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Introduction: For the Navier-Stokes equation, one of the most essential tasks
should be to study its completeness of the complex nonlinear systems. Also, its
nature and physical practical applications would be depth explored. Moreover, as
one of the routes to chaos, this equation with an external force has been
investigated numerically in 1989. Recently, some information is worth noting
that when the high symmetry was imposed on the velocity field, the complex
nonlinear motions should occur even lead to the chaos phenomenon. However,
most of the published papers are based on theoretical studies and rarely deal with
the above results, which lost of the match between them and the integrity of the
scientific system.

Methods: This study analyzed themolecular distillation process in detail based on
the basic theory of nonlinear chaotic systems. Then, the mathematical model for
the process of molecular distillation with one brushless DC motor (BLDCM) is
built and named theMolecular-Distillation-Navier-Stokes (MDNS) equation. Also,
its complex and potentially chaotic behaviors and chaotic processes are first
discovered and demonstrated, such as chaotic attractors, chaotic co-attractors,
phase portraits, time-domain waveforms, Lyapunov exponent spectrums,
Poincare maps, the bifurcation diagrams, and so on.

Results: The good agreement among theoretical analysis, simulation and
experimental results verifies the practicability and flexibility of the
configured model.

Discussion: The related conclusions have supplemented and improved the
theoretical system for the Navier Stokes equations. Also, it reflects the
significance in molecular distillation processes. Meanwhile, the novel research
direction for the fields of the chaotic nonlinear and complex industrial systems
have been explored and discovered.
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1 Introduction

The Navier–Stokes equation is the partial differential equation
that is used to get the motion of viscous fluid substances and was
discovered by both physicists Claude-Louis Navier and George
Gabriel Stokes [1]. This model mathematically defined
momentum balance for Newtonian fluids and showed the
relationship among pressure, temperature, and density with the
multidimensional equation of state. As one of the important theories
to describe the physics for a series of phenomena of scientific and
engineering interest, plenty of related results have been obtained and
published. Also, it has attracted a large number of peers to explore
engineering applications. For example, the full and simplified form
of the Navier–Stokes equations could be used to study and analyze
blood flow, the weather, ocean currents, neural networks,
magnetohydrodynamics, and some other problems [2–4].
Subsequently, some scholars have worked to seek the algorithms
for solving these equations [5] and find the route to chaos and
complexity [1] based on the basis of nonlinear chaotic dynamics. In
other words, the great interest in a purely mathematical sense for
this equation has been shown for quite some time. However, some
rigorous and real scientific results have been obtained, which
belonged to theory, rarely to practical engineering. Moreover, the
high symmetry is one of the distinctive features of some devices in
the field of industry [6], such as the brushless DC motor (BLDCM).
Recently, existing relevant results on brushless DC motors have also
been progressively biased toward modeling and analyzing
nonlinear behaviors.

For example, in 2004, Zheng-Ming Ge and his workers studied
the dynamic model of the three-time scale brushless DC motor
system and its chaos anticontrol algorithm [6]. In addition, they

used some numerical results, such as phase diagrams, bifurcation
diagrams, and Lyapunov exponents (LEs), to present the complex
chaotic motions. In 2017, G. Qi presented the energy cycle of
brushless DC motors and analyzed the generation route to chaos
[7]. In that paper, the symmetry vector field in the BLDCM system
has been investigated, and it has been pointed out that this vector
field has been regarded as the force field of a pure mechanical
system. Both four types of torque (namely, inertial, internal,
dissipative, and generalized external torque) and four forms of
energy (namely, kinetic, potential, dissipative, and generalized
external) have been decomposed and investigated. In addition,
the generation conditions of a chaotic attractor for one BLDCM
system have been proposed and given. In 2018, Ramon L. V.
Medeiros introduced a novel approach to quantifying the chaotic
behavior and failure detection for brushless DC motors, which has
been named signal analysis based on chaos using density of maxima
(SAC-DM) [8]. To demonstrate the potential of the proposed SAC-
DM, one experiment has been presented, and the conclusion is that
the proposed approach has been able to detect the speed of the
brushless DCmotors in 99.16% of cases and identify the unbalanced
system in 99.79% of cases when the speed is at 50%. It can be seen
that the novel approach demonstrated fully shows the important
role of chaotic phenomena in motor nonlinear systems. In addition,
some valuable findings have demonstrated their importance and
necessity in practical engineering, such as the oscillation and chaos
control methods for the fractional- and order-integer brushless DC
motor system [9–11], the multi-stability, hidden chaos, and
transient chaos in the brushless DC motor [12], just to name a few.

As a short-path vacuum distillation, wiped-film molecular
distillation could be used to separate, purify, and concentrate
natural products and complex and thermally sensitive molecules

FIGURE 1
Structure of wiped-film molecular distillation.
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(such as vitamins and polyunsaturated fatty acids). During the entire
operation, the BLDCM has embodied important applications and
become one of the core components, which has been used to drive
the rotating film scraper. It ensures that a uniformly distributed
liquid film can be retained on the evaporating surface of the device
for efficient evaporation and separation. Therefore, for the whole
molecular distillation process, the BLDCM plays a crucial role,
which could be obtained through stable operation and precise
control of the position of this device. Meanwhile, the analysis of
its nonlinear behaviors, oscillator, and chaos phenomenon is so
important and necessary. Turbulence and chaotic phenomena have
always existed in the field of molecular distillation. In addition, some
research results have been published [13–15]. Rarely the result
presents nonlinearity and chaotic oscillators in molecular
distillation with the BLDCM. In order to explore the role and
significance of chaos theory in the field of molecular distillation,
some existing related results and analysis methods could be
introduced [16–28].

With these aims in mind, this paper is organized as follows. In
Section 2, the molecular distillation process is given. Then, the
mathematical model for the process of molecular distillation with
one BLDCM is built and named as the molecular-distillation-
Navier–Stokes (MDNS) equation. In Section 3, its complex and
potentially chaotic behaviors and chaotic oscillators are first
discovered and demonstrated, such as chaotic attractors, chaotic
co-attractors, phase portraits, time-domain waveforms, Lyapunov
exponent spectra, Poincare maps, and bifurcation diagrams. In
Section 4, the coexisting chaotic attractors are shown and
analyzed. Finally, this paper is summarized in Section 5.

2 Molecular distillation process and
molecular-distillation-
Navier–Stokes equation

2.1 Molecular distillation process

As the third generation of molecular distillation, the structure of
one wiped-film molecular distillation is to install a rotating film
scraper inside the traditional equipment (see Figure 1, structure of
wiped-film molecular distillation).

From Figure 1, the wiped-filmmolecular distillation system has the
following advantages: 1) the continuous uniform liquid film could be
formed using the scraper and effectively avoid the generation of hot
spots, preventing the decomposition of the material and the splash
phenomenon; 2) due to the thin liquid film, the equipment has a high
efficiency with heat transfer, fast flow of the material, and a short
residence time; and 3) it has a simple structure, inexpensive equipment,
and high efficiency, which are widely required in laboratory and
industrial production. However, some shortcomings should also be
mentioned: 1) the speed of the brushless DC motor and material
downstream are closely related to the improper speed; otherwise,
inappropriate speed ratios could lead to material tumbling, and 2)
due to the motor rotation driving the scraper motion, some behaviors
(i.e., the flow of material, heat, and mass transfer processes) could
become very complex, even leading to chaos and turbulence
phenomena. Moreover, the mechanism and operating rules for the
entire molecular distillation process could become too difficult to be
accurately understood. In order to have a clear and complete
understanding of the working principal diagram for the molecular

FIGURE 2
Schematic diagram of liquid film flow in the evaporator.
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distillation process, the liquid film flow in the evaporator is shown in
Figure 2, after the material is put into the evaporator.

The film scraper and the evaporator work together to make the
material uniformly distributed on the evaporator surface (see
Figure 3, section of a scraper driven by the motor). After a
period of time, under full stirring using the film scraper, the
distribution state of the liquid film on the evaporating surface
and its thickness could be kept stable for a long time. Then, the
continuous input of materials causes the head wave to constantly
update the composition of the liquid film, which increases the ability
of heat and mass transfer in turn. As the core component, the
brushless DC motor is commonly used to drive the rotating film

scraper. Furthermore, this motor makes sure that a uniformly
distributed liquid film is retained on the evaporating surface of
the device for efficient evaporation and separation. It can be seen
that the stable operation and precise control of the position of the
brushless DC motor play a crucial role.

From Figure 3, the meanings of the variables are as follows: ωc

represents the angular velocity of the inner material membrane
rotation, ωg represents the angular velocity of the scraper driven by
the stator of the DC brushless motor, L represents the length of each
sub-scraper from the center, R represents the radius of the inner
material membrane; r represents the radius of the membrane
scraper, d represents the thickness of the inner membrane of the

FIGURE 3
Transverse sections of a scraper driven by the motor: (A) transverse sections of the film scraper and (B) longitudinal sections of the film scraper.

FIGURE 4
Strange attractors of the MDNSmodel: (A) phase portrait in x-y-z; (B) phase portrait in x-y-w; (C) phase portrait in x-y-u; (D) phase portrait in x-y-v;
(E) phase portrait in w-u-v; and (F) phase portrait in z-v.
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material, D represents the height of the inner membrane, and di
represents the height of each small portion of the membrane scraper
driven by the rotating stator.

2.2 Molecular-distillation-
Navier–Stokes equation

The five-mode Navier–Stokes equations in Fourier series on a
torus have been built [25, 29–31]. As the movement of the film
scrape is driven by the rotor of the BLDCM, there are no other
force controls. According to the characteristics of the
Navier–Stokes equations and BLDCM model, and the process
of the wiped-film molecular distillation, the novel molecular-
distillation-Navier–Stokes (MDNS) model is introduced, which
expands the existing studies while expressing the role of the
scraper being driven by the stator. The mathematical model of
the proposed MDNS could be given as Eq. 1:

dx
dt

� −x + α1y + α2

dy
dt

� − α − δ( )x − y − γxz + α3

dz
dt

� xy − βz − α4 + nv

dw
dt

� −w + au +m

du
dt

� − e − a( )w − cu − wv

dv
dt

� wu − bv

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where both variants x and y represent the stator currents for the
straight-axis and cross-axis of the BLDCM, respectively; both
variants w and u represent the driven currents for the straight-
axis and cross-axis of the scraper, respectively; both variants z and v
represent the angular velocity of the BLDCM and driven scraper,
respectively; both parameters α2 and α3 are the voltages for the
straight-axis and cross-axis, respectively; α4 means the external
torque; n represents one relationship parameter between the
motor and the scraper; α1, α, c, b, e, δ, γ, and a mean system
parameters; β means the ratio of the damping coefficient to the
moment of inertia for the BLDCM; and m means the driven torque
by the BLDCM.

The Jacobian matrix J evaluated at O (0, 0, 0, 0, 0, 0) is as Eq. 2.

J1 �

−1 α1 0 0 0 0
− α − δ( ) −1 0 0 0 0

0 0 −β 0 0 n
0 0 0 −1 a 0
0 0 0 − e − a( ) −c 0
0 0 0 0 0 −b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

The characteristic equation of J is as follows:

det λI − J( ) � λ + β( ) λ + b( ) λ + 1( )2 + α1 α − δ( )[ ]
× λ + 1( ) λ + c( ) + a e − a( )[ ]

� 0. (3)

Eq. 3 is composed of the product of four polynomials. Its
characteristic values Λ = {λ1, λ2, λ3, λ4, λ5, λ6} have two negative
real roots (λ1 and λ2) and two pairs of complex conjugate roots with
no real part (λ3,4 and λ5,6) to ensure that the equilibrium points are
four hyperbolic saddle points (or simple, saddle points). The six
eigenvalues are resolved as Eq. 4.

FIGURE 5
Time-domain waveforms of the MDNS model: (A) x(t); (B) y(t); (C) z(t); (D) w(t); (E) u(t); and (F) u(t).
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λ1 � −β
λ2 � −b
λ3,4 � −1 ∓ i

��������
α1 α − δ( )√

λ5,6 � −1
2
∓ 1

2
i

����������������
4a e − a( ) − 1 − c( )2

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (4)

According to the eigenvalues, the Routh–Hurwitz criterion, and
the dissipation, the conditions are obtained as Eq. 5.

β> 0, b > 0, α> β , c > − 3
1 − 2

�������
a e − a( )√

< c < 1 + 2
�������
a e − a( )√{ . (5)

The characteristic valuesΛ = {λ1, λ2, λ3, λ4, λ5, λ6} of Eq. 3 have two
negative real roots (λ1 and λ2) and two pairs of complex conjugate roots
with no real part (λ3,4 and λ5,6) to ensure that all the equilibrium points
are four hyperbolic saddle points (or simple, saddle points). Intuitively,
when the parameters are set as follows: α1 = 25, α2 = α3 = 0.12, α = 38,
δ = 10, e = 16, b = 3.68, c = 16, γ = 1, a = 35, and m= 0.04, the initial
condition of the state variable is (x, y, z, w, u, v) = (0.01, 0.01, 0.01, 0, 0,
0). The plots of the strange attractors and time-domain waveforms of
the MDNS model are illustrated in Figure 4.

From Figure 4A, the chaotic phenomenon has been confirmed
[8–12] and observed in molecular distillation, which was induced by
its internally fixed motor. Then, the behavior of the key element
(i.e., the scraper), which is driven by this motor, must appear chaotic
(see Figure 4B). As the movement of the scraper is driven only by the
motor, both of them are similar. Then, from Figures 4C–E, both
variants x and y stand for the stator currents for the straight-axis and
cross-axis of this motor, respectively, which are the source of the
forces on the straight and cross-axes of the scraper below. It is
evident that when the state of the stator currents presents
nonlinearity, the scraper follows nonlinearity; that is, all chaotic
phenomena could be observed. From Figure 4F, it exhibits the
nonlinear behavior of the scraper, whose angular velocity follows
the angular velocity of the motor. Both of them are chaotic and show
one attractor.

From Figures 5A,B, double irregular nonlinear regions, that is,
two chaotic attractors, could be observed. Then, the obvious
nonlinear behaviors of driven scrapers (see Figures 5C,D) could
have occurred, but there were two unclear irregular regions. Finally,
comparing Figures 5E,F, chaotic motor angular velocity control
occurs with chaotic scraper angular velocity.

FIGURE 6
Lyapunov exponents of the proposed MDNS model: (A) LEs with a; (B) LEs with b; and (C) LEs with c.
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From both Figure 4 and Figure 5, the models of the proposed
MDNS are chaos systems. Exploring and analyzing their chaotic
phenomenon could not only reveal the nature of the proposed

model in a deeper way but also lay the theoretical foundation for
further research on its synchronous control algorithm and accurate
prediction.

FIGURE 7
Poincaremaps of the proposedMDNSmodel: (A) X = 0, Y = 0, Z = 0; (B)W=0, U = 0, V = 0; (C) Z = 0, U = 0, V = 0; (D) Z = 0,W=0,V = 0; (E) Z = 0,W=
0,U = 0; (F) Y = 0, W = 0, V = 0; (G) Y = 0, W = 0, U = 0; (H) Y = 0, U = 0, V = 0; (I) X = 0, Z = 0, V = 0; (J) X = 0, Z = 0, U = 0; (K) X = 0, W = 0, V = 0; (L) X = 0,
W = 0, U = 0; (M) X = 0, U = 0, V = 0; (N) X = 0, Y = 0, V = 0; and (O) X = 0, Y = 0, U = 0.
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3 Chaotic behaviors analysis

In this subsection, the chaotic behaviors of the proposed model
are studied separately from the aspects of the Lyapunov exponent
spectrum, bifurcation diagram, and Poisson map in detail.

3.1 Lyapunov exponent spectrum and
Poisson map

The Lyapunov exponent (LEs) is the most important and
necessary basis to directly judge a chaotic system and show
complexity. Hereby, the maximum LEs could be computed
with the above parameters, as follows: LE1 = 18.2261, LE2 =
11.7351, LE3 = -2.6446, LE4 = -3.7106, LE5 = -18.8391, and LE6 =
-18.876. In addition, the Hausdorff (Lyapunov) dimension is
calculated as DL = 5.2525. As two positive numbers in the
Lyapunov exponent and the Hausdorff (Lyapunov) dimension
are nonintegers, the proposed model is a hyperchaotic system,
which is more complex than a chaotic system. It can be seen that

the molecular-distillation process is so complex. It is worth it to
study and explore it.

Moreover, taking the parameters (i.e., a, b, and c) for the driven
scraper as examples, the LEs spectrum is shown usingWolf’s method
in Figure 6.

Observing Figure 6A, when the value of parameter a is greater
than 12.3, the system enters the critical chaotic state, that is, LE = 0;
when the value of parameter a is greater than 17.1, the system enters
the chaotic or hyperchaotic state completely, that is, LE > 0.
However, different movements could be obtained in both Figures
6B,C. They immediately enter a state of chaos or hyperchaos. It can
be seen that the proposed system is indeed a hyperchaotic system.

Furthermore, the Poincare mappings are depicted in Figure 7,
which is another direct and effective method to determine the
complex chaos or hyperchaos dynamic behavior of system 1. It
can be seen that they consist of a series of isolated points, which
means that the system is manifestly chaotic.

Notably, the proposed system is a six-dimensional system, which
belongs to the field of high-dimensional nonlinearity. In order to
describe its complex nonlinear features in detail, the chaotic and

FIGURE 8
Lyapunov exponents of the proposed MDNS model: (A) a ϵ [0,80]; (B) b ϵ [0,8]; and (C) b ϵ [0,60].

FIGURE 9
Strange coexisting attractors of theMDNSmodel: (A) phase portrait in x-y-z; (B) phase portrait in x-y-w; (C) phase portrait in x-y-u; (D) phase portrait
in x-y-v; (E) phase portrait in w-u-v; and (F) phase portrait in z-w-v.
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attractor behaviors for each variable are shown in the form of three-
dimensional diagrams.

Correspondingly, both the LEs and the Poincare mapping
diagrams consisting of a series of isolated points are evidence
that the proposed system is hyperchaotic.

3.2 Bifurcation diagrams

The bifurcation is one key factor that helps us clearly understand
the instability of the proposed system. In this subsection, the
bifurcation diagrams with parameters (i.e., a, b, and c) are given
and discussed in Figure 8.

It is observed from Figure 8A that the region of parameter a can be
divided into three subregions when fixing the parameters α1 = 25, α2 =
α3 = 0.12, δ = 10, e = 16, b = 3.68, c = 25, γ = 1, a = 35, andm= 0.04, as
follows: 1) for the first part, a ϵ [0, 2.01] illustrates period-1 motion; 2)
for the second part, a ϵ (20.1, 67.14] eventually leads to chaos and
chaotic oscillation; and 3) for the last part, a ϵ (67.14, 80), represents
period-1 motion. Then, Figure 8B presents the chaos region of
parameter b when fixing the parameters α1 = 25, α2 = α3 = 0.12,
δ = 10, e = 16, a = 16, c = 25, γ = 1, a = 35, and m= 0.04. Finally,
Figure 8C presents the chaos region of parameter c when fixing the
parameters α1 = 25, α2 = α3 = 0.12, δ= 10, e = 16, a = 16, b = 3.68, γ= 1,
a = 35, andm= 0.04. Because there are several key parameters (i.e., a, b,
and c for the driven scraper) to determine the proposed system, it could
appear to have chaotic and hyperchaotic behaviors. Therefore, the
analysis of its bifurcation diagrams could not rely on the processes of
period-1, period-2, and period-3, and then on chaotic phenomena as
some simple ones did. A more detailed study and description of the
bifurcation mechanism of the proposed system would be the next step.

4 Coexisting attractors

It is well known that initial value sensitivity is one of the most
significant features of a chaotic system and could represent its
complexity. It refers to the chaotic attractors because they give
different initial values to the system, which could occur in
completely different states of motion. When different values are
given to the same system, the different starting points could lead to
coexisting attractors and more complex behaviors. This phenomenon
could only be discovered in a few chaotic systems. Furthermore,
coexisting attractors help us to fully grasp the nonlinear
characteristics of the system and design optimal controllers when
studying chaotic control and anticontrol algorithms. Especially, in
the molecular distillation process, fully exploiting the features of the
BLDCM could reduce error accumulation, clearly define system
behaviors, and improve the efficiency.

In this subsection, when different initial values are assigned to
the proposed MDNS model, the system could observe the coexisting
attractors phenomenon, setting the initial condition (x, y, z, w, u,
v) = (0.01, 0.01, 0.01, 0.01, 0.01, 0.01) (blue solid curve) and (−0.01,
−0.01, −0.01, −0.01, −0.01, −0.01) (red solid curve), respectively. The
coexisting attractors are given in Figure 9.

For the molecular distillation process, the generation and existence
of coexisting attractors could help us to analyze the motion of the
configured BLDCM and the driven scraper from another viewpoint,

which affects the efficiency of the whole process. Comparing Figures
9A,E, quite different initial motion directions and trajectories exist, but
similar phenomena could be observed over a period of time. In other
words, the efficiency and results of the molecular distillation process are
determined by the motor that drives the movement of the scraper, and
when the motor has a stable working condition, the results of molecular
distillation are also stable.

5 Conclusion

In mathematics and industry, analyzing and exploring the process of
molecular distillation could improve the productivity. It can also provide
important theoretical support for improving related equipment and
proposing stable control algorithms. In this paper, the study on
molecular distillation processes and the BLDCM has been
investigated based on the Navier–Stokes theoretical framework, and a
novel MDNS equation has been built. In addition, the generation of
complex nonlinearity phenomena has been first discovered and
displayed in detail, including phase portraits, time-domain
waveforms, Lyapunov exponent spectra, Poincare maps, and
bifurcation diagrams. Based on the LEs, the hyperchaos could be
determined and observed. Moreover, the co-attractors have become
another perspective tomanifest the complexity and hyperchaos. It would
play a potential role in chaotic and hyperchaotic dynamic analysis and
engineering applications in molecular distillation.
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