; k( ) � −ik∑

L

Zn
L′L r; k( )CLL″ rn; k( ) + Yn

L′L r; k( )DLL″ rn; k( )[ ].
(24)

This can be verified by multiplying Eq. 22 with DLL′′′(rn; k) and Eq.
23 with CLL′′′(rn; k), which yields

Yn
L′L r; k( )DLL‴ rn; k( ) � jl′ kr( )DL′L‴ rn; k( )

−h 1( )
l′ kr( )∫ rn

r
dr′r 2′ jl′ kr′( )

×∑
L″

VL′L″ r′( )Yn
L″L r; k( )DLL‴ rn; k( )

+jl′ kr( )∫ rn

r
dr′r 2′ h 1( )

l′ kr′( )
×∑

L″
VL′L″ r′( )Yn

L″L r; k( )DLL‴ rn; k( ), (25)

Zn
L′L r; k( )CLL‴ rn; k( ) � h 1( )

l′ kr( )CL′L‴ rn; k( )
−h 1( )

l′ kr( )∫ rn

r
dr′r 2′ jl′ kr′( )

×∑
L″

VL′L″ r′( )Zn
L″L r; k( )CLL‴ rn; k( )

+jl′ kr( )∫ rn

r
dr′r 2′ h 1( )

l′ kr′( )
×∑

L″
VL′L″ r′( )Zn

L″L r; k( )CLL‴ rn; k( ). (26)

Adding Eqs 25, 26 both multiplied with −ik and summed over L,
leads to an integral equation which, compared with Eq. 21, contains
the same source term and kernel. Thus, the left and right sides of Eq.
24 represent the same function.

It remains to calculate the matrix functions given by Eqs 13,
14 at the subinterval boundaries rn. This can be done
recursively by recognizing that these functions satisfy the
expressions

CL′L rn−1; k( ) � CL′L rn; k( ) + ∫ rn

rn−1
dr′r 2′ h 1( )

l′ kr′( )
× ∑

L″
VL′L″ r′( )SL″L r′; k( ) (27)

and

DL′L rn−1; k( ) � DL′L rn; k( ) − ∫ rn

rn−1
dr′r 2′ jl′ kr′( )

× ∑
L″

VL′L″ r′( )SL″L r′; k( ) (28)

and by using Eq. 24, which shows that the function SL″L(r′; k) can
be expressed by the local solutions Yn

L′L(r; k) and Zn
L′L(r; k). This

leads to the integrals

M hY( )
L′L n; k( ) � −ik∫ rn

rn−1
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )Yn
L″L r′; k( ) (29)

M hZ( )
L′L n; k( ) � −ik∫ rn

rn−1
dr′r 2′ h 1( )

l′ kr′( )∑
L″

VL′L″ r′( )Zn
L″L r′; k( ) (30)

M
jY( )

L′L n; k( ) � −ik∫ rn

rn−1
dr′r 2′ jl′ kr′( )∑

L″
VL′L″ r′( )Yn

L″L r′; k( ) (31)

M
jZ( )

L′L n; k( ) � −ik∫ rn

rn−1
dr′r 2′ jl′ kr′( )∑

L″
VL′L″ r′( )Zn

L″L r′; k( ) (32)

which must be evaluated numerically as described in Section 2.5. By
using Eqs 29–32 the expressions (Eqs 27, 28) can be written as
recursion relations

CL′L rn−1; k( ) � CL′L rn; k( ) +∑
L″

M hZ( )
L′L″ n; k( )CL″L rn; k( )

+∑
L″

M hY( )
L′L″ n; k( )DL″L rn; k( ) (33)

DL′L rn−1; k( ) � DL′L rn; k( ) −∑
L″

M
jZ( )

L′L″ n; k( )CL″L rn; k( )

−∑
L″

M
jY( )

L′L″ n; k( )DL″L rn; k( ), (34)

starting from CL′L(rN; k) � 0 and DL′L(rN; k) � δL′L.
The method of subintervals is particularly advantageous for

potentials with a finite number of discontinuities in the radial
direction. Such discontinuities arise, for instance, in full-
potential Korringa–Kohn–Rostoker calculations where the
angular integration in Eq. 4 must be cut off at boundaries of
the atomic cells, which leads to jumps in the radial derivative of
the matrix elements of the potential. If the interval boundaries rn
are adapted to the discontinuities, the discontinuous behavior is
treated without numerical approximations, which means that
numerical errors only depend on the smoothness of the potential
within the intervals. The method of subintervals is also
advantageous from a computational point of view because the
auxiliary functions Eqs 22, 23 and then the integrals in Eqs 29–32
can be calculated efficiently on multi-core processors separately
for each value of n.

2.4 Modified boundary conditions

In order to understand the necessity of modified boundary
conditions for accurate density calculations, it is useful to
consider the complex-contour integral

n r( ) � −2
π
lim
r′→r

Im∫ EF+i0+

−∞
dϵG r, r′; ϵ( ). (35)
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which is used to calculate the density from the Green function for the
Schrödinger equation (Eq. 1). Here, EF is the Fermi energy, which
determines the total charge and i0+ a positive infinitesimal
imaginary quantity, which is used to avoid the singularities
which exist for real values of ϵ. Around each atomic position, the
Green function can be written as

G r, r′; k( ) � ∑
LL′

YL r̂( )YL′ r̂′( )GLL′ r, r′; k( ) (36)

where k is given by k � 	ϵ√
. The matrix function GLL′(r, r′; k)

consists of two contributions, so-called “single-scattering” and
“multiple-back-scattering” parts. While the back-scattering part is
determined by coupled regular solutions alone, the single-scattering
part contains the divergent irregular solutions in the form [8]:

GLL′ r, r′; k( ) � ∑
L″

SLL″ r>; k( )RL′L″ r<; k( ). (37)

Here, r< and r> are defined as r< � min(r, r′) and r> � max(r, r′),
respectively. The effectiveness of the contour integral Eq. 35 arises
from the fact that the contour can be chosen in the upper half of the
complex-ϵ plane, where the integrand is an analytical function of ϵ,
such that with only 20–30 mesh points on the contour [10], highly
accurate density results are obtained even for large systems with many
thousands of atoms.

Unfortunately, for the contour integral in Eq. 35, the irregular
solutions are absolutely necessary to maintain the analytical
behavior of the Green function as discussed in [11]. In a
numerical treatment with the standard boundary conditions Eqs
15–20, the divergent behavior of the matrix function GLL′(r, r′; k) is
given by

−ik∑
L″

h 1( )
l kr( )DLL″ rmin; k( )AL′L″ rmin; k( )jl′ kr′( ) (38)

for r≤ r′≤ rmin. The correct behavior

−ikjl kr( )h 1( )
l kr′( )δLL′ (39)

is obtained from Eq. 80 derived in Appendix A. Comparison of
Eqs 38, 39 shows that the transpose of the matrix A(rmin; k)must
be equal to the inverse of the matrix D(rmin; k). Numerically, this
cannot be achieved because two different integral equations
(Eqs 2, 3) are used to calculate these matrices. A solution for
this problem is to apply modified irregular and regular solutions
defined as

~SL′L r; k( ) � ∑
L″

SL′L″ r; k( )D−1
L″L rmin; k( ) (40)

~RL′L r; k( ) � ∑
L″

RL′L″ r; k( )A−1
L″L rmin; k( ). (41)

These solutions have the inner boundary conditions

~SL′L r; k( ) � −ikjl′ kr( )∑
L″

CL′L″ rmin; k( )D−1
L″L rmin; k( )

−ikh 1( )
l′ kr( )δL′L (42)

and

~RL′L r; k( ) � jl′ kr( )δL′L (43)
for r≤ rmin such that the divergent part of the matrix function

GLL′ r, r′; k( ) � ∑
L″

~SLL″ r>; k( )~RL′L″ r<; k( ) (44)

has the correct behavior given in Eq. 39.
The modified irregular solutions can be calculated by

~SL′L″ r; k( ) � −ik∑
L

Zn
L′L r; k( )~CLL″ rn; k( ) + Yn

L′L r; k( ) ~DLL″ rn; k( )[ ],
(45)

which is obtained from Eq. 24 by multiplication with the matrix
D−1(rmin; k) from the right. The matrices ~C(rn; k) and ~D(rn; k),
which are given by

~CLL′ rn; k( ) � ∑
L″

CLL″ rn; k( )D−1
L″L′ rmin; k( ) (46)

and by

~DLL′ rn; k( ) � ∑
L″

DLL″ rn; k( )D−1
L″L′ rmin; k( ), (47)

satisfy the recursion relations Eqs 33, 34 with C andD replaced by ~C
and ~D. The only difference is that the starting values are changed
fromCL′L(rN; k) � 0 andDL′L(rN; k) � δL′L to ~CL′L(rN; k) � 0 and
~DL′L(rN; k) � D−1

L′L(rmin; k).
The disadvantage of the recursion for ~C and ~D is that the

matrix ~D(rN; k) is known only approximately, for instance, by
using the numerically obtained result for D(rmin; k). This
minor problem, however, is offset by the significant advantage
that the error is known, which arises from the inaccuracy of
D(rmin; k), from the numerical approximations necessary to
solve the auxiliary integral equations and from roundoff errors.
This error is given by the difference between ~D

(1)
L′L(rmin; k), which is

the numerical result obtained after the recursion, and δL′L, which is
the exact result for ~DL′L(rmin; k). The knowledge of ~D

(1)
L′L(rmin; k)

can be used in a second recursion starting from a better
approximation for ~D(rN; k) given as the product of D−1(rmin; k)
and the inverse of ~D

(1)(rmin; k). Further improved recursions can be
added. In the present study, where electron densities up to lmax � 8
were considered, rapid convergence was observed, and no more than
two or three passes through the recursion were necessary.

While the straightforward use of repeated recursions for ~C and
~D successfully deals with numerical approximations, the problem of
roundoff errors requires modification of the recursion relations such
that not ~D but

D̂L′L rn; k( ) � ~DL′L rn; k( ) − δL′L (48)
is calculated directly. The modified recursion relations given by

~CL′L rn−1; k( ) � ~CL′L rn; k( ) +M hY( )
L′L n; k( )

+∑
L″

M hZ( )
L′L″ n; k( )~CL″L rn; k( )

+∑
L″

M hY( )
L′L″ n; k( )D̂L″L rn; k( ) (49)

D̂L′L rn−1; k( ) � D̂L′L rn; k( ) −M
jY( )

L′L″ n; k( )
−∑

L″
M

jZ( )
L′L″ n; k( )~CL″L rn; k( )

−∑
L″

M
jY( )

L′L″ n; k( )D̂L″L rn; k( ) (50)
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lead to a matrix D̂L′L(rmin; k) with norm ‖D̂L′L(rmin; k)‖≪ 1 such
that the required inverse of ~DL′L(rmin, k) � D̂(rmin, k) + δL′L can be
calculated reliably as −D̂(rmin, k) + δL′L. If necessary, further
reduction of ‖D̂L′L(rmin; k)‖ can be achieved by evaluating Eqs
49, 50 with extended precision.

2.5 Numerical treatment

The integral-equation method of Greengard [3], Greengard and
Rokhlin [4], and Gonzales et al. [1] is based on expansions of the
potential and solutions of the local integral equations (Eqs 22, 23) in
Chebyshev polynomials Tm(x) � cos(m arccos(x)). The method
uses the property that the integral

F τ( ) � ∫ 1

τ
dτ′f τ′( ) (51)

of a function

f τ( ) � ∑M
m�0

fmTm τ( ) (52)

can be evaluated at the collocation points

τm � cos
2m + 1( )π
2 M + 1( ) , (53)

by matrix multiplication

F τm( ) � ∑M
m′�0

T mm′f τm′( ). (54)

The collocation points τm are the zeros of the Chebyshev
polynomial TM+1(τ). The matrix T is given by the product
C−1SC where C and S are the “discrete cosine–transform” and
“right spectral integration” matrices. The discrete
cosine–transform matrix, which is given by

Cmm′ � Tm τm′( ), (55)
connects the coefficients fm of the Chebyshev series Eq. 52 with
values of the function at the zeros Eq. 53 by

fm � ∑M
m′�0

Cmm′f τm′( ). (56)

The right spectral integration matrix given in [1] connects the
coefficients Fm of the Chebyshev series

F τ( ) � ∑M
m�0

FmTm τ( ) (57)

with the coefficients fm by

Fm � ∑M
m′�0

Smm′fm′. (58)

In Eq. 57, the (M+ 1)-th coefficient is neglected, which is justified
because of the fast decay of Fm with increasing m for sufficiently
smooth functions. The matrix S has the non-zero elements S00 � 1,
S01 � 1/4, S10 � −1, S12 � 1/2, and, for m≥ 2, the non-zero
elements S0m � 1/(1 −m2), Sm,m+1 � 1/2m, and Sm,m−1 � −1/2m.
These values can be obtained by using the integration rules for

Chebyshev polynomials. By using Eq. 54, the local integral equations
(Eq. 22) are approximated by

Yn
L′L τm; k( ) � h 1( )

l′ kτm( )δL′L + rn − rn−1
2

∑M
m′�0

∑
L″

Amm′
L′L″Y

n
L″L τm′; k( )

(59)
where the factor (rn − rn−1)/2 comes from the substitution
x � 2(r − rn−1)/(rn − rn−1) − 1, which transforms the interval
[rn−1, rn] into [−1, 1]. The matrix A is given by

Amm′
L′L″ � −h 1( )

l′ kτm( )jl′ kτm′( ) + jl′ kτm( )h 1( )
l′ kτm′( )[ ]T mm′τ

2
m′VL′L″ τm′( ).

(60)
The system Eq. 59 of linear equations can be efficiently solved by
standard linear algebra software. It has dimension
(lmax + 1)2(M + 1) and requires a computing effort that scales as
(lmax + 1)6(M + 1)3.

While, in principle, the subintervals can be chosen arbitrarily,
the choice should be adapted to the divergent behavior of the
irregular solutions for r → 0. A suitable choice is given by the
prescription rn−1 � αrn with α � (r0/rN)1/N � (rmin/rmax)1/N. The
transformation to the standard expansion interval [−1, 1] is
obtained by the substitution r � 1

2rn[(1 − α)τ + 1 + α]. For
inverse powers of r, the substitution leads to

∫ rn

αrn

1
rl
dr � 2l−1

1 − α( )l−1rl−1n

∫ 1

−1
1

a + τ( )l dτ (61)

with a � (1 + α)/(1 − α). Here, the integrand and the integration
limits for the integral over τ do not depend on n. Thus, without
changing the Chebyshev-expansion order, the same relative
accuracy is obtained for all intervals.

3 Numerical investigation

The numerical performance is investigated for two examples: a
constant potential, which is analytically solvable, and a realistic non-
spherical potential, which is obtained by density-functional
electronic-structure calculations for an ordered nickel–titanium
alloy. It is shown for the constant potential that accurate bound-
state energies and wavefunctions can be obtained from the irregular
solutions calculated by the integral-equation approach and that the
error of calculated bound-state energies decreases exponentially
with the order of the Chebyshev expansion. For the NiTi alloy, it
is shown that the irregular solutions obtained can be used in
complex-contour integrations to calculate the density from the
full-potential multiple-scattering Green function. Thus, such
calculations can be performed straightforwardly for systems with
many atoms in contrast to other treatments suggested in the past
[11–13], which are rather elaborate and unlikely to be useful for
systems with more than a few atoms.

3.1 Bound states for a constant potential

The standard method for calculating bound states is based on
the property that regular solutions of the Schrödinger equation
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vanish at infinity if they are evaluated for the correct bound-state
energy. For trial energies, the differential equation is solved from the
inside, starting with the correct power rl at r � 0, and from the
outside starting with 0 at a large value of r. The bound-state energy
and wavefunction are found if, for the chosen trial energy, the
logarithmic derivatives of both solutions continuously match at an
intermediate value of r. The alternative method suggested here is
based on the property that irregular solutions of the Schrödinger
equation vanish at the origin if they are evaluated for the
correct bound-state energy. For a constant potential, because
of its spherical symmetry, the irregular solutions are decoupled
SL′L(r; k) � Sl′(r; k)δL′L and the inner boundary condition Eq. 15
contains diagonal matrices CL′L(rmin; k) � Cl′(rmin; k)δL′L and
DL′L(rmin; k) � Dl′(rmin; k)δL′L. The condition for a bound state
is then given by Dl′(rmin; k) � 0 which eliminates the diverging
Hankel functions in Eq. 15 for r≤ rmin. In mathematical
scattering theory, the function

Dl rmin; k( ) � 1 − ∫ rmax

rmin

dr′r 2′ jl kr′( )V0Sl r′; k( ) (62)

is known as the “Jost function.” Its analytical properties in the
complex-k plane are comprehensively discussed in [14], where it is
explained that bound states correspond to zeros of Dl(rmin; k) for k
values on the positive imaginary axis. The determination of these
zeros is a one-dimensional root-finding problem treated here by
Ridders’ method [15].

Numerical results for bound-state energies and wavefunctions
are shown in Table 1 and Figure 1 for an attractive potential V0 �
−16 Ry, which is confined to a spherical shell between rmin �
0.00001 aB and rmax � 3 aB. This potential has bound states up to
l � 8. The energies in Table 1 were obtained using N � 10 intervals
of equal length and order M � 10 for the Chebyshev expansions.
They deviate by less than 2 × 10−9 from the exact energies
determined from the zeros of Dl(rmin; k) using the analytical
expressions given in Appendix A. For comparison with values
given in the literature, for example, in [16] where the same
potential is treated by sinc-interpolants for rmin � 0, it is useful
to know that the same digits as in Table 1 are obtained if rmin is
chosen smaller than 0.00001 aB. This is a consequence of the third-
order dependence on rmin, which can be established from the
expressions derived in Appendix A.

Figure 1 shows how the energy of the lowest bound state for l � 0
converges with the order of the Chebyshev expansion. The
convergence is very similar for the other bound states. The
deviations decrease exponentially with the order, and accurate
results are already obtained with a small number of intervals by
using a sufficiently large order. A precision of 10−10 is achieved for
N � 3 intervals and order M � 14, leading to 45 collocation points.
For a larger number of intervals, where a smaller order gives the
same precision, more collocation points are necessary. This is,
however, not important for the computational effort, which
scales as N(M + 1)3, so that the effects of an increase of N and
a decrease M are practically canceled.

TABLE 1 Bound-state energies for different l values in Rydberg units for a
potential of depth −16 Ry confined to a spherical shell between rmin �
0.00001 aB and rmax � 3 aB.

l e1 e2 e3 e4

0 −15.067032975 −12.287216857 −7.738182446 −1.734147318

1 −14.093970355 −10.407767360 −5.037170230

2 −12.869064652 −8.2824156334 −2.179455290

3 −11.405365235 −5.9291642729

4 −9.7123791747 −3.3710840481

5 −7.7979942918

6 −5.6694973028

7 −3.3343625870

8 −0.8012457212

FIGURE 1
(A)Deviations from the exact result for the lowest bound-state energy of l � 0. The black, red, green, and blue curves are forN � 3,N � 5,N � 10, and
N � 30 intervals. (B) Irregular solutions, multiplied by r and normalized to one at r � 3 aB, for selected values of l. The black, red, green, blue, and orange
curves are for the highest bound-state energies of l � 0, l � 1, l � 3, l � 5 and l � 8. The constant potential used in the calculations has a depth of −16 Ry and
is confined to a spherical shell between r � 0.00001 aB and r � 3 aB.

Frontiers in Physics frontiersin.org07

Zeller 10.3389/fphy.2024.1393130

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1393130


Figure 1 also shows the irregular solutions for the highest
bound-state energies for selected values of l calculated with N �
10 and M � 8. For the presentation, they are multiplied with r
and normalized to 1 at r � 3 aB. They exponentially decay for
r > 3 aB and, as a consequence ofDl(rmin; k) � 0, regular at r � 0.
Thus, they satisfy the requirements specifying bound-state
wavefunctions. It should be noted that, unlike the example
shown, the condition Dl(rmin; k) � 0 is not always obtained
numerically with sufficient precision to conceal the divergent
behavior at r � 0. It is then more appropriate to determine the
bound-state wavefunction not from the irregular solution but
from the regular solution by using the property that irregular and
regular solutions are multiples of one another at the bound-state
energy, as discussed in [14].

3.2 Electron density for NiTi

Metallic alloys of nickel and titanium have interesting and
technologically important mechanical properties, like the shape
memory effect. If NiTi in its low-temperature B19’ phase is
deformed and heated, it returns to its original form, which
persists on cooling. Because of the low symmetry of the P21/m
space group, the spherical-harmonics expansion of the potential

V r( ) � ∑
L

VL r( )YL r( ) (63)

contains non-zero terms for all values of l in contrast to high
symmetry systems like copper or silicon. The potential for NiTi
was determined self-consistently for lmax � 3. The exchange-
correlation potential was treated in the Vosko–Wilks–Nusair
parametrization [17] and a Monkhorst–Pack grid [18] with 16×
16 × 16 points applied for the Brillouin zone integrations. The
experimental lattice structure as given in [19] was used with a =
289.8 pm, b = 464.6 pm, c = 410.8 pm, γ � 97.8°, and Wyckoff (2e)
positions (±0.0372, ±0.6752, 1/4) for Ni and (±0.4176, ±0.2164, 1/4)
for Ti. The order for the Chebyshev expansion was chosen asM � 8
and the subintervals were chosen as follows. On the outside of the
inscribed spheres of the atomic Voronoi cells, the intervals were

determined by the kinks of the shape functions (for an
explanation, see [20]). On the inside, 30 intervals were used
between rmin � 0.00001 aB and r � 1.2 aB with increasing length
corresponding to α � (0.00001/1.2)1/30 � 0.677164 and eight
intervals above r � 1.2 aB with equal length. The total number
of intervals was 64, leading to an overall 576 radial mesh points. It
should be emphasized that the non-spherical potential was used
on all radial mesh points, and no cutoff of the non-spherical part
near the atomic centers was applied. Previously, such cutoffs were
always necessary as explained, for instance, in [21].

The self-consistent potential determined in this way was used in
calculations for the electron density for lmax ≤ 8. In order to save
computer resources, a reduced Monkhorst–Pack grid with 6 × 6 ×
6 points was applied. Results for the density of the valence electrons
near the center of an Ni atom are shown in Figure 2 for lmax � 3 and
lmax � 8. The insets are blowups on a 100× smaller range. The
standard boundary conditions with the recursion relations Eqs 33,
34 lead to the results shown by blue curves. They deviate from the
correct behavior below r � 0.001 aB for lmax � 3 and below r � 0.1 aB
for lmax � 8. These deviations degrade the self-consistency
procedure in density-functional calculations unless they are
somehow removed by extrapolation, which is cumbersome for
large systems, or completely neglected near the atomic centers.
Such neglect might be justified for lmax � 3, where the affected
volume is a tiny part of the total volume but might be
unreasonable for lmax � 8, where the affected volume is non-
negligible. Straightforward use of the modified boundary
conditions leads to the results shown by green curves. In the
left picture, for lmax � 3, the green curve, which is hidden under
the black curve, exhibits no divergence at the origin. In the right
picture, for lmax � 8, the green curve begins to diverge at
r � 0.004 aB, which is considerably smaller than r � 0.1 aB
where the blue curve, obtained from the unmodified solutions,
begins to diverge. The use of the modified boundary conditions
together with one pass through the modified recursion relations
(Eqs 49, 50) leads to the orange curves. In the left picture, the
orange curve is again hidden under the black curve, while in the
right picture, it is considerably better than the green curve by
shifting the beginning of the divergence from r � 0.004 aB to

FIGURE 2
Electron density near the center of an Ni atom in NiTi plotted in (1,0,0) direction for lmax � 3 (A) and lmax � 8 (B). The insets display the densities on
100× smaller range. The different curves are explained in the text.
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r � 0.0016 aB. A second pass through the modified recursion
relations (Eqs 49, 50) gives only a small improvement seen in
the red curve, which begins to diverge at about r � 0.0013 aB.

The question of whether better results can be obtained by
using a larger number of intervals or a higher order of the
Chebyshev expansion was investigated by doubling the
number of intervals below r � 1.2 aB and by increasing
the order to M � 16. The results thus obtained are practically
identical to those shown in Figure 2. This indicates that the
treatment of the auxiliary integral equations with double
precision floating-point arithmetic is accurate enough.
Whether better results can be obtained by treating the
recursion relations more accurately was investigated by using
quadruple precision instead of double precision. Then, instead of
below r � 0.04 aB, r � 0.0016 aB, and r � 0.0013 aB, the density
results diverge only below r � 0.003 aB, r � 0.0004 aB, and
r � 0.00001 aB. Thus, divergence-free densities as shown by the
black curves can be obtained for NiTi at least up to lmax � 8.

4 Summary and outlook

An integral-equation approach was presented for the calculation
of irregular solutions of the Schrödinger equation for non-spherical
potentials. It was shown how expansions in Chebyshev polynomials
can be used to convert the integral equations into systems of
algebraic equations, which can be solved by standard software.
For that purpose, no explicit construction of the Chebyshev
series is needed but only function values at the zeros of the
Chebyshev polynomials. It was explained that the numerical
effort is considerably reduced by a subinterval technique
suggested by Greengard and Rokhlin and that this technique,
with appropriately adapted intervals, is beneficial for potentials
with a finite number of radial discontinuities; this is because the
numerical precision is determined by the smoothness of the
potentials between the discontinuities but not by the
discontinuous behavior. A numerical investigation was presented
for a constant potential and for a realistic non-spherical potential,
which was obtained by density-functional calculations for a
nickel–titanium alloy. It was shown that accurate bound-state
energies can be obtained from the calculated irregular solutions.
It was explained how a precise description of the divergent
behavior of the coupled irregular solutions can be obtained
such that accurate density calculations by complex-contour
integrations are possible.

The approach presented can be extended in several
directions. It is not restricted to the non-relativistic
Schrödinger equation treated here but is also useful for
including scalar-relativistic and spin-orbit-coupling effects
[22] and for full-relativistic calculations by the Dirac equation
(Eq. 23). It can be extended to calculate bound-state energies for
non-spherical potentials, although with more effort because of
nearby roots caused by degeneracy splitting. It also can be

extended to calculate scattering resonances which are
determined by zeros of Jost functions in the complex-k plane.
These zeros can be obtained by contour integrals, for which a
Fortran package is available [24]. Calculations of exchange-
correlation and Coulomb potentials, which require
differentiations and integrations, are easily done with spectral
differentiation and integration matrices without introducing
additional numerical approximations. An interesting subject
for further research is the question of how much numerical
precision is needed to evaluate the recursion relations for higher
values of lmax beyond lmax � 8, which was the limit set by the
present capabilities of the applied KKRnano code.
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Appendix A

Analytical results for constant potentials

For a potential, which has a constant value V0 for rmin ≤ r≤ rmax

and vanishes for r < rmin and r > rmax, the irregular solutions can be
calculated analytically. Because of the spherical symmetry of the
potential, the irregular solutions for different L channels are
decoupled and can be written as

SL′L r; k( ) � Sl′ r; k( )δL′L. (A1)
With k1 �

							
k2 − V0

√
the functions are given by

Sl r; k( ) � −ikh 1( )
l kr( ) for r≥ rmax

cljl k1r( ) + dlh
1( )

l k1r( ) for r≤ rmax.
{ (A2)

The constants cl and dl are determined by the conditions

cljl k1rmax( ) + dlh
1( )
l k1rmax( ) � −ikh 1( )

l krmax( ) (A3)
−k1cljl+1 k1rmax( ) − k1dlh

1( )
l+1 k1rmax( ) � ik2h 1( )

l+1 krmax( ) (A4)
which guarantee that the solutions are continuous and continuously
differentiable at rmax. Eq. A4 is obtained from Eq. A3 by
differentiation using the formula fl′(x) � −fl+1(x) + (l/x)fl(x)
for derivatives of Bessel and Hankel functions. The terms arising
from (l/x)fl(x) are omitted in Eq. A4 because they are a simple
multiple of Eq. A3. Solving Eq. A3 and Eq. A4 for cl and dl leads to

cl � kk1r
2
max k1h

1( )
l+1 k1rmax( )h 1( )

l krmax( ) − kh 1( )
l k1rmax( )h 1( )

l+1 krmax( )[ ]
(A5)

dl � −kk1r2max k1jl+1 k1rmax( )h 1( )
l krmax( ) − kjl k1rmax( )h 1( )

l+1 krmax( )[ ]
(A6)

Inserting Eq. A2 into Eq. 62 and using the standard results for
integrals of products of Bessel and Hankel functions of the same
order and different arguments leads to

Dl rmin; k( ) � D 1( )
l +D 2( )

l (A7)
with

D 1( )
l � 1 − cl[kr2maxjl+1 krmax( )jl k1rmax( ) − k1r

2
maxjl krmax( )jl+1 k1rmax( )]

− dl kr
2
maxjl+1 krmax( )h 1( )

l k1rmax( ) − k1r
2
maxjl krmax( )h 1( )

l+1 k1rmax( )[ ]
(A8)

D 2( )
l � cl[kr2minjl+1 krmin( )jl k1rmin( ) − k1r

2
minjl krmin( )jl+1 k1rmin( )]

+ dl kr
2
minjl+1 krmin( )h 1( )

l k1rmin( ) − k1r
2
minjl krmin( )h 1( )

l+1 k1rmin( )[ ]
(A9)

In Eq. A8 the constants cl and dl can be eliminated by using Eq. A3
in the terms proportional to k and Eq. A4 in the terms proportional
to k1. This leads to

D 1( )
l � 1 + ik2r2max jl+1 krmax( )h 1( )

l krmax( ) − jl krmax( )h 1( )
l+1 krmax( )[ ]

(A10)

From the Wronskian relation

jl+1 x( )h 1( )
l x( ) − jl x( )h 1( )

l+1 x( ) � i
x2

(A11)

for spherical Bessel functions it follows that D(1) vanishes and that
Dl(rmin; k) is given by Eq. A9.

Green function at the origin

The behavior of the Green function for arguments smaller than
rmin can be determined from the Dyson equation

G r, r′; k( ) � g r, r′; k( ) + ∫ dr″g r, r″; k( )V r″( )G r″, r′; k( ). (A12)

by using Eq. 36 for G(r, r′; k) and the corresponding result

g r, r′; k( ) � ∑
L

YL r̂( )YL r̂′( )gl r, r′; k( ) (A13)

for g(r, r′; k). This leads to
∑
LL′

YL r̂( )YL′ r̂′( )GLL′ r, r′; k( ) � ∑
L

YL r̂( )YL r̂′( )gl r, r′; k( )
+ ∑

LL′L″
∫rmax

rmin

dr″r 2″ YL r̂( )gl r, r″; k( )
VLL″ r″( )GL″L′ r″, r′; k( )YL′ r̂′( )

(A14)
where the integration over the angles was done by using the
definition Eq. 4 for the potential matrix elements. With the
orthogonality of the spherical harmonics the angular coordinates
in Eq. A14 can be eliminated, which yields

GLL′ r, r′; k( ) � gl r, r′; k( )δLL′
+ ∫rmax

rmin

dr″r 2″ gl r, r″; k( )∑
L″

VLL″ r″( )GL″L′ r″, r′; k( )
(A15)

For r≤ r′≤ rmin, the use of Eq. 6 and Eq. 37 leads to

GLL′ r, r′; k( ) � −ikjl kr( )h 1( )
l kr′( )δLL′

− ikjl kr( ) ∑
L″L‴

RL′L‴ r′; k( )∫rmax

rmin

dr″r 2″ h 1( )
l kr″( )

× VLL″ r″( )SL″L‴ r″; k( )
(A16)

By using Eq. 13 the final result is given by

GLL′ r, r′; k( ) � −ikjl kr( )h 1( )
l kr′( )δLL′

− ikjl kr( )∑
L‴

RL′L‴ r′; k( )CLL‴ rmin; k( ) (A17)

Here the only divergent expression is the first term.
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